Электрификация

Справочник домашнего мастера

Зарядка ni CD аккумуляторов схемы

РадиоКот >Схемы >Питание >Зарядные устройства >

Теги статьи: Добавить тег

Зарядное устройство для Ni-Cd и Ni-MH аккумуляторов. Очень простое

Опубликовано 01.01.1970

Так, товарищи. Сейчас мы с вами будем заряжать аккумуляторы, просто, качественно, а главное — быстро. Для чего воспользуемся микросхемой MAX713 от компании MAXIM. Это специализированная микросхема, заточенная именно под зарядку указанных типов аккумуляторов.

Итак, что же она умеет — подходите ближе, сейчас увидите.
Итак MAX713 позволяет:

  • заряжать Никель-Кадмиевые и Никель-МеталлоГидридные аккумуляторы в количестве от 1 до 16 штук одновременно;
  • в режиме быстрого заряда регулировать ток заряда от С/3 до 4С, где С — емкость аккумулятора;
  • в режиме медленного заряда доводить аккумуляторы до кондиции током С/16;
  • отслеживание состояния аккумулятора и автоматический переход от быстрого заряда к медленному;
  • в отсутствии зарядного тока через микросхему «утекает» всего 5мкА от аккумуляторов;
  • возможность отключения заряда по температурным датчикам или по таймеру;

Ну и хватит — и так вон сколько получилось.
Как обычно, чтобы разговаривать предметно, смотрим на схему:

Вообще говоря, как мы помним еще со староглиняных времен, заряжать аккумуляторы рекомендовалось током 0,1С, где С — емкость аккумулятора. Однако, с тех пор утекло много пива и производители научились делать более совершенные аккумуляторы, позволяющие учинять над собой такое безобразие, как быстрый заряд (Fast Charge).
«It»s okey», говорят они — вы можете заряжать наши аккумуляторы гораздо большим током — главное не превышать значение 4С, иначе может случиться big-bada-bum.

Разумеется, чем больший зарядный ток используется в процессе зарядки, тем меньше времени нужно на эту самую зарядку. Однако, все же, увлекаться сильно не стоит — ток током, а долговечность аккумулятора тоже не последнее дело. Поэтому, в MAX713 реализован не только быстрый, но и медленный заряд (Trickle Charge), который включается по достижении аккумулятором полного заряда большим зарядным током.

Схема, показанная выше позволяет заряжать два аккумулятора, ёмкостью по 1000мА/ч каждый, током С/2, то есть 500мА.
Имеется индикация включения питания — HL1 и индикация быстрого заряда — HL2.
Аккумуляторы включаются последовательно.
Входное напряжение должно быть равно 6 вольтам. Вы еще тут? А ну бегом за паяльником!

Что? Вам надо заряжать четыре аккумулятора сразу? И не 1000мА/ч, а 1200?
Ну ладно, тогда не бежим за паяльником, а слушаем дальше.

Как я уже говорил, эта микросхема позволяет заряжать до 16 аккумуляторов, током до 4С. Итак, что же от нас требуется, чтобы спроектировать зарядное устройство под наши конкретные цели?

  1. Определиться с зарядным током аккумуляторов. Неплохо было бы узнать, какой максимальный зарядный ток рекомендует производитель. Ну а если не узнали, тогда уж на свой страх и риск. Для начала, я бы не стал превышать С/2.
  2. Решить сколько аккумуляторов нужно заряжать одновременно. После этого, согласно Таблице 1 определить, куда припаивать выводы PGM0 и PGM1. Разумеется, чтобы не перепаивать каждый раз микросхему, нужно предусмотреть переключатель, если нужно заряжать разное количество аккумуляторов.
  3. Подобрать входное напряжение на зарядное устройство. Оно может быть рассчитано по формуле:
    U=2+(1,9*N),
    где N — количество аккумуляторов
    Но это напряжение не может быть меньше 6 вольт.
    То есть, если вы будете заряжать даже один аккумулятор — входное напряжение должно составлять 6 вольт.
  4. Определить мощность выходного транзистора, после чего по справочнику подобрать подходящий. Мощность определяется так:
    P=(Uin — Ubatt)*Icharge,
    где:
    Uin — максимальное входное напряжение,
    Ubatt — напряжение заряжаемых аккумуляторов — суммарное, разумеется,
    Icharge — зарядный ток.
  5. Посчитать сопротивление R1. R1=(Vin-5)/5 — сопротивление получается в килоомах, чтобы получить Омы надо посчитанное значение умножить на 1000.
  6. Определить сопротивление R6. R6=0.25/Icharge Если Icharge подставляется в амперах, сопротивление мы получим в Омах, если а миллиамперах, то в килоомах. Не теряйтесь.
  7. Выбираем время заряда. Это нужно для того, чтобы в случае неисправного аккумулятора, зарядное устройство не гоняло его, бедолагу бесконечное число часов, а отключило по таймеру, даже если аккумулятор и не зарядился. Для выбора времени заряда пользуемся Таблицей 2. И прикручиваем ноги PGM2 и PGM3 согласно этой таблице.
  8. Разумеется, не забудьте учесть при этом зарядный ток, который был выбран, а то может случиться так, что устройство отключится раньше, чем зарядится аккумулятор.

Собственно говоря и все. Дальше будут таблицы.

Таблица 1. Задание количества заряжаемых аккумуляторов.

Количество аккумуляторов

Соединить PGM 1 с…

Соединить PGM 0 с…

V +

V+

Не подсоединять

V+

V+

V+

V+

Не подсоединять

Не подсоединять

Не подсоединять

Не подсоединять

BATT —

Не подсоединять

V+

Не подсоединять

V+

Не подсоединять

BATT —

Таблица 2. Задание максимального времени заряда.

Время заряда (мин)

Выключение по падению напряжения

Соединить PGM 3 с…

Соединить PGM 2 с…

Выключено

V +

Не подсоединять

Включено

V +

Выключено

V +

V+

Включено

V +

Выключено

Не подсоединять

Не подсоединять

Включено

Не подсоединять

Выключено

Не подсоединять

V+

Включено

Не подсоединять

Выключено

Не подсоединять

Включено

Выключено

V+

Включено

Выключено

BATT —

Не подсоединять

Включено

Выключено

BATT —

V+

Включено

BATT —

См. так же: Хождение под мухой или две недели с MAX713.

Как вам эта статья?

Заработало ли это устройство у вас?

36 2 5
9 5 2

Зарядное устройство для NiMh/NiCd аккумуляторов на LM393


Несложное компактное зарядное устройство для NiMH и NiCd аккумуляторов с дополнительными полезными функциями, такими как автоматическое отключение и контроль температуры.

USB порт есть почти во всех современных компьютерах и ноутбуках. Сила тока отдаваемым USB 2.0 может быть более 500 миллиампер, при напряжении 5 Вольт, то есть минимум 2,5 Ватт, а USB третьего поколения еще больше. Использование такого источника энергии очень удобно, так как многие зарядки для смартфонов/планшетов также идут с разъёмом юсб, да и компьютер часто находиться под рукой. Сегодня мы сделаем зарядку для пальчиковых (AA) и мизинчиков (AAA) NiMH/NiCd аккумуляторных батарей от USB порта. Промышленные ЗУ для аккумуляторов от USB можно пересчитать по пальцам и обычно они заряжают маленьких током, что значительно увеличивает время подзарядки. К тому же собрав простенькую схемку мы получаем прекрасное зарядное устройство со световой индикацией и температурных датчиком стоимость которого весьма мала 1-2$.

Наше зарядное устройство подзаряжает сразу два NiCd/NiMH аккумулятора током более 470 mA, что делает зарядку очень быстрой. Перезаряжаемые батареи могут нагреваться, что несомненно негативно будет влиять на них, уменьшится ёмкость, пиковая отдаваемая сила тока, время нормальной эксплуатации. Чтобы такого не было в схеме реализовано автоматические прекращение подачи энергии, как только температура аккумуляторов будет 33 и более градусов по Цельсию. За эту полезную функцию отвечает NTC термистор с сопротивлением 10 кОм, при нагреве его сопротивление уменьшается. Он вместе с постоянным резистором R4 образует делитель напряжения. Термистор обязательно должен быть в тесном контакте с аккумуляторами, чтобы хорошо воспринимать изменение температуры.

Главной деталью схемы является сдвоенный компаратор-микросхема LM393.
Аналоги, которыми можно заменить LM393: 1040СА1, 1401CA3, AN1393, AN6916.

При заряде транзистор греется, его нужно обязательно ставить на радиатор. Вместо TIP32 возможно взять почти любой PNP структуры со схожей мощностью, я использовал КТ838А. Полным отечественным аналогом является транзистор КТ816, он имеет иную цоколевку и корпус.
USB кабель можно отрезать от старой мышки/клавиатуры или купить. А возможно вообще штекер юсб припаять прямо на плату.
Если при подаче питания светодиод горит, но схема ничего не заряжает то нужно увеличить сопротивление токоограничительного резистора R6. Для проверки нормальной работы схемы между землей и третьим выводом микросхемы (Vref) должно быть около 2,37 Вольт, а на втором контакте (Vtmp) LM393 1,6-1,85 Вольт.
Заряжать желательно два одинаковых аккумулятора, чтобы их ёмкость была примерно равна. А то получиться так, что один уже зарядился полностью, а второй только на половину.
Зарядный ток можно самостоятельно выставить, изменяя сопротивление резистора R1. Формула расчета: R1 = 1,6 * нужный ток.
К примеру, я хочу, чтобы мои аккумуляторы заряжались током 200 mA, подставляем:
R1 = 1,6 * 200 = 320 Ом

Это значит, что, установив переменный/подстрочный резистор мы можем добавить такую необычную функцию для зарядных устройств как самостоятельный выбор зарядного тока. Если, к примеру, аккумулятор нуждается в заряде током не более 0,1C то выкрутив резистор мы с легкостью выставим нужно нам значение. Это очень актуально для вот таких миниатюрных промышленных аккумуляторов, у которых ёмкость крайне мала и обусловлена их размерами.

При нагреве аккумуляторов зарядка будет отключаться. Это может увеличить время заряда, поэтому рекомендую ставить охлаждение в виде небольшого вентилятора.

Если у вас NiCd аккумуляторы, то их перед зарядкой нужно разрядить до 1 Вольта, то есть чтобы было использовано 99% ёмкости. Иначе будет чувствоваться негативный эффект памяти.
Когда банки будут полностью заряжены зарядный ток упадет примерно до 10 мА. Этот ток предотвратит естественный саморазряд никель-металлогидридных/камдиевых аккумуляторов. У первых наблюдается 100% разряд за год, а у второго типа примерно 10%.

Печатная плата для зарядного устройства существует в нескольких версиях, в одной из них USB гнездо удобно расположено прям на плате, то бишь возможно эксплуатировать USB шнур типа папа-папа.

Скачать платы в формате .lay можно тут platy-usb.rar (скачиваний: 628)
Корпус был куплен готовый NM5, и на него приклеен отсек для батареек. В середину корпуса легко влезла плата usb зарядного и небольшой радиатор транзистора. Красный индикаторный светодиод D1 и термодатчик RT1 выведены наружу.
Это зарядное устройство очень удобное, практичное и не занимает много места. Оно сможет очень быстро зарядить ваши аккумуляторные батареи. Если использовать не юсб порт, а зарядку для телефона/планшета то зарядный ток можно значительно повысить, к примеру использование импульсного БП для подзарядки смартфона привело к повышению силы тока до 0,72 Ампер, а значит и уменьшению время полного заряда. Таким образом мы используем порт Universal Side Bus не для передачи данных, а как альтернативный источник питания. Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. .

Зарядное устройство-анализатор NiMh/NiCd аккумуляторов

В связи с быстрым развитием портативных устройств современной бытовой техники, в настоящее время большое распространение получили Ni-Cd и Ni-NiMh аккумуляторные батареи, срок службы которых сильно зависит от правильной эксплуатации. В связи с этим возникает необходимость в устройстве, которое имеет возможность измерять основные технические характеристики эксплуатируемых аккумуляторов, такие как емкость и внутреннее сопротивление, а так же обеспечивать аккумуляторам оптимальный режим заряда.

Автором статьи был приобретен фотоаппарат Canon А710IS, использующий в качестве источника питания две батарейки формата АА. Практически сразу выяснилось, что фотоаппарат может нормально функционировать только с дорогими алкалиновыми батарейками стоимостью от 5грн.(0,7$) С более дешевыми батарейками он или отказывался включаться, или делал всего несколько снимков, после чего выключался. В связи с этим, практически сразу, были приобретены два аккумулятора GP емкостью 2700мА/ч. С этими аккумуляторами GP фотоаппарат мог нормально функционировать на протяжении около месяца, при этом можно было сделать снимков и видео приблизительно на 2Гб.

Через год эксплуатации количество снимков, которое мог сделать фотоаппарат после полной зарядки аккумуляторов, начало катастрофически уменьшатся. Кроме этого было замечено, что увеличился саморазряд аккумуляторов.

Через полтора года эксплуатации фотоаппаратом стало практически невозможно пользоваться – после полного заряда аккумуляторов, можно было сделать не более 20-30 снимков (или 6-7 мин. видео), при этом, если фотоаппаратом не пользовались больше недели, он, как правило, даже не включался. И это при том, что реальных циклов заряда было не более 30, при указываемом ресурсе производителя до 1000…

Так как аккумуляторы заряжались зарядным устройством китайского происхождения, и циклы заряда-разряда для предотвращения сульфатации не производились, был сделан вывод о том, что возможной виной преждевременного выхода из строя аккумуляторов был неправильный зарядный режим и отсутствие разрядно-зарядных тренировочных циклов.

При попытках восстановления аккумуляторов методом разрядно-зарядных циклов выяснилось, что емкость аккумуляторов составляет немногим более 1000мА/ч и восстановлению они не поддаются (проверка емкости проводилась при помощи разряда полностью заряженных аккумуляторов на лампочку накаливания, при этом по времени свечения лампочки и току потребления ориентировочно определялась емкость). При этом проверка емкости 5-и летних аккумуляторов Energizer 2300мА/ч показала емкость около 1400мА/ч, однако в фотоаппарате они показывали результаты приблизительно аналогичные аккумуляторам GP, с одним лишь положительным отличием — саморазряд был меньшим – фотоаппарат включался и через две недели, однако мог сделать не более 10 снимков.

После всех экспериментов было решено приобрести новые аккумуляторы, и собрать зарядное устройство, которое отвечало бы следующим требованиям:
— было схемотехнически очень простым и не содержало дорогостоящих компонентов;
— имело возможность ускоренной зарядки аккумуляторов и проведения тренировочных разрядно-зарядных циклов;
— при проведении зарядки и разрядки подсчитывалась потребленная/отданная емкость в мА/ч. с непосредственным измерением тока и в конце заряда определялось внутреннее сопротивление аккумулятора;
— окончание зарядки определялось по методу ∆U и имелся контроль температуры аккумулятора;
— имелась возможность контроля зарядного процесса на компьютере для его визуализации, а так же оценки принятия решения об окончании заряда;

Довольно долго проводился поиск в интернете и различных журналах подходящей схемы, однако они были или слишком неинформативными , или слишком сложными , или не обеспечивали требуемых технических характеристик.

В конце концов, за основу зарядного устройства (в дальнейшем ЗУ) была взята схема с , приспособленная под зарядку двух однотипных Ni-Cd или Ni-Mg аккумуляторов. Кроме этого был добавлен трехзначный светодиодный индикатор и написано новое программное обеспечение. Схема зарядного устройства приведена на рис.1.


Рис. 1

Особенность схемы – постоянное измерение тока в процессе заряда-разряда, что снизило требование к его стабильности и позволило делать более точный подсчет емкости.

Для питания устройства требуются два источника питания. Первый из них, подключенный к Х2-Х4 должен иметь характеристику близкую к источнику тока, с напряжением холостого хода около 4..6В, и током, соответствующему желаемому току заряда.

Второй, подключенный к Х3-Х4, должен быть источником напряжения, с напряжением 6…11В и током не менее 50мА для питания непосредственно схемы управления и индикации. Если напряжение этого источника будет не менее 8В, тогда вместо дорогого стабилизатора с малым падением напряжения LM2940-5 (DA2) можно использовать распространенный стабилизатор L7805 (КРЕН5А).

На практике было взято зарядное устройство от неизвестного телефона, на котором было написано DC 5.0V/740mA. В действительности на холостом ходу оно выдавало 7В, а ток заряда, при подключении его к двум последовательно включенным аккумуляторам, составил 580мА. Это зарядное устройство (на схеме показано как ZU) было переделано следующим образом. Конденсатор 4,7uF 400V заменен на 10uF 400V, для безопасности добавлен предохранитель 0,25А вместо используемого для этих целей резистора, на высоковольтный транзистор 13003 в корпусе ТО-126 (как у отечественного КТ815) прикреплен небольшой радиатор, и, самое главное, на трансформаторе была домотана дополнительная обмотка из 15 витков провода диаметром 0,18мм (на схеме W2) последовательно с существующей, после чего был допаян навесным монтажом диод VD10 типа 1N5819 и конденсатор С2 220 uF 25V. Необходимо, чтобы при намотке дополнительной обмотки W2 направление намотки было таким же, как в уже существующей W1 — напряжение на обмотках должно суммироваться. Диод VD10 и конденсатор С2 были приклеены термоклеем прямо к трансформатору.

Вся переделка заняла около полутора часов. В результате даже в начале заряда полностью разряженных новых аккумуляторов напряжение на контакте Х3 не опускалось ниже 7В, при этом ток заряда составлял 640мА. В конце заряда ток снижался до 560мА. Это позволило заряжать полностью разряженные аккумуляторы 2700мА/ч за 5часов. При необходимости увеличить ток заряда, следует применить более мощный обратноходовый импульсный блок питания, переделанный аналогичным образом, или в качестве источника тока (Х2-Х4) применить отдельный блок питания (более предпочтительно).

Схема управления построена на распространенном микроконтроллере фирмы Atmel – Atmega 8A. Контроллер настроен на внутренний генератор с частотой 1МГц. Выводы PC0 и PC1 контроллера настроены как входа АЦП. Резисторы R8,R6 и R7,R5 образуют делители для согласования напряжения на аккумуляторах с внутренним опорным источником напряжения АЦП контроллера– 2,56В. Благодаря делителям, максимальное измеряемое напряжение составило 2,56/3*(3+1,5)=3,84В. Стабилитроны VD5,VD6 служат для ограничения напряжения на входах на уровне 4,5В, конденсаторы С11,С12 – для фильтрации измеряемого напряжения.

Благодаря измерению напряжения до и после резистора R13, появилась возможность измерять ток заряда, и снизилось требование к стабильности тока заряда. При подсчете емкости устройство каждую секунду измеряет ток заряда в мА и суммирует его. На дисплее отражается значение суммы, разделенное на 3600, т.е. потребленная (отданная) емкость в мА/ч. Резистор R13 состоит из трех резисторов 1Ом 0.25Вт соединенных параллельно.

В устройстве HL2 применен трехзначный светодиодный индикатор с общим катодом KOOHI E30361LC8W. При проверке оказалось, что даже при токе 2 мА на сегмент, яркость свечения была достаточно интенсивной. Это позволило обойтись без дополнительных транзисторов, подключив катоды непосредственно к портам контроллера, так как суммарный ток не превышал разрешенные даташитом 40мА на порт. Как оказалось позже, без диодов VD7,8,9 индикатор тоже нормально работает. Возможно применение любого аналогичного индикатора. При недостаточной интенсивности свечения возможно уменьшение гасящих резисторов до 560Ом.

L1,C3,C4 служат для дополнительной фильтрации питания контроллера. Разъем Х1 предназначен для подключения зарядного устройства к компьютеру. Детали R1,R2,R25,R26,VD1,VD2 служат для защиты контроллера от неправильного подключения к внешнему устройству (компьютеру). Если такое подключение не планируется, их использование не обязательно.

Кнопка SA1 служит для выбора режима работы ЗУ при его включении. Светодиод VD4 служит для дополнительной индикации о текущем режиме работы ЗУ. Его наличие позволяет пользоваться ЗУ без индикатора HL2 (если нет необходимости в дополнительной информации о процессе заряда). Порт РВ6 используется программно и как вход, для опроса кнопки (когда светодиод погашен), и как выход – для индикации режима работы.

Датчик DS18B20 служит для измерения температуры аккумуляторов. Его необходимо располагать как можно ближе к аккумуляторам. В авторском варианте датчик был закреплен между аккумуляторами непосредственно в держателе, полусферой к аккумуляторам. При его отсутствии устройство тоже работает, но соответственно, температура не отображается.

Элементы VT1,VT2,VT3,R11,R12,R9,R10 образуют ключ зарядного тока. В качестве транзистора VT1 возможно применение любого маломощного n-p-n транзистора (например, КТ315Б), при этом необходимо увеличить резистор R9 до 4,7кОм. VT2 может быть любым аналогичным с коэффициентом передачи тока не менее 50.

VT4,R14,R15,R16 образуют разрядный ключ. При включении транзистора VT4 ток разряда аккумулятора протекает через резисторы R13,R16 и ограничивается ими на уровне около 410мА. Так как ток разряда протекает через резистор R13, имеется возможность измерять разрядный ток и подсчитывать отданную аккумулятором емкость, отпадает необходимость в разрядных источниках тока. В качестве транзистора VT4 возможно применение составного n-p-n транзистора, например КТ972, КТ827, при этом необходимо увеличить сопротивление R14 до 1,5кОм.

Разъем ХS1 предназначен для внутрисхемного программирования контроллера.

При частичном использовании SMD элементов размер платы составил 69х50мм. Светодиодный индикатор был закреплен непосредственно в корпусе ЗУ термоклеем, и соединялся с платой с помощью проводов МГТФ. Корпус для всего устройства был взят от блока питания приставки SEGA размером 80х55х50мм. В корпусе был выпилен паз под держатель аккумуляторов, который был вклеен термоклеем с внутренней стороны. Внешний вид платы показан на фото 1, компоновка компонентов внутри корпуса на фото 2, внешний вид всего ЗУ на фото3.


Фото 1


Фото 2


Фото 3

Для подключения схемы к компьютеру необходим адаптер (дата-кабель) собранный на MAX232 или ее аналоге. У автора схема была собрана согласно рис.2. Вывод Тх адаптера необходимо соединить с выводом Rx устройства, а Rx адаптера соответственно с Тх устройства.


Рис. 2

При разработке программы для устройства был использован алгоритм, описанный в .

В фазе определения наличия аккумулятора включается ключ подачи зарядного тока VT2, при этом измеряется напряжение на зажимах держателя. Если напряжение выше 3,3В, значит аккумуляторы отсутствуют. На индикаторе при этом высвечиваются прочерки «—«. Снижение напряжения ниже 3,3В, расценивается как появление аккумуляторов, при этом индикатор HL2 гаснет, а светодиод VD4 начинает мигать с частотой пять раз в секунду.

Если в течение 25сек. кнопка SA1 не будет нажата, устройство «вспоминает» последний свой режим, хранящийся в ЕЕПРОМ, и начинает его отрабатывать. Т.е. если был сбой в питании, устройство продолжит заряжать аккумуляторы, если последний режим был зарядка, или перейдет в капельный режим подзарядки, если зарядка была окончена. Единственное «но» — информация о емкости заряда (разряда) будет утеряна, ЗУ начнет подсчет сначала. Это предотвращает повторный заряд полностью заряженных аккумуляторов при пропадании напряжения в сети.

Если же кнопка SA1 в течение первых 25сек. будет все же нажата, на индикаторе HL2 сначала высвечивается напряжение аккумуляторов (общее напряжение делится на два, т.е. высвечивается усредненное напряжение на один аккумулятор), затем начнет мигать «ЗР1» — режим заряда без разрядного импульса. Если повторно нажать кнопку высветится режим «ЗР2» — режим заряда с разрядным импульсом. При следующем нажатии высветится «РАЗ» — режим разряда с последующим зарядом в режиме «ЗР2». Дальше — по кругу, при этом светодиод VD4 мигает в соответствии с выбранным режимом (см. далее). На выбор режима дается 10сек. с момента последнего нажатия кнопки.

Если был выбран режим разряда, аккумуляторы сначала разряжаются, до напряжения менее 0,8В на один аккумулятор. При этом на индикаторе в цикле выводится следующая информация: «РАЗ» (режим), » U «, «напряжение на один аккумулятор» (в вольтах), » А «, «ток разряда» (в амперах), «АcH», «емкость разряда» (в ампер-часах). Светодиод VD4 при этом мигает с частотой два раза в секунду. Если разряд длится более девяти часов, высвечивается «ErH» — ошибка по времени. После разряда, ЗУ всегда переходит в режим быстрого заряда «ЗР2».

Режиму быстрого заряда (и ЗР1 и ЗР2) всегда предшествует фаза предзарядки. При этом ток заряда подается на 300мс., далее следует пауза 700мс. Т.е. средний ток составляет 30% от измеренного в момент подачи тока. При этом на индикаторе выводится следующая информация: «НЗР» (режим начального заряда), » U «, «напряжение на один аккумулятор», » А «, «ток в амперах» (средний ток), » t «, «температура» (в град. Цельсия). Последние два значения не выводятся, если датчик не подключен, или измеренная температура менее 1°С. Светодиод VD4 при этом мигает с частотой раз в две секунды с короткими вспышками. Фаза предзарядки длится не менее 1мин. Основное условие перехода к основному режиму заряда – повышение напряжения на аккумуляторах более 1В на один аккумулятор. Если в течение 30 мин. не удается «раскачать» аккумуляторы, высвечивается ошибка «ErU» — ошибка по напряжению.

Режимы быстрой зарядки ЗР1 и ЗР2 происходят следующим образом. Включается зарядный ток. Раз в секунду зарядный ток выключается и делается небольшая пауза 5мс. для стабилизации. Далее на протяжении 16мс. делается подряд шесть замеров напряжения на аккумуляторах, после чего напряжение усредняется. Если выбран режим ЗР1, то после замеров снова включается зарядный ток. Если выбран режим ЗР2, тогда после замеров включается транзистор VT4, и через аккумуляторы протекает разрядный ток на протяжении 5мс., после чего VT4 отключается, и снова включаются VT1,VT2,VT3 – снова начинает протекать зарядный ток.

Как преимущество метода ЗР1 называют лучшее выравнивание концентрации активных веществ по всему объему, меньшую вероятность образования крупных кристаллических образований на электродах и их пассивации. Дополнительным преимуществом этого метода является то, что измерение напряжения происходит без протекания зарядного тока, практически исключается влияние сопротивления контактов и внутреннего сопротивления аккумуляторов на точность измерения. Режим с разрядным импульсом (ЗР2) называют FLEX negative pulse charging или Reflex Charging. Преимуществом такого метода называют более низкую температуру аккумулятора в процессе зарядки и способность устранять крупные кристаллические образования на электродах (вызывающих эффект «памяти»).

В процессе заряда на индикатор HL2 выводится в цикле следующая информация: «ЗР1» (или «ЗР2″, если режим ЗР2), » U «, «напряжение на один аккумулятор», » А «, «ток в амперах», «АcH», «емкость заряда», » t «, «температура», » dt «, «приращение температуры». Последние четыре значения не индицируются, если температурный датчик DS18B20 отсутствует. В режиме ЗР1 светодиод VD4 моргает раз в секунду с равными интервалами паузы и засветки. В режиме ЗР2 – тоже раз в секунду но с длинной паузой и короткой засветкой.

Через 15 мин. после начала процесса быстрого заряда ЗУ запоминает начальную температуру аккумуляторов. В дальнейшем, устройство показывает параметр dt – увеличение температуры с начала заряда. Начальная температура запоминается через 15 мин. для того, чтобы уменьшить влияние нагрева от блока питания, после включения его на полный ток заряда. Увеличение параметра dt до 15°С является одним из условий окончания заряда. Дело в том, что в конце заряда энергия, передаваемая ЗУ перестает поглощаться аккумуляторами, и практически полностью переходит в тепловую. Это вызывает нарушение теплового баланса, и температура начинает расти до некоторого нового значения, при которой энергия принятая аккумуляторами от ЗУ не станет равной отданной аккумуляторами в окружающую среду. Энергия, отданная аккумуляторами в окружающую среду, в первом приближении зависит от геометрии аккумуляторов (которая не менялась с начала заряда), и разности температур аккумуляторов и окружающей среды. Таким образом, для каждого тока заряда, будет свое, достаточно постоянное значение приращения температуры в конце заряда. Именно приращение, а не какое-либо конкретное значение температуры. Экспериментально было определено, что для тока заряда 600мА и формата аккумуляторов АА приращение температуры в конце заряда составляет 11…13°С. Так как этот метод использовался автором как дополнительный, значение приращения было выбрано с запасом — 15°С. На практике окончание заряда по dt происходит достаточно редко, как правило, у старых аккумуляторов большой емкости.

Основным критерием определения окончания зарядки является снижение или постоянство напряжения на 10-и минутном интервале, т.е. dV£0. В памяти ЗУ организован массив из десяти ячеек. ЗУ проводит каждую секунду замер напряжения и суммирует его с предыдущими значениями. Раз в 60 сек. проводится усреднение, т.е. полученная сумма делится на 60, затем массив сдвигается, и в освободившуюся ячейку записывается полученное значение, при этом счетчик суммы обнуляется. Таким образом, всегда доступны значения напряжений в течение последних десяти минут, с минутным интервалом. После этого проводится проверка на dV£0, т.е. все предыдущие значения напряжений должны быть больше или равны последнему Ui³U10. Однако после испытаний устройства пришлось несколько дополнить условие. Дело в том, что АЦП дискретное, и в данном устройстве имеет 1024 ступеньки, относительно опорного напряжения, 2,56В. С учетом резистивных делителей шаг ступеньки составляет около 3,7мВ. Таким образом, если даже напряжение на аккумуляторе не растет, но находится на середине ступеньки, АЦП выдает «плавающее» напряжение на величину ступеньки. За счет многократных усреднений (за минуту усредняется 360 измерений) реальное колебание напряжения в массиве при постоянном напряжении аккумуляторов составляло 2мВ. Это затягивало момент определения окончания зарядки, что часто приводило к окончанию зарядки по условию превышения температуры dt. В связи с этим, условие было несколько смягчено – из девяти проверок условий, 5 должны были точно соблюдать условие Ui³U10, а четыре могли отклоняться от него не более чем на 2мВ, т.е. если Ui10, то (U10- Ui) £2мВ. После этого изменения многократный анализ зарядных кривых показал стабильность срабатывания ЗУ.

В процессе быстрой зарядки ЗР1 и ЗР2 возможны следующие аварии: при времени зарядки более 9ч. – ошибка по времени «ErH», при отдаче в аккумулятор более 3800мА/ч – ошибка по емкости – ErA, если после детектирования окончания заряда напряжение на двух аккумуляторах менее 2,5В – ошибка по напряжению «ErU». В режиме ошибки светодиод VD4 мигает пять раз в секунду.

После детектирования окончания зарядки (dV или dt), или если в процессе зарядки аккумуляторы нагрелись до критической температуры 50°С, ЗУ переходит в режим дозарядки. Этот режим длится 20мин. и служит для выравнивания заряда аккумуляторов в батарее. Если температура аккумуляторов более 40°С, ток дозарядки составляет 5%, если менее 40°С – 20% от тока зарядного источника. Величина тока дозарядки регулируется импульсным методом, так же как и в режиме предзарядки.

В процессе дозаряда на индикатор HL2 выводится в цикле информация аналогичная режиму основного заряда, только режим индицируется как «dЗР», и не выводится информация превышения температуры » dt «. Светодиод VD4 при этом мигает с частотой раз в две секунды с длинными засветками.

После окончания режима дозаряда, ЗУ переходит в режим поддерживающего капельного заряда 0,5% током. При этом один раз, непосредственно после окончания дозаряда, производится ориентировочный расчет внутреннего сопротивления аккумуляторов, на основании замера напряжения аккумуляторов без нагрузки, а так же под нагрузкой разрядным сопротивлением, по формуле Rвн=(Еэдс*5,97)/Uнаг–5,97, где 5,97 – сопротивление нагрузки (0,33+5,1+0,54(сопротивление транзистора)). На индикатор выводится следующая информация: » ОК»; » dU» — если было срабатывание по методу dV£0, или » dt» — если было срабатывание по условию превышения температуры dt; » U «; «напряжение на один аккумулятор в конце заряда»; «Е-З»; «емкость заряда»; «Е-Р» (если был режим разряда); «емкость разряда» (если был режим разряда) ; «rВН»; «внутреннее сопротивление в конце заряда» (в Омах). Светодиод VD4 при этом постоянно светится. Процесс заряда окончен.

Для визуализации процесса было создано приложение в бесплатной графической среде программирования Hi-Asm (http://hiasm.com). На сайте автора среды Hi-Asm и в интернете находится достаточное количество примеров, автору этой статьи понадобилось всего четыре вечера для создания приложения ЗУ без каких либо навыков программирования на языках подобного уровня. Для запуска всего комплекса необходимо сначала подсоединить кабель адаптера к ЗУ и COM1 порту компьютера, запустить приложение СHARGER.exe, после чего установить аккумуляторы в ЗУ и подать питание. После индикации на дисплее напряжения, выбрать необходимый режим зарядки: ЗР1, ЗР2 или РАЗ с помощью кнопки SA1. После начала соответствующего режима необходимо нажать кнопку «ЦИКЛ» в приложении CHARGER, в результате начнут строиться графики изменения температуры и напряжения аккумуляторов в процессе заряда. После нажатия кнопки «ЦИКЛ» приложение раз в минуту отправляет запрос на ЗУ в виде кода 0x0F. В ответ ЗУ отсылает пакет из восьми байт: четыре байта напряжения аккумуляторов в мВ (без запятой), затем три байта температуры (первые два целые, затем десятые без запятой), в конце код CR (13). Все данные отправляются в коде ACS||. Когда процесс заряда окончен, ЗУ передает во всех данных нули, в результате появится окно с надписью «Заряд окончен».

На рис.3 приведены графики заряда аккумуляторов от фотоаппарата, описанных в начале статьи. Как видим аккумуляторы смогли отдать сразу после зарядки всего 1210мА/ч, КПД зарядного процесса составило всего около 67%, у аккумуляторов достаточно высокое внутреннее сопротивление – 0,52Ом (на два последовательно включенных аккумулятора). Снижения напряжения в конце быстрого заряда не было. Так как КПД процесса был низким, температура росла достаточно интенсивно на протяжении всего времени, хотя увеличение температуры в конце заряда все равно достаточно очевидно.


Рис. 3. GP 2700мА/ч (возраст 1,5лет) Rвн=0,52 Ом, Езар=1,79А/ч, Ераз=1,21А/ч

На рис. 4 приведены графики заряда аккумуляторов DURACEL приобретенных взамен GP. Здесь графики как из учебника – явный пик напряжения со спадом в 5мВ. Температура в процессе заряда практически не увеличивается, и имеет очень выраженный резкий рост в конце заряда, со скоростью роста 0,3°С/мин. КПД процесса около 90%, а сопротивление аккумуляторов 0,21Ом. Фотоаппарат на одном заряде этих аккумуляторов смог отснять 7Гб фото и видео на протяжении двух месяцев интенсивной эксплуатации!


Рис. 4 DURACEL 2650мА/ч (новые) Rвн=0,21Ом, Езар=2,95А/ч, Ераз=2,66А/ч

Ну и последние графики на рис. 5 показывают процесс заряда аккумуляторов неизвестного китайского производителя. Радиоуправляемая машинка, которая комплектовалась этими аккумуляторами, через полгода практически перестала функционировать – заряда аккумуляторов хватало на 1-2мин. Как видим, их реальная емкость всего 110мА/ч, вместо обещанных 700мА/ч. По графику напряжения видно, что аккумуляторами их уже назвать трудно…


Рис. 5 Неизвестные 700мА/ч (возраст вн=0,27Ом, Езар=0,23А/ч, Ераз=0,11А/ч

Зарядное устройство практически не требует наладки. Возможно, будет необходимо подстроить делители напряжений, так как возможна довольно большая погрешность в связи с разбросом номиналов. Для этого необходимо в ЗУ установить заранее заряженные аккумуляторы, и включить его в режим разряда. В этом режиме подбором R6 или R8 откалибровать индицируемое напряжение аккумуляторов, отображаемое на индикаторе HL2 по эталонному вольтметру, подключенному непосредственно к аккумуляторам. После этого включить последовательно с аккумуляторами эталонный амперметр, и подбором R5 или R7 (тоже в режиме разряда) откалибровать индицируемый ток. Второй способ – откалибровать поправочным коэффициентом внутри программы, как и где менять – есть в примечаниях исходника.

Прошивка микроконтроллера производилась с помощью обычного LPT программатора, состоящего из 4-х резисторов (в интернете находится без особого труда). Запрограммированные фьюзы: CKSEL3=CKSEL2=CKSEL1=SUT0=0 – галочки. Вместо Atmega 8A можно применить Atmega 8.

При планировании компоновки элементов ЗУ внутри корпуса, необходимо максимально уменьшить влияние нагрева аккумуляторов от компонентов блока питания и платы!

При эксплуатации ЗУ вместе с аккумуляторами DURACEL выяснился интересный факт: если аккумуляторами практически не пользоваться более полутора месяцев, их емкость после разряда-заряда оказывается всего 1700…1800мАч, однако после одного-двух циклов разряда-заряда емкость восстанавливается до 2600мАч. А вот старым аккумуляторам GP и Energizer уже ничего не помогало – со временем их емкость неукоснительно снижалась. Вывод напрашивается сам – если не пользуетесь аккумуляторами, то хотя бы раз в месяц делайте им тренировочные циклы.

Литература

Update 20.08.11: обновленную версию прошивки с возможностью заряда как один, так и два АКБ

Виталий Спорыш (CPU)

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
Рисунок 1.
DA1 МК AVR 8-бит ATmega8 1 Поиск в Utsource В блокнот
DA2 Линейный регулятор LM2940-N 1 Поиск в Utsource В блокнот
Датчик температуры DS18B20 1 Поиск в Utsource В блокнот
VT1, VT4 MOSFET-транзистор IRLL110 2 Поиск в Utsource В блокнот
VT2 Биполярный транзистор КТ814А 1 Поиск в Utsource В блокнот
VT3 Биполярный транзистор КТ3107А 1 Поиск в Utsource В блокнот
VD1, VD2, VD5, VD6 Стабилитрон 4.5 В 4 Поиск в Utsource В блокнот
VD3, VD10 Диод Шоттки 1N5819 2 Поиск в Utsource В блокнот
VD4 Светодиод Любой красный 1 Поиск в Utsource В блокнот
VD7-VD9 Диод КД522А 3 Поиск в Utsource В блокнот
С1, С6 Электролитический конденсатор 1000 мкФ 16 В 2 Поиск в Utsource В блокнот
С2, С7 Электролитический конденсатор 220 мкФ 25 В 2 С7 можно на 16 В Поиск в Utsource В блокнот
С3 Электролитический конденсатор 100 мкФ 1 Поиск в Utsource В блокнот
С4, С5, С8-С12 Конденсатор 0.1 мкФ 7 Поиск в Utsource В блокнот
R1, R2, R9, R14, R25, R26 Резистор 100 Ом 6 Поиск в Utsource В блокнот
R3, R10, R15 Резистор 10 кОм 3 Поиск в Utsource В блокнот
R4 Резистор 560 Ом 1 Поиск в Utsource В блокнот
R5, R6 Резистор 3 кОм 2 Поиск в Utsource В блокнот
R7, R8 Резистор 1.5 кОм 2 Поиск в Utsource В блокнот
R11, R12, R17-R24 Резистор 1 кОм 10 Поиск в Utsource В блокнот
R13 Резистор 0.33 Ом 1 1 Вт Поиск в Utsource В блокнот
R16 Резистор 5.1 Ом 1 1 Вт Поиск в Utsource В блокнот
R27 Резистор 330 Ом 1 Поиск в Utsource В блокнот
R28 Резистор 4.7 кОм 1 Поиск в Utsource В блокнот
HL2 Светодиодный цифровой трехразрядный индикатор 1 С общими катодами Поиск в Utsource В блокнот
L1 Катушка индуктивности 33 мкГн 1 Поиск в Utsource В блокнот
Х1 USB-разьем 1 Поиск в Utsource В блокнот
SA1 Кнопка 1 Поиск в Utsource В блокнот
Т1 Трансформатор 1 От зарядного устройства моб. телефона Поиск в Utsource В блокнот
XS1 Разьем для подключения программатора 1 Поиск в Utsource В блокнот
Х2-Х4, Х6, Х7 Разьем 5 Для подключения зарядного и аккумулятора Поиск в Utsource В блокнот
Рисунок 2.
ИС RS-232 интерфейса MAX232 1 Поиск в Utsource В блокнот
С1-С4 Электролитический конденсатор 10 мкФ 4 Поиск в Utsource В блокнот
С5 Электролитический конденсатор 1 мкФ 1 Поиск в Utsource В блокнот
Разьем ком-порта RS 232 1 Поиск в Utsource В блокнот
Х1 USB-разьем 1 Поиск в Utsource В блокнот
Добавить все

Скачать список элементов (PDF)

Прикрепленные файлы:

KOMITART — развлекательно-познавательный портал

Индикатор уровня сигнала на LM324N.
2 x 40 светодиодов.
Индикатор уровня сигнала 2 х 40 LED
В статье мы приводим вам схему индикатора уровня сигнала, стереофонический вариант которого содержит 80 светодиодов, то есть 40 светодиодов на канал. Данный проект повзаимствован на сайте 320volt, где есть видеоролик, демонстрирующий работу этого VU-метра.Один канал собран на 10-ти счетверенных операционных усилителях LM324N, включенных по схеме компараторов.
Принципиальная схема:
40-led-vu-meter_схема
Питание схемы осуществляется от однополярного источника с напряжением 12 Вольт. Ток потребления одного канала индикатора порядка одного ампера, поэтому для стереофонического варианта автор советует использовать БП, способный выдерживать до 2,5 Ампера.
Печатная плата VU-метра в формате LAY6:
40 LED VU Meter KOMITART LAY6
40 LED VU Meter KOMITART LAY6 Foto
Список элементов для повторения схемы VU-метра (для одного канала):
Микросхемы:
• LM324N – 10 шт.
Конденсаторы:
• 47mF/16V – электролит – 1 шт.
• 470mF/16V – электролит – 1 шт.
• 0,1mF = 100n – 1 шт.
Резисторы:
• 12R – 1 шт.
• 330R – 40 шт.
• 1M – 1 шт.
• 8k2 – 41 шт.
Светодиоды:
• Зеленые – 25 шт.
• Желтые – 9 шт.
• Красные – 6 шт.
Для стереофонического варианта количество элементов умножайте на 2.
Вид собранного VU-метра показан на рисунке ниже:
80-leds-stereo-vu-meter_плата в сборе
Чуть позже мы рассмотрим схему десяти-полосного спектрум-анализатора, в состав которого входят десять таких плат плюс плата фильтров, следите за выходом новостей.
Архив содержит исходники, схему, плату LAY6 формата, а так же ссылку на демонстрационное видео. Размер файла – 0,5 Mb.

Микросхема LM324 (N)

Представляет собой микросхема LM324 четыре одинаковых по характеристикам операционных усилителя (ОУ), собранных в едином корпусе, работающих от одного источника питания в большом диапазоне напряжений. Каждый операционник имеет в своем составе входной дифференциальный каскад, защиту от КЗ и внутреннюю частотную коррекцию при единичном усилении.

Характеристики и дешевизна этого прибора обеспечивают ее широкое применённые в радиолюбительских схемах и в промышленной электронике. Она отлично подходит для работы в компактных переносных электронных устройствах.

Конфигурация выводов

Она производится в корпусах DIP-типа: пластиковом CDIP, керамическом PDIP или SO-типа для поверхностного монтажа: SOIC, TSSOP. Конструктивно устройство имеет 14 выводов. Поэтому, в некоторых технических описаниях, встречается обозначение DIP-14 или SO-14.

Технические характеристики

Электрические параметры (при Uпит. +5 В и TA +25 °C):

Параметры lm324 разных компаний немного отличаются друг от друга, поэтому при разработке своих схем рекомендуется ознакомиться с официальной технической документацией на применяемое устройство от конкретного производителя.

Особенности.

Дифференциальный диапазон входного напряжения достигает напряжения питания. Для lm324 нижний предел диапазона входного синфазного сигнала на 0,3 В ниже, чем V—, а размах выходного напряжения ограничен снизу значением V—. Как на входах, так и на выходе предельное значение состовляет на 1,5 В меньше, чем V+.

Частота единичного усиления fi (от 100 КГц до 30 МГц), это частота на которой коэффициент усиления микросхемы (К) становится равным единице (0 дБ).

Имеет внутреннюю частотной коррекции для единичного усиления.

Диапазон входного синфазного напряжения включает землю.

Длительность короткого замыкания Tкз (Tsc) на выходе неограниченна.

Описание работы

Работа микросхемы lm324n основана на функционировании внутри неё одновременно четырех ОУ. Все усилители запитываеются от одного источника питания, имеют инвертирующий, не инвертирующий входы и одни выход. Источник питания может быть однополярным или двухполярным.

Рассмотрим внутреннюю схему одного из операционных усилителей c однополярным питанием. Возьмем её прямо из даташит на LM324.

Функционально каждый операционный усилитель состоит из: дифкаскада, а так же каскадов промежуточного и выходного усиления.

Дифференциальный каскад, выполняет функции усиления разности подаваемых на вход напряжений (V+ и V—) и нейтрализации синфазных сигналов. Обеспечивает высокое сопротивление на входе.

Промежуточный каскад обеспечивает балансировку операционника (установку на выходе нулевого напряжения при замкнутых входах), согласование сопротивлений дифференциального и выходного каскадов, а так же частотную коррекцию (защиту от самовозбуждения).

Выходной каскад обеспечивает низкое выходное сопротивление, требуемую мощность в нагрузке, ограничение тока и защиту при коротком замыкании.

Маркировка

Серия LM основана на интегральных микросхемах производства National Semiconductor. Приставка LM изначально означала linear monolithic (линейный, монолитный) и применялась для обозначения усилителей общего назначения (General Purpose) к которым не предъявлялись жестких требований. Цифры “324” указывают на серийный номер микросхемы. «-N», в конце серийника, обозначаются устройства, приобретенные Texas Instruments у National Semiconductor. В сентябре 2011 году National Semiconductor была передана Texas Instruments, которая не изменила приставку LM в своей продукции. Поэтому в настоящее время маркировка LM является кодом производителя Texas Instruments, но её широко используют другие производители при выпуске своих аналогов этой микросхемы.

Микросхемы LM324 и такая же с буквой N имеют одинаковые физические и электрические характеристики. У многих производителей символы “-N” , в конце маркировки, указывает на пластиковый тип корпуса микросхемы — DIP14.

Следует также отметить, что фирмы-производители постоянно совершенствуют свою продукцию. В настоящее время появились превосходящие по ряду функций модификации, например: LM324K, LM324KA с внутренней защитой от электрического разряда (HBM ESD); микромощные LP324 с током потребления 21 мкА; низковольтные LMV324, с напряжением питания от 2,7 В до 5,5 В; LPV324, изготавливаемые по технологии BiCMOS и током потребления 9 мкА и др. Усилители с символом «А» в маркировке, например “ LM324A-N ”, будут иметь лучшие характеристики по VIO по сравнению c другими (без «A»).

Аналог LM324

Сфера применения

Наибольшую популярность LM324 нашел, с применением типовых схем отрицательной обратной связи. Его применяют при создании различных многофункциональных устройств: интеграторах, дифференциаторах, демодуляторах, логарифмических усилителях, сумматорах, суммирующе-вычитающих устройств, амплитудных регуляторах, генераторах и др. В связи с постоянным совершенствованием рассматриваемого устройства, появляются множество различных приборов использующих lm324, например:

  • ИБП;
  • схема датчика движения для освещения;
  • схема терморегулятора инкубатора Нептун и дт.

Простая схема усилителя на LM324

Рассмотрим одну из простейших схем на LM324 с отрицательной обратной связью (ООС) -повторитель напряжения. Как правило, изучение темы по ОУ начинают с повторителя напряжения. Эту схему еще называют усилитель у которого имеет коэффициент усиления по напряжению равен единице. В идеале это означает, что операционный усилитель не обеспечивает какого-либо усиления сигнала и напряжение выходного сигнала совпадает с входным. То есть, если 5 В подается на вход операционного усилителя, то 5 В будет на его выходе.

Но это утверждение справедливо для идеального операционного усилителя, а не для рассматриваемого в статье LM324. Так как это не виртуальная, а реальная микросхема ее характеристики отличаются от идеальных. Рассмотрим график зависимости выходного напряжения от входного для lm324.

На графике, в области «A» показано изменение фазы на выходе. Такое может произойти при появлении отрицательного напряжения на входе микросхемы и может привести к нежелательным последствиям – выводу её из строя.

Так же, на графике видно, что напряжение на выходе усилителя растет с увеличением входного. Но оно не может расти бесконечно, и ограничено напряжением питания микросхемы 5 В и особенностями её работы. Так, напряжения на входах незначительно разнятся, через них течёт небольшой по величине ток, поэтому напряжение на выходе будет немного отличаться от подаваемого. На графике, в области “С”, видно предельное выходное напряжение 3.8 В для рассматриваемой схемы усиления, запитанной от 5 В.

На практике, повсеместно приходится работать с активными электронными компонентами, которые имеют достаточно слабый выходной ток. Например, такими как микрофон. Подключение к нему элемента с маленьким сопротивлением приведет к снижению напряжения выходного сигнала, создаваемого с его помощью. В таких случаях можно использовать повторитель напряжения, который имеет большое входное и низкое выходное сопротивление, соответственно не будет уменьшать или искажать подаваемый на вход сигнал.

Повторитель напряжения далеко не самая распространенная типовая схема применения для этой микросхемы. На основе данного ОУ создаются и продолжают совершенствоваться другие типовые решения, на основе которых работают современные электронные устройства.

Схема светодиодной мигалки на lm324

Данная схема довольно проста и позволяет достаточно плавно управлять включением и выключением светодиодов. Мигалка использует дополнительно два транзистора. Стоить обратить внимание что от емкости конденсатора C1 и базового сопротивления резистора R3 будет зависеть скорость переключения.

Безопасность при эксплуатации

Иногда, не все каналы lm324 используются в проекте. Если это так, то неиспользуемые должны быть подключены таким образом, чтобы не влиять на другие. Варианты подключения неиспользуемых каналов смотрите в даташите производителя.

При определенных условиях полярность выходного напряжения может стать инвертированной, что может повредить микросхему. Это характерно в схемах компаратора и повторителя напряжения. Для того, чтобы избежать появление отрицательного напряжения (инверсии фазы) на входе, производители рекомендуют добавлять последовательно на неинвертирующий вход схемы резистор, который будет ограничивать входной ток до 1 мА и ниже. Такая величина входного тока позволит снизит риск повреждения устройства.

Все входы операционных усилителей не должны быть подключены на землю на прямую. Всегда необходимо добавлять некоторое сопротивление, чтобы ограничить ток до 10 мА и меньше. Все входные контакты должны включать диод от входа до Gnd. В схемах с двумя источниками питания, контакт Gnd будет отрицательным. Тем не менее, во время включения, выключения питания или случаях внезапной неисправности по напряжению, вывод Gnd может стать положительным. Если это произойдет, то по заземленному входному контакту потечет большой ток, способный повредить микросхему.

Добавление последовательного резистора от 1 кОм до 10 кОм на входе может избавить ее от поломки.Не допускается подключение к источнику питания с обратной полярностью, так как lm324n может перегреться и выйти из строя.

Производители

Ниже представлены даташит основных производителей lm324:

Индикатор уровня аудио сигнала на LM324

Микросхема LM324 представляет из себя высокоточный операционный усилитель и содержит в себе 4 независимых канала. Она работает в широком диапазоне питающих напряжений от 3-х до 30 вольт. Выходной ток каждого канала не превышает 10 мА.

На микросхеме можно построить множество ряд интересных устройств.
Относительно простой схемой является индикатор аудио сигнала, построенный на микросхеме LM324. Поскольку микросхема содержит 4 выхода, то количество светодиодов для анализатора тоже будет 4, по одному на каждый канал.

Выход усилителя подключается к входу индикатора, светодиоды будут загораться в зависимости от частоты воспроизведения, при низких входных частотах светодиоды будут вспыхивать столбом. В итоге получается очень красивый светомузыкальный эффект.

Для лучшего эффекта можно использовать две микросхемы, тогда будет возможность использовать 8 светодиодов, мы рассмотрим оба варианта.

Установка не будет работать, если вход подключить к линейному выходу, от звуковых карт компьютера или выхода наушника не заработает!

Во время проведенных опытов стало понятно, что микросхему можно приспособить к двум режимам работы, первый из них уже указан выше — мигание светодиодов по отдельности, притом мигание соответствует входному диапазону частоты, чем сильнее низкие частоты, тем выше загорается светодиодный столб.

Второй режим — совместное мигание. В этом режиме все светодиоды загораются вместе. В этом случае на выход усилителя мощности подключаем минус и вход индикатора.

В первой схеме рассмотрен вариант построения индикатора на одной микросхеме. Эффект не очень зрелищный, но для начала советую собрать именно так, затем если все будет работать нормально, то можно и вторую микросхему подключить.

В видео ролике продемонстрирована работа одной микросхемы, светодиоды работают совместно, то есть схема подключена по второму варианту.

Индикатор способен работать совместно с любым усилителем мощности, не зависимо от питающего напряжения используемого усилителя мощности, только не повышайте максимально допустимое напряжение индикатора, которое составляет 30 вольт.

В тех случаях, когда нужно совместить индикатор с усилителем, который работает на двухполярном источнике, то нужно использовать стабилизатор напряжения от 12 до 24 вольт. Светодиоды подойдут буквально любые, цвета по вкусу, можно применить светодиоды одного цвета, решаете вы.

Вариант построения индикатора на двух микросхемах:

Для того, чтобы индикатор работал в режиме «столбец», нужно на выход усилителя подключить плюс источника питания индикатора и вход, этот режим можно использовать лишь тогда, когда усилитель мощности и индикатор питаются от разных источников, иначе есть опасность спалить выходной каскад УНЧ!

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
Схема №1
Операционный усилитель LM324 1 Поиск в Utsource В блокнот
R1 Переменный резистор 100 кОм 1 Поиск в Utsource В блокнот
R2, R3, R7, R8 Резистор 330 Ом 4 Поиск в Utsource В блокнот
R4-R6, R9, R11 Резистор 22 кОм 6 Поиск в Utsource В блокнот
R10 Резистор 2.2 кОм 1 Поиск в Utsource В блокнот
HL1-HL4 Светодиод 4 Поиск в Utsource В блокнот
Батарея питания 12 В 1 Поиск в Utsource В блокнот
Схема №2
Операционный усилитель LM324 2 Поиск в Utsource В блокнот
R1, R2, R9, R11, R13, R15, R19, R20 Резистор 330 Ом 8 Поиск в Utsource В блокнот
R3, R5, R6, R7, R10, R12, R14, R16-R18, R21 Резистор 22 кОм 11 Поиск в Utsource В блокнот
R4 Переменный резистор 100 кОм 1 Поиск в Utsource В блокнот
R8 Резистор 2.2 кОм 1 Поиск в Utsource В блокнот
HL1-HL8 Светодиод 8 Поиск в Utsource В блокнот
Батарея питания 12 В 1 Поиск в Utsource В блокнот
Добавить все

admin

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Наверх