Электрификация

Справочник домашнего мастера

Встраиваемая универсальная плата управления лабораторными блоками питания

РадиоКот >Схемы >Питание >Блоки питания >

Теги статьи: Добавить тег

Встраиваемая универсальная плата управления лабораторными блоками питания.

Провада Юрий Петрович aka Simurg
Опубликовано 16.09.2010

Блок на триггере обеспечивает коммутацию выхода одной кнопкой и отключение выхода при работе триггерной защиты.

Максимальное напряжение

Максимальный ток

Выведение проводов

Управляющая электроника на операционниках аналогична предыдущему блоку питания.
Схема

Управление микросхемой TL494 осуществляем через вывод 4, а встроенные операционники отключаем. Вся схема блока питания работает устойчиво, без возбуждения и перерегулирования. Но обязательно подобрать цепь коррекции С4 и С6. Как это сделать по простому? Да очень просто — опытным путем, без расчетов.
Подключаем на выход блока обычный дроссель групповой стабилизации напрямую, +12 вольтовыми выводами. Становимся осциллографом и смотрим что на выходе. Если вместо постоянки колебательный процесс, то коррекция не настроена, необходимо продолжить настройку.
На микросхеме ОУ LM324 (или любой другой счетверенный низковольтный операционник, который может работать в однополярном включении и при входных напряжениях от 0 В) собран измерительный усилитель выходного напряжения и тока, который будет давать измерительные сигналы на TL494 через вывод 4. Резисторы R8 и R12 задают опорные напряжения. Переменный резистор R12 регулирует выходное напряжение, R8 — ток. Токоизмерительный резистор R7 на 0.05 ом должен быть мощностью 5 ватт (10А^2*0.05ом). Питание для ОУ берём с выхода «дежурных» 20В БП ATX.
Плата

Файлы:
Печатная плата в формате SL 5.0.

Вопросы, как всегда в Форум.

Как вам эта статья?

Заработало ли это устройство у вас?

46 3 2
11 4 1

Плата управления для лабораторного блока питания DP30V5A

Лабораторный блок питания – один из самых необходимых инструментов в мастерской радиолюбителя. Самый необходимый, но при этом не самый дешевый. Цены на лабораторные блоки питания даже в Китае превышают сумму в 2500 рублей. Мне же, как радиоЛЮБИТЕЛЮ важно сэкономить. Поэтому я решил собрать себе лабораторный БП самостоятельно, из импульсного блока питания (12 вольт 3,5 ампера) и модуля DP30V5A.

Заявленные характеристики:

Итак, данный модуль позволяет устанавливать напряжение от 0 до 32 вольт с шагом в 0,01 вольт. В инструкции указано, что необходимо, что бы напряжение на входе превышало напряжение на выходе в 1,1 раз. Я подключил этот модуль к БП в 12 вольт. На БП есть подстроечный резистор, при помощи которого можно незначительно изменить напряжение на выходе БП. При помощи него я установил максимально возможное значение в 13,65 вольта. На выходе я смог получить напряжение 13,4 вольта (соотношение 1:1,1 не соблюдается). Но интересно не это, а то, что я могу установить на выходе любое напряжение из диапазона 0 – 32 вольта, но при превышении 13.4 вольт я все равно получаю на выходе 13.4 вольт. Модуль читает напряжение на входе, может отобразить его на дисплее, но при этом не предусмотрена возможность ограничить установку на выходе не выше напряжения на входе. Я не могу это назвать минусом, для меня это скорее нелогичная странность.

Силу тока можно устанавливать с шагом в 0,001 ампера. С установкой силы тока всё прекрасно, модуль имеет два режима: установка по напряжению и установка по току. Индикация режимов осуществляется светодиодами CC и CV. Переключение между режимами осуществляется автоматически. Рассмотрим пример. Допустим, я устанавливаю напряжение 10 вольт и силу тока 1 ампер, подключаю резистор в 100 ом. При этом на нижней строке дисплея будет отображена сила тока 0,1 ампер, в соответствии с законом ома, а так же будет гореть светодиод режима CV. Далее я устанавливаю предел силы тока в 0,05 ампера, при этом установленное напряжение остается 10 вольт. В этом случае сила тока составит 50 мА, именно столько, сколько и установлено, а вот напряжение будет равно 5 вольт, опять же в соответствии с законом ома. При этом будет гореть светодиод режима CC. Можно даже установить силу тока 20 мА, напряжение выше 3 вольт и непосредственно к выходу подключить светодиод без резистора. Светодиод будет исправно работать.

Управление модулем осуществляется 4 кнопками: -/IN, +/OUT, SET и ON/OFF. Когда модуль выключен, на дисплее отображается надпись OFF. При этом можно осуществить настройку напряжения и силы тока на выходе, либо проверить напряжение на входе нажав кнопку IN (при этом загорится светодиод IN). Для отображения установленных значений необходимо нажать кнопку OUT (при этом загорится светодиод OUT).

Настройка осуществляется следующим образом: при нажатии на кнопку SET на дисплее отображаются установленные напряжение и сила тока, при этом начинает моргать одна из цифр на дисплее. Кнопками + и – можно увеличить или уменьшить значение выбранного разряда. Повторное нажатие SET выберет следующий разряд, последовательность такая: 0,01 В – 0,1 В – 1 В– 0,001 А – 0,01 А – 0,1 А – 1 А. Что бы применить установленные значения необходимо прощелкать кнопкой SET все разряды. Если этого не сделать, то через 6 секунд все изменения сбросятся на предыдущие установки. Это немного неудобно, но быстро привыкаешь. Замечен такой положительный момент. Допустим, выбран разряд сотые доли вольта, при переходе через 0 выбранного разряда к следующему разряду добавляется или отнимается 1. То есть 0,49 становится 0,50 когда разряд сотых долей меняется с 9 на 0.

Что я не смог проверить. Во-первых, пульсации на выходе, потому что у меня нет осциллографа. Во-вторых, я не смог проверить, как поведет себя модуль при превышении 5 ампер на выходе, как отреагирует на короткое замыкание. Просто потому что мой блок питания 3,5 ватта.

Но, тем не менее, модуль был подвергнут жестоким испытаниям, и все-таки не выдержал их. А накрылся потому, что я замкнул питание на входе. Да-да, замкнул на входе, а сгорел модуль. Не знаю почему, но выгорел стабилизатор, питающий микроконтроллер STM. Стабилизатор был заменен другим на 3,3 вольта. Проверка показала, что через него проходит ток 0,5 ампера (сгоревший стабилизатор был рассчитан всего на 30 мА, потому и сгорел). Если проходит такой большой ток, то виновник неисправности должен сильно нагреваться, но нагреваются только стабилизаторы.

Вывод такой, используйте по назначению и не допускайте коротких замыканий, тогда он прослужит дольше. Точность настройки и не большая цена (10$ на али) – большой плюс для новичков и любителей.

И как обычно, большая благодарность сайту «Паяльник» за предоставленный на обзор модуль.

  • Обзор

Блок питания на стабилитроне и транзисторе

Рассмотренный далее стабилизированный блок питания является одним из первых устройств, которые собираются начинающими радиолюбителями. Это очень простой, но весьма полезный прибор. Для его сборки не нужны дорогостоящие компоненты, которые достаточно легко подобрать новичку в зависимости от требуемых характеристик блока питания.
Материал будет также полезен тем, кто желает более детально разобраться в назначении и расчете простейших радиодеталей. В том числе, вы подробно узнаете о таких компонентах блока питания, как:

  • силовой трансформатор;
  • диодный мост;
  • сглаживающий конденсатор;
  • стабилитрон;
  • резистор для стабилитрона;
  • транзистор;
  • нагрузочный резистор;
  • светодиод и резистор для него.

Также в статье детально рассказано, как подобрать радиодетали для своего блока питания и что делать, если нет нужного номинала. Наглядно будет показана разработка печатной платы и раскрыты нюансы этой операции. Несколько слов сказано конкретно о проверке радиодеталей перед пайкой, а также о сборке устройства и его тестировании.

Типовая схема стабилизированного блока питания

Всевозможных схем блоков питания со стабилизацией напряжения существует сегодня очень много. Но одна из самых простых конфигураций, с которой и стоит начинать новичку, построена всего на двух ключевых компонентах – стабилитроне и мощном транзисторе. Естественно, в схеме присутствуют и другие детали, но они вспомогательные.

Схемы в радиоэлектронике принято разбирать в том направлении, в котором по ним протекает ток. В блоке питания со стабилизацией напряжения все начинается с трансформатора (TR1). Он выполняет сразу несколько функций. Во-первых, трансформатор понижает сетевое напряжение. Во-вторых, обеспечивает работу схемы. В-третьих, питает то устройство, которое подключено к блоку.
Диодный мост (BR1) – предназначен для выпрямления пониженного сетевого напряжения. Если говорить другими словами, то в него заходит переменное напряжение, а на выходе получается уже постоянное. Без диодного моста не будет работать ни сам блок питания, ни устройства, которые будут к нему подключаться.
Сглаживающий электролитический конденсатор (C1) нужен для того, чтобы убирать пульсации, присутствующие в бытовой сети. На практике они создают помехи, которые отрицательно сказываются на работе электроприборов. Если для примера взять усилитель звука, запитанный от блока питания без сглаживающего конденсатора, то эти самые пульсации будут отчетливо слышны в колонках в виде постороннего шума. В других приборах помехи могут привести к некорректной работе, сбоям и прочим проблемам.
Стабилитрон (D1) – это компонент блока питания, который стабилизирует уровень напряжения. Дело в том, что трансформатор будет выдавать желаемые 12 В (например) только тогда, когда в сетевой розетке будет ровно 230 В. Однако на практике таких условий не бывает. Напряжение может как просаживаться, так и повышаться. То же самое трансформатор будет давать и на выходе. Благодаря своим свойствам стабилитрон выравнивает пониженное напряжение независимо от скачков в сети. Для корректной работы этого компонента нужен токоограничивающий резистор (R1). О нем более детально сказано ниже.
Транзистор (Q1) – нужен для усиления тока. Дело в том, что стабилитрон не способен пропускать через себя весь потребляемый прибором ток. Более того, корректно он будет работать только в определенном диапазоне, например, от 5 до 20 мА. Для питания каких-либо приборов этого откровенно мало. С данной проблемой и справляется мощный транзистор, открывание и закрывание которого управляется стабилитроном.
Сглаживающий конденсатор (C2) – предназначен для того же, что и вышеописанный C1. В типовых схемах стабилизированных блоков питания присутствует также нагрузочный резистор (R2). Он нужен для того, чтобы схема сохраняла работоспособность тогда, когда к выходным клеммам ничего не подключено.
В подобных схемах могут присутствовать и другие компоненты. Это и предохранитель, который ставится перед трансформатором, и светодиод, сигнализирующий о включении блока, и дополнительные сглаживающие конденсаторы, и еще один усиливающий транзистор, и выключатель. Все они усложняют схему, однако, повышают функциональность устройства.

Расчет и подбор радиокомпонентов для простейшего блока питания

Трансформатор подбирается по двум основным критериям – напряжению вторичной обмотки и по мощности. Есть и другие параметры, но в рамках материала они не особо важны. Если вам нужен блок питания, скажем, на 12 В, то трансформатор нужно подбирать такой, чтобы с его вторичной обмотки можно было снять чуть больше. С мощностью все то же самое – берем с небольшим запасом.
Основной параметр диодного моста – это максимальный ток, который он способен пропускать. На эту характеристику и стоит ориентироваться в первую очередь. Рассмотрим примеры. Блок будет использоваться для питания прибора, потребляющего ток 1 А. Это значит, что диодный мост нужно брать примерно на 1,5 А. Допустим, вы планируете питать какой-либо 12-вольтовый прибор мощностью 30 Вт. Это значит, что потребляемый ток будет около 2,5 А. Соответственно, диодный мост должен быть, как минимум, на 3 А. Другими его характеристиками (максимальное напряжение и прочее) в рамках такой простой схемы можно пренебрегать.

Дополнительно стоит сказать, что диодный мост можно не брать уже готовый, а собрать его из четырех диодов. В таком случае каждый из них должен быть рассчитан на ток, проходящий по схеме.
Для расчета емкости сглаживающего конденсатора применяются достаточно сложные формулы, которые в данном случае ни к чему. Обычно берется емкость 1000-2200 мкФ, и этого для простого блока питания будет вполне достаточно. Можно взять конденсатор и побольше, но это существенно удорожит изделие. Другой важный параметр – максимальное напряжение. По нему конденсатор подбирается в зависимости от того, какое напряжение будет присутствовать в схеме.
Здесь стоит учитывать, что на отрезке между диодным мостом и стабилитроном после включения сглаживающего конденсатора напряжение будет примерно на 30% выше, чем на выводах трансформатора. То есть, если вы делаете блок питания на 12 В, а трансформатор выдает с запасом 15 В, то на данном участке из-за работы сглаживающего конденсатора будет примерно 19,5 В. Соответственно, он должен быть рассчитан на это напряжение (ближайший стандартный номинал 25 В).
Второй сглаживающий конденсатор в схеме (C2) обычно берется небольшой емкости – от 100 до 470 мкФ. Напряжение на этом участке схемы будет уже стабилизированным, например, до уровня 12 В. Соответственно, конденсатор должен быть рассчитан на это (ближайший стандартный номинал 16 В).
А что делать, если конденсаторов нужных номиналов нет в наличии, и в магазин идти неохота (или банально нет желания их покупать)? В таком случае вполне возможно воспользоваться параллельным подключением нескольких конденсаторов меньшей емкости. При этом стоит учесть, что максимальное рабочее напряжение при таком подсоединении суммироваться не будет!
Стабилитрон подбирается в зависимости от того, какое напряжение нам нужно получить на выходе блока питания. Если подходящего номинала нет, то можно соединить несколько штук последовательно. Стабилизируемое напряжение, при этом, будет суммироваться. Для примера возьмем ситуацию, когда нам надо получить 12 В, а в наличии есть только два стабилитрона на 6 В. Соединив их последовательно мы и получим желаемое напряжение. Стоит отметить, что для получения усредненного номинала параллельное подключение двух стабилитронов не сработает.
Максимально точно подобрать токоограничивающий резистор для стабилитрона можно только экспериментально. Для этого в уже рабочую схему (например, на макетной плате) включается резистор номиналом примерно 1 кОм, а между ним и стабилитроном в разрыв цепи ставится амперметр и переменный резистор. После включения схемы нужно вращать ручку переменного резистора до тех пор, пока через участок цепи не потечет требуемый номинальный ток стабилизации (указывается в характеристиках стабилитрона).
Усиливающий транзистор подбирается по двум основным критериям. Во-первых, для рассматриваемой схемы он обязательно должен быть n-p-n структуры. Во-вторых, в характеристиках имеющегося транзистора нужно посмотреть на максимальный ток коллектора. Он должен быть немного больше, чем максимальный ток, на который будет рассчитан собираемый блок питания.
Нагрузочный резистор в типовых схемах берется номиналом от 1 кОм до 10 кОм. Меньшее сопротивление брать не стоит, так как в случае, когда блок питания не будет нагружен, через этот резистор потечет слишком большой ток, и он сгорит.

Разработка и изготовление печатной платы

Теперь вкратце рассмотрим наглядный пример разработки и сборки стабилизированного блока питания своими руками. В первую очередь, необходимо найти все присутствующие в схеме компоненты. Если нет конденсаторов, резисторов или стабилитронов нужных номиналов – выходим из ситуации вышеописанными путями.

Далее нужно будет спроектировать и изготовить печатную плату для нашего прибора. Начинающим лучше всего использовать для этого простое и, самое главное, бесплатное программное обеспечение, например, Sprint Layout.
Размещаем на виртуальной плате все компоненты согласно выбранной схемы. Оптимизируем их расположение, корректируем в зависимости от того, какие конкретно детали есть в наличии. На этом этапе рекомендуется перепроверять реальные размеры компонентов и сравнивать их с добавляемыми в разрабатываемую схему. Особое внимание обратите на полярность электролитических конденсаторов, расположение выводов транзистора, стабилитрона и диодного моста.
Если вы заходите добавить в блок питания сигнальный светодиод, то его можно будет включить в схему как до стабилитрона, так и после (предпочтительнее). Чтобы подобрать для него токоограничивающий резистор, необходимо выполнить следующий расчет. Из напряжения участка цепи вычитаем падение напряжения на светодиоде и делим результат на номинальный ток его питания. Пример. На участке, к которому мы планируем подключать сигнальный светодиод, имеется стабилизированные 12 В. Падение напряжения у стандартных светодиодов около 3 В, а номинальный ток питания 20 мА (0,02 А). Получаем, что сопротивление токоограничивающего резистора R=450 Ом.

Проверка компонентов и сборка блока питания

После разработки платы в программе переносим ее на стеклотекстолит, травим, лудим дорожки и удаляем излишки флюса.





После этого выполняем установку радиокомпонентов. Здесь стоит сказать, что не лишним будет сразу же перепроверить их работоспособность, особенно, если они не новые. Как и что проверять?

Обмотки трансформатора проверяются омметром. Где сопротивление больше – там первичная обмотка. Далее его нужно включить в сеть и убедиться, что он выдает требуемое пониженное напряжение. При его измерении соблюдайте предельную осторожность. Также учтите, что напряжение на выходе переменное, потому на вольтметре включается соответствующий режим.
Резисторы проверяются омметром. Стабилитрон должен «звониться» только в одном направлении. Диодный мост проверяем по схеме. Встроенные в него диоды должны проводить ток только в одном направлении. Для проверки конденсаторов потребуется специальный прибор для измерения электрической емкости. В транзисторе n-p-n структуры ток должен протекать от базы к эмиттеру и к коллектору. В остальных направлениях он протекать не должен.
Начинать сборку лучше всего с мелких деталей – резисторов, стабилитрона, светодиода. Затем впаиваются конденсаторы, диодный мост.
Особое внимание обращайте на процесс установки мощного транзистора. Если перепутать его выводы – схема не заработает. Кроме того, этот компонент будет достаточно сильно греется под нагрузкой, потому его необходимо устанавливать на радиатор.
Последним устанавливается самая большая деталь – трансформатор. Далее к выводам его первичной обмотки припаивается сетевая вилка с проводом. На выходе блока питания тоже предусматриваются провода.
Осталось только хорошенько перепроверить правильность установки всех компонентов, смыть остатки флюса и включить блок питания в сеть. Если все сделано правильно, то светодиод будет светиться, а на выходе мультиметр покажет желаемое напряжение.

Очень популярная схема блока питания для лабораторного источника питания, который может обеспечить питание 0-30 В вызвала такой интерес, что несколько китайских поставщиков выпустили набор со всеми деталями, включая печатную плату, по вполне привлекательной цене около 10 долларов. Вот оригинальная схема этого регулируемого БП:

Схема конечно хороша, но слишком устарела, поэтому проведена её модернизация: добавлен ЖК-дисплей, изменен механизм настройки тока, использующий дисплей, так что можно установить режим ограничения тока перед подключением проверяемого устройства. Собраны сразу два стабилизатора чтоб при надобности соединить их параллельно, чтобы получить больший ток, или последовательно, чтобы получить регулируемое двойное напряжение +0-30 В / масса / -0-30 В или напряжение 0-60 В. Также разработана простая система двойного слежения, когда один источник контролирует другой.

Список деталей схемы поставляемый с комплектом, приведен в конце статьи, со всеми изменениями и дополнениями. Из этого списка не будем использовать D7, а D8 — стабилитрон 1N4733A 5V1, требующий смещения 60 мА. Заменим этот тип стабилитроном BZX55C5V6 или BZX79C5V6, для обоих требуется ток смещения всего 5 мА. ОУ U1 установит опорное напряжение в два раза больше напряжения стабилитрона — 11,2 В. При необходимом смещении 5 мА для D8, R4 должен быть 1K, а не 4K7.

Поскольку надо ограничить максимальный ток до 1 или 1,5 А, необходимо пересчитать R18. Этот резистор в любом случае имел неправильное значение (56К) в оригинальной конструкции.

Также необходимо поставить цифровой дисплей напряжения и тока. Их диапазон рабочего напряжения где-то между 3,5 и 30 В постоянного тока. Обратите внимание, что эти дисплеи должны быть гальванически развязаны от источника питания во избежание лишнего шума. Альтернативой является хорошая фильтрация в цепи напряжения питания, чтобы избежать этого дела.

Эти дисплеи способны работать с большими токами — до 10 А с внутренним шунтом. Красный провод подключен к выходу блока питания и является входом для измерения напряжения. Это устройство имеет внутренний шунтирующий резистор, который подключен между желтым и черным проводом. Чтобы было проще, подключим черный провод к выходу минуса блока питания (4), а желтый провод станет новым выходом минуса.

На задней панели индикатора есть два подстроечных резистора, которые можно использовать для регулировки (подстройки) напряжения и тока. Чтобы точно установить напряжение питания блока питания, используйте эталонный прибор.

  1. Есть еще два дополнения. Одним из них является добавление светодиода, показывающего что устройство имеет основное питание. Этот зеленый светодиод подключен к 12 В через резистор 4K7 к земле.
  2. Вторым дополнением является еще один конденсатор 3300 мкФ / 50 В (C12), параллельный C1, чтобы обеспечить большую стабильность исходного питания и уменьшить пульсации при более высоких токах.

Конечно использован большой радиатор, на него размещена LM7812, Q2 и Q4. Существует достаточно места для добавления другого выходного транзистора, параллельного Q4, если надо увеличить ток. С этим радиатором не понадобится вентилятор (с токами ниже 1,5 А).

Можете использовать трансформаторы разных размеров и использовать их для нескольких стабилизаторов (при двухполярной сборке БП).

После всех модификаций и экспериментов с источником питания, возникла необходимость добавить способ отображения настройки ограничения тока, поэтому я добавлена небольшая цепь к БП, чтобы можно было установить постоянный ток / ограничение тока.

Вот улучшенная схема:

А это оригинальный список деталей, поставляемых с комплектом, но с изменениями и дополнениями:

R1 = 2K2 1W Заменено на версию 2W
R2 = 82R Заменен на версию 2W
R3 = 220R Не требуется (заменен на LM337)
R4 = 4K7 Значение изменено на 1K
R5, R6, R13, R20, R21 = 10K R13 не требуется
R7 = 0,47R 5 Вт
R8, R11 = 27K
R9, R19 = 2K2
R10 = 270K Значение изменено на 1K
R12, R18 = 56K R18 см. Текст
R14 = 1K5 Не требуется
R15, R16 = 1K
R17 = 33R Значение изменено на 68R
R22 = 3K9 Значение изменено на 1K5
RV1 = 100K 10 подстроечник заменен на 5K 10-ти оборотный подстроечник
P1, P2 = 10K линейный P1 заменен на 10-ти оборотный подстроечник

C1 = 3300 мкФ / 50 В
C2, C3 47 мкФ / 50 В
C4 = 100 нФ
C5 = 220 нФ
C6 = 100 пФ
C7 = 10 мкФ / 50 В
C8 = 330 пФ
C9 = 100 пФ

D1, D2, D3, D4 = 1N5408
D5, D6, D9, D10 = 1N4148
D7, D8 = 1N4733A, стабилитрон 5V1, D8 = BCX55C5V6, D7 не требуется
D11 = 1N4004

Q1 = 2SD9014
Q2 = 2SD882
Q3 = 2SD9015
Q4 = 2SD1047 Не требуется

U1, U2, U3 = TL081 Заменяется на 3x TLE2141
U4 = LM7824 Заменено на LM7812
D12 = красный светодиод

Дополнительные детали:

R23, R27 = 4K7
R24 = 1K
R25 = 240R
R26 = 10R
RV2 = 2K
RV3 = 200K или 250K (необязательно)
U5 = TLE 2141
U6 = LM337
C 11 = 47 мкФ / 25 В
C12 = 3300 мкФ / 50 В
C13 = 22 мкФ / 10 В
D13 = 10 В 1 Вт
D14 = зеленый светодиод
D15 = красный светодиод
Индикатор вольт / ампер
S1 двухпозиционный переключатель
S2 кнопка

Испытания блока питания

Как оказалось, большая часть измеренного шума исходит от дисплея V/A метр. Импульсный регулятор, который стоит в этом дисплее, подает много шума обратно в источник питания. Для решения этих проблем вернемся к использованию LM7824, который был частью набора, и применим его вместо D10, стабилитрона 10 В, который использовался для создания питания для U3, U5 и Q3.

Чтобы противодействовать просачиванию шума с дисплея, используем D10 для уменьшения питания и для питания дисплея.

Также переместим токовый шунт дисплея с выходной клеммы за пределы токовой петли обратной связи. Это уменьшило еще немного шума и сделало настройку более точной. Поскольку шунт находился внутри контура обратной связи, напряжение на шунте при более высоких токах создавало ошибку. Небольшое, потому что шунт всего 25 мОм, но все же создавало.

Чтобы максимально устранить большие токи на печатной плате, подключим коллекторы Q4 и Q3 непосредственно к точке, где объединяются катоды D1 и D2 и конденсаторы фильтра C1 и C2.

Ещё установим дополнительные подстроечники, чтобы установить максимальное выходное напряжение (RV2) и максимальный выходной ток (RV3). Важно установить максимальный предел тока. Конденсатор C16 используется тоже для устранения шума.

Поскольку светодиоды D14 и D15 теперь подключены к шинам 24 В, их резисторы ограничения тока (R27 и R23) должны удвоиться в значении.

Наконец, выходной конденсатор C7 был увеличен с 10 мкФ до 470 мкФ. Вот окончательная схема с последними изменениями:

Время нарастания питания теперь составляет около 5 мсек, а время спада составляет чуть более 2 мсек при максимальном напряжении и токе, измеренных с помощью динамической электронной нагрузки.

Со всеми этими модификациями выходной шум теперь составляет 18 мВ по всему спектру напряжения и тока и, что более важно, остается на этом уровне в режиме CC / CL.

И еще одно дополнение: установлен параллельный транзистор (2SD1047) и модифицирован источник питания, чтобы он мог выдерживать больший ток. При более высоких токах также понадобится вентилятор для охлаждения, так что это тоже было добавлено в основную схему.

Трансформатор, который в итоге установлен, это 15-0-15 В при 3,5 А. Выбран диодный мост с напряжением 600 В на 10 A, который можно установить на радиатор охлаждения. Немного излишне, но это из-за пусковых токов к конденсаторам основного фильтра. Два 3300 мкФ не подходят для таких токов, поэтому установлены 2 х 10 000 мкФ на напряжение 63 В.

Корпус укомплектован главным выключателем, предохранителем и индикатором питания. Также подается с трансформатора AC 15-0-15 на гнезда на передней панели, чтобы использовать переменку для различных целей.

Позже удалось найти простой, но эффективный способ объединить два стабилизатора и создать источник питания с напряжением +30 0 -30 В или источник +60 В.

Принцип прост: если вы подключите выход 0 В одного источника питания к выходу +0-30 В второго, то фактически можете создать источник питания +30 0 -30 В или 0-60 В. Нужно отрегулировать оба измерителя напряжения для установки таких значений, но если хотите измерить цепь с переменным напряжением, нужен механизм отслеживания.

Хитрость заключается в том, чтобы сделать настройку напряжения одного источника в зависимости от настройки другого. После экспериментов с разными способами в итоге остановились на следующей схеме:

Переключатель R41 должен быть установлен так, чтобы настройка напряжения на главном устройстве совпадала с выходным напряжением на ведомом устройстве. Сигнал идущий к выключателю будет близко к опорному напряжению 11V2.

Слева направо: Q4, Q3 и LM7812. Q4 и Q3 изолированы, радиатор LM заземлен, поэтому не нуждается в нем.

Наилучшая точность отслеживания может быть достигнута, если оба источника питания установлены на 30 В в режиме +/-, как на схеме. Затем можно переключить переключатель в режим слежения и настраивать R41 до тех пор, пока ведомый не покажет 30 В. Вы заметите, что отслеживание является довольно точным (около 1%) до тех пор, пока не опуститесь ниже 5 В, затем оно все больше рассинхронизируется до примерно 200 мВ при 1 В. Это должно быть связано с разницей в линейности усиления обоих операционных усилителей U2. В принципе эта точность достаточно хороша.

Также добавлен R43 в качестве меры безопасности, чтобы убедиться что ведомое питание не будет иметь неопределенного выхода, если связь между чувствительным резистором в ведущем устройстве не подключена к ведомому или когда переключатель перемещен из одного положения в другое.

Учтите, что нужно установить оба предела тока независимо для обоих источников, но если стабилизатор «мастер» переходит в режим ограничения тока, ведомый будет следовать его примеру независимо от своей настройки.

Линейный лабораторный блок питания своими руками

Приветствую, Самоделкины!
Если вы ищете схему простого и надежного линейного блока питания, то эта статья именно для вас. Тут вы найдете полную инструкцию по сборке, а также настройке данного блока питания. Автором данной самоделки является Роман (YouTube канал «Open Frime TV»).
Для начала немного предыстории. Совсем недавно автор переделывал свое рабочее место и в качестве третьего блока питания хотел установить именно линейный блок, так как иногда ему приходится собирать схемы, которые не переносят пульсации напряжения. А как нам известно, то у линейного блока на выходе, пульсация напряжения практически полностью отсутствует.
До этого момента линейные блоки автора не сильно интересовали, и он как-то особо не вникал в данную тему. Когда же пришла идея по построению такого блока, Роман сразу открыл всеми любимый и широко известный видеохостинг YouTube. В итоге после продолжительных поисков автор для себя смог выделить 2 схемы. Автором первой является AKA KASYAN (автор одноименного YouTube канала), а вторая схема построена на операционниках.
Но так как операционники могут работать на напряжении до 32В, то и выходное напряжение соответственно не могло превышать данного предела, а это значит эта схема отпадает.
Ладно, можно собрать схему от Касьяна, но и тут нас ждало разочарование. Данная схема боится статики. Это проявлялось взрывом транзисторов если взяться за выходные контакты.
Так было несколько раз. И тогда автор решил оставить данную схему в покое. Вы скажете, что в интернете полно схем линейных блоков питания.
Да, несомненно это так, но только эти две схемы упомянутые выше, имели нормально разведенные печатки, которое можно было просто скачать. Все остальное, либо без печаток, либо собрано навесным монтажом. А мы (радиолюбители) привыкли к тому, что все подается на блюдечке с голубой каёмочкой.
И вот когда все варианты иссякли, автор вспомнил, что года 3 тому назад он уже собирал линейный блок, который, кстати, к тому же отлично работал. Была найдена схема трехлетней давности.
Автор решил развести нормальную печатку. Плата получилось довольно компактной. После проведенного тестирования данной схемы, на удивление она отлично проявила себя.
При такой простоте автору это так понравилось, что он даже решил сделать kit-набор из данной платы. Для этого необходимо преобразовать печатку в Gerber файл (файл с расширением .gbr, представляющий собой проект печатной платы для последующего изготовления фотошаблонов на различном оборудовании). Затем необходимо отправить платы на изготовление.
И вот спустя пару недель после заказа получаем наши долгожданные платы. Вскрыв посылку и рассмотрев платы поближе, можем убедиться, что все очень качественно и красиво получилось.
Итак, давайте уже запаяем данную плату и проверим ее в работе. Компонентов для установки не так уж много, паять от силы минут 20, не больше.
Закончили с пайкой. Производим первое включение. И тут нас ждет небольшое разочарование. Данная плата не обошлась без косяков. Проявились они в том, что при вращении ручки потенциометра влево идёт увеличение напряжения и тока, а при правом вращении происходит уменьшение.
Так произошло потому, что резисторы для данной платы автор вынес на провода (для последующей установки на корпус) и там без проблем можно было поменять направление вращения просто поменяв боковые контакты. Ну ладно, зато все остальное работает как положено.
Но все же автор исправил печатку, теперь там при правом вращении потенциометра идёт увеличение напряжения, все как и должно быть. Так что можете смело скачивать и повторять данную конструкцию (архив с данной печатной платой находится в описании под оригинальным видеороликом автора, необходимо пройти по ссылке ИСТОЧНИК в конце статьи).
А теперь давайте перейдем к детальному рассмотрению схемы и непосредственно самой платы. Схему вы можете видеть на своих экранах.
Данный блок питания оснащен регулятором напряжения и тока, а также системой защиты от короткого замыкания, которая просто необходима в таких блоках.
Представьте себе на минуточку, что происходит при коротком замыкании, когда на входе напряжение 36В. Получается, что все напряжение рассеивается на силовом транзисторе, который конечно же такого издевательства вряд ли выдержит.
Защиту тут можно настроить. С помощью вот этого подстроечного резистора выставляем любой ток срабатывания.
Здесь установлена релюшка защиты на 12В, а входное напряжение может достигать 40В. Поэтому необходимо было получить напряжение 12В.
Это можно реализовать с помощью параметрического стабилизатора на транзисторе и стабилитроне. Стабилитрон на 13В, так как идет падение напряжения на переходах коллектор-эмиттер двух транзисторов.
Итак, теперь можно приступать к тестам данного линейного блока питания. Подаем напряжение в 40В от лабораторного блока питания. На нагрузку вешаем лампочку рассчитанную на напряжение 36В, мощностью 100Вт.
Затем начинаем потихоньку вращать переменный резистор.
Как видим регулировка напряжения работает отлично. Теперь давайте попробуем регулировать ток.
Как можно наблюдать, при вращении второго резистора ток уменьшается, а это значит, что схема работает в штатном режиме.
Так как это линейный блок и все «лишнее» напряжение превращается в тепло, ему нужен радиатор довольно таки больших размеров. Для этих целей отлично зарекомендовали себя радиаторы от процессора компьютера. Такие радиаторы имеют большую площадь рассеивания, а если их еще оснастить вентилятором, то можно в принципе полностью забыть про перегрев транзистора.
А теперь о том, как работает защита. Выставляем необходимый ток с помощью подстроечного резистора. При коротком замыкании срабатывает реле. Пара его контактов размыкает выходную цепь и транзистор находится в безопасности.
Для возвращения в нормальный режим работы предусмотрена вот такая кнопка на размыкание, при нажатии на которую снимается защита.
Ну или же можно просто отключить блок от сети и подать напряжение снова. Таким образом, защита тоже выключится. Также на плате имеются 2 светодиода. Один сигнализирует про работу блока, а второй про срабатывание защиты.
Подводя итоги можно сказать, что блок получился очень классным и подойдет как для новичков, так и для уже опытных радиолюбителей. Так что скачивайте архив и собирайте себе такой блок.
Ну а на этом все. Благодарю за внимание. До новых встреч!
Видео:

Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. .

РадиоКот >Обучалка >Аналоговая техника >Собираем первые устройства >

Теги статьи: Добавить тег

Блок питания «Проще не бывает». Часть вторая

Опубликовано 01.01.1970

Ага, все-таки зашел? Что, любопытство замучило? Но я очень рад. Нет, правда. Располагайся поудобнее, сейчас мы вместе произведем некоторые нехитрые расчеты, которые нужны, чтобы сварганить тот блок питания, который мы уже сделали в первой части статьи. Хотя надо сказать, что эти расчеты могут пригодиться и в более сложных схемах.

Итак, наш блок питания состоит из двух основных узлов — это выпрямитель, состоящий из трансформатора, выпрямительных диодов и конденсатора и стабилизатор, состоящий из всего остального. Как настоящие индейцы, начнем, пожалуй, с конца и рассчитаем сначала стабилизатор.

Стабилизатор

Схема стабилизатора показана на рисунке.

Это, так называемый параметрический стабилизатор. Состоит он из двух частей:
1 — сам стабилизатор на стабилитроне D с балластным резистором Rб
2 — эмиттерный повторитель на транзисторе VT.

Непосредственно за тем, чтобы напряжение оставалось тем каким нам надо, следит стабилизатор, а эмиттерный повторитель позволяет подключать мощную нагрузку к стабилизатору. Он играет роль как бы усилителя или если угодно — умощителя.

Два основных параметра нашего блока питания — напряжение на выходе и максимальный ток нагрузки. Назовем их:
Uвых — это напряжение
и
Imax — это ток.

Для блока питания, который мы отгрохали в прошлой части, Uвых = 14 Вольт, а Imax = 1 Ампер.

Сначала нам необходимо определить какое напряжение Uвх мы должны подать на стабилизатор, чтобы на выходе получить необходимое Uвых.
Это напряжение определяется по формуле:

Uвх = Uвых + 3

Откуда взялась цифра 3? Это падение напряжения на переходе коллектор-эмиттер транзистора VT. Таким образом, для работы нашего стабилизатора на его вход мы должны подать не менее 17 вольт.

Едем дальше.

Транзистор

Определим, какой нам нужен транзистор VT. Для этого нам надо определить, какую мощность он будет рассеивать.

Считаем:

Pmax=1.3(Uвх-Uвых)Imax

Тут надо учесть один момент. Для расчета мы взяли максимальное выходное напряжение блока питания. Однако, в данном расчете, надо наоборот брать минимальное напряжение, которое выдает БП. А оно, в нашем случае, составляет 1,5 вольта. Если этого не сделать, то транзистор может накрыться медным тазом, поскольку максимальная мощность будет рассчитана неверно.
Смотри сам:

Если мы берем Uвых=14 вольтам, то получаем Pmax=1.3*(17-14)*1=3.9 Вт.
А если мы примем Uвых=1.5 вольта, то Pmax=1.3*(17-1.5)*1=20,15 Вт

То есть, если бы не учли этого, то получилось бы, что расчетная мощность в ПЯТЬ раз меньше реальной. Разумеется, транзистору это сильно не понравилось бы.

Ну вот, теперь лезем в справочник и выбираем себе транзистор.
Помимо только что полученной мощности, надо учесть, что предельное напряжение между эмиттером и коллектором должно быть больше Uвх, а максимальный ток коллектора должен быть больше Imax. Я выбрал КТ817 — вполне приличный транзистор…

Фу, ну вроде с этим справились. Пошли дальше.

Считаем сам стабилизатор.

Сначала определим максимальный ток базы свежевыбранного транзистора ( а ты как думал? в нашем жестоком мире потребляют все — даже базы транзисторов).

Iб max=Imax / h21Э min

h21Э min — это минимальный коэффициент передачи тока транзистора и берется он из справочника Если там указаны пределы этого параметра — что то типа 30…40, то берется самый маленький. Ну, у меня в справочнике написано только одно число — 25, с ним и будем считать, а что еще остается?

Iб max=1/25=0.04 А (или 40 мА). Не мало.

Ну давайте будем теперь искать стабилитрон.
Искать его надо по двум параметрам — напряжению стабилизации и току стабилизации.

Напряжение стабилизации должно быть равно максимальному выходному напряжению блока питания, то есть 14 вольтам, а ток — не менее 40 мА, то есть тому, что мы посчитали.
Полезли опять в справочник…

По напряжению нам страшно подходит стабилитрон Д814Д, к тому же он у меня был под рукой. Но вот ток стабилизации… 5 мА нам никак не годится. Чего делать будем? Будем уменьшать ток базы выходного транзистора. А для этого добавим в схему еще один транзистор. Смотрим на рисунок. Мы добавили в схему транзистор VT2. Сия операция позволяет нам снизить нагрузку на стабилитрон в h21Э раз. h21Э, разумеется, того транзистора, который мы только что добавили в схему. Особо не думая, я взял из кучи железок КТ315. Его минимальный h21Э равен 30, то есть мы можем уменьшить ток до 40/30=1.33 мА, что нам вполне подходит.

Теперь посчитаем сопротивление и мощность балластного резистора Rб.

Rб=(Uвх-Uст)/(Iб max+Iст min)

где Uст — напряжение стабилизации стабилитрона,
Iст min — ток стабилизации стабилитрона.

Rб = (17-14)/((1.33+5)/1000) = 470 Ом.

Теперь определим мощность этого резистора

Prб=(Uвх-Uст)2/Rб.

То есть

Prб=(17-14)2/470=0,02 Вт.

Собственно и все. Таким образом, из исходных данных — выходного напряжения и тока, мы получили все элементы схемы и входное напряжение, которое должно быть подано на стабилизатор.

Однако не расслабляемся — нас еще ждет выпрямитель. Уж считать так считать, я так считаю (каламбур однако).

Выпрямитель

Итак, смотрим на схему выпрямителя.

Ну, тут все проще и почти на пальцах. Учитывая то, что мы знаем, какое напряжение нам надо подать на стабилизатор — 17 вольт, вычислим напряжение на вторичной обмотке трансформатора. Для этого пойдем, как и в начале — с хвоста. Итак, после конденсатора фильтра мы должны иметь напряжение 17 вольт.

Учитывая то, что конденсатор фильтра увеличивает выпрямленное напряжение в 1,41 раза, получаем, что после выпрямительного моста у нас должно получиться 17/1,41=12 вольт.
Теперь учтем, что на выпрямительном мосту мы теряем порядка 1,5-2 вольт, следовательно, напряжение на вторичной обмотке должно быть 12+2=14 вольт. Вполне может случится так, что такого трансформатора не найдется, не страшно — в данном случае можно применить трансформатор с напряжением на вторичной обмотке от 13 до 16 вольт.

Едем дальше. Определим емкость конденсатора фильтра.

Cф=3200Iн/UнKн

где Iн — максимальный ток нагрузки,
Uн — напряжение на нагрузке,
Kн — коэффициент пульсаций.

В нашем случае
Iн = 1 Ампер,
Uн=17 вольтам,
Kн=0,01.

Cф=3200*1/14*0,01=18823.

Однако, поскольку за выпрямителем идет еще стабилизатор напряжения, мы можем уменьшить расчетную емкость в 5…10 раз. То есть 2000 мкФ будет вполне достаточно.

Осталось выбрать выпрямительные диоды или диодный мост.

Для этого нам надо знать два основных параметра — максимальный ток, текущий через один диод и максимальное обратное напряжение, так же через один диод.

Необходимое максимальное обратное напряжение считается так

Uобр max=2Uн, то есть Uобр max=2*17=34 Вольта.

А максимальный ток, для одного диода должен быть больше или равен току нагрузки блока питания. Ну а для диодных сборок в справочниках указывают общий максимальный ток, который может протекать через эту сборку.

Ну вот вроде бы и все про выпрямители и параметрические стабилизаторы.
Впереди у нас стабилизатор для самых ленивых — на интегральной микросхеме и стабилизатор для самых трудолюбивых — компенсационный стабилизатор.

<<—Часть 1—-Часть 3—>>

Как вам эта статья?

Заработало ли это устройство у вас?

80 1 6
29 6 1

Все о блоках питания. Часть 1

Не секрет, что от правильного выбора блока питания (далее БП), его конструкции и качества сборки зависит работа устройства, на которое он нагружен. Здесь я постараюсь рассказать об основных моментах выбора, расчета, конструирования и применения блоков питания.

1. Выбор блока питания

Первым делом следует четко уяснить, что именно будет подключено к БП. Главным образом нас интересует ток нагрузки. Это будет основным пунктом ТЗ. По этому параметру будет подобрана схема и элементная база. Приведу примеры нагрузок и их средние потребляемые токи

1. Световые эффекты на светодиодах (20-1000мА)

2. Световые эффекты на миниатюрных лампах накаливания (200мА-2А)

3. Световые эффекты на мощных лампах (до 1000А)

4. Миниатюрные полупроводниковые радиоприемники (100-500мА)

5. Портативная аудиотехника (100мА-1А)

6. Автомобильные магнитолы (до 20А)

7. Автомобильные УМЗЧ (по линии 12В до 200А)

8. Стационарные полупроводниковые УМЗЧ (при выходной мощности не выше 1кВт до 40А)

9. Ламповые УМЗЧ (10мА-1А – анод, 200мА-8А – накал)

10. Ламповые КВ трансиверы (при мощности передатчика до 1кВт, до 5А – анод, до 10А – накал)

11. Полупроводниковые КВ трансиверы, Си-Би (при мощности передатчика до 100Вт, 1 – 5А)

12. Ламповые УКВ радиостанции (при мощности передатчика до 50Вт, до 1А – анод, до 3А — накал)

13. Полупроводниковые УКВ радиостанции (до 5А)

14. Полупроводниковые телевизоры (до 5А)

15. Вычислительная техника, оргтехника, сетевые устройства (500мА — 30А)

16. Зарядные устройства для АКБ (до 10А)

17. Управляющие блоки бытовой техники (до 1А)

Следует отметить, что во многих устройствах потребляемый ток в процессе работы может значительно колебаться. Это УМЗЧ, трансиверы (особенно в телеграфном режиме), мощные СДУ. Поэтому при выборе БП следует ориентироваться ни на средний потребляемый ток и уж тем более ни на ток в режиме молчания, а на пиковую потребляемую мощность. Для питания аналоговой электроники с потребляемой мощностью до 500Вт, я рекомендую линейные блоки питания. При чем многоканальные (с несколькими выходными напряжениями). Как правило, цепи с большим потребляемым током позволяют обойтись без стабилизации напряжения. Так же следует обратить внимание на развязку напряжений. Это, прежде всего, относится к аудиотехнике и аппаратуре радиосвязи. В ряде случаев может потребоваться даже гальваническая развязка между цепями (например при конструировании ламповых УМЗЧ класса Hi-End гальваническая развязка анодных цепей позволит избежать влияния выходного каскада на усилитель напряжения. В том числе перекроет паразитные ОС по питанию). Как это делается будет рассказано ниже. Для более мощной аналоговой техники, а так же любой цифровой можно рекомендовать импульсные БП, ибо тепловой режим и массогабаритные характеристики линейных БП такой мощности оставляют желать лучшего. Вообще мощные узлы аппаратуры не особенно взыскательны к питанию, за то от качества питания во многом зависит работа помехонеустойчивых слаботочных узлов. Итак, рассмотрим кормушку изнутри.

2. Правила безопасности

Не будем забывать, что БП это самый высоковольтный узел в любом устройстве (за исключением разве что телевизора). При чем опасность представляет не только промышленная электросеть (220В). Напряжение в анодных цепях ламповой аппаратуры может достигать десятков и даже сотен (в рентгеновских установках) киловольт (тысяч вольт). Поэтому все высоковольтные участки (включая общий провод) должны быть изолированы от корпуса. Это хорошо знает тот, кто поставив ногу на системный блок трогал батарею. Электрический ток может быть опасен не только для человека и животных, но и для самого устройства. Имеются ввиду пробои и короткие замыкания. Эти явления не только выводят из строя радиокомпоненты, но и весьма пожароопасны. Мне попадались некоторые изолирующие элементы конструкций, которые в следствии подачи высокого напряжения были пробиты и выгорели до угля при чем выгорели не полностью, а каналом. Уголь проводит ток и создает таким образом короткое замыкание (далее КЗ) на корпус. При чем внешне это не видно. Поэтому между двумя проводами, припаянными к плате, должно быть расстояние из расчета примерно 2мм на вольт. Если речь идет о смертельно опасных напряжениях, то в корпусе должны быть предусмотрены микропереключатели, которые автоматически обесточивают прибор при удалении стенки с опасного участка конструкции. Элементы конструкции, которые в процессе работы сильно нагреваются (радиаторы, мощные полупроводниковые и электровакуумные приборы, резисторы мощностью свыше 2Вт) должны быть вынесены с платы (наилучший вариант) или хотя бы приподняты над ней. Так же не допускается касание корпусов разогревающихся радиоэлементов, за исключением тех случаев, когда второй элемент является датчиком температуры первого. Такие элементы не разрешается заливать эпоксидной смолой и другими компаундами. Более того, должен быть обеспечен приток воздуха к участкам с большой рассеиваемой мощностью, а при необходимости и принудительное охлаждение (вплоть до испарительного). Так. Страху нагнал, теперь о работе.

3. Законы Ома и Кирхгофа были и будут основой разработки любого электронного устройства.

3.1. Закон Ома для участка цепи

Сила тока на участке цепи прямо пропорциональна напряжению, приложенному к участку и обратно пропорциональна сопротивлению участка. На этом принципе основана работа всех ограничительных, гасящих и балластных резисторов.

Эта формула хороша тем, что под «U» можно подразумевать как напряжение на нагрузке, так и напряжение на участке цепи, последовательно соединенном с нагрузкой. Например у нас есть лампочка на 12В/20Вт и источник 17В, к которому нам нужно подключить эту лампочку. Нам нужен резистор, который понизит 17В до 12.

Рис.1

Итак, мы знаем что при последовательном соединении элементов напряжения на них могут отличаться, но ток всегда одинаковый на любом участке цепи. Вычислим ток, потребляемый лампочкой:

Значит, через резистор протекает такой же ток. В качестве напряжения берем падение напряжения на гасящем резисторе, ведь это действительно то самое напряжение, которое действует на этом резисторе ()

Из приведенного примера совершенно очевидно, что . Причем это относится не только к резисторам, но и, например, к динамикам, если мы вычисляем какое напряжение нужно подвести к динамику с заданной мощностью и сопротивлением, чтобы он развил эту мощность.

3.2. Закон Ома для полной цепи

Прежде, чем мы перейдем к нему, нужно четко уяснить физический смысл внутреннего и выходного сопротивлений. Предположим, у нас есть некоторый источник ЭДС. Так вот, внутреннее (выходное) сопротивление это мнимый резистор, включенный последовательно с ним.

Рис.2

Естественно, фактически в источниках тока таких резисторов нет, но у генераторов есть сопротивление обмоток, у розеток – сопротивление проводки, у АКБ – сопротивление электролита и электродов и т.д. Это сопротивление при подключении нагрузки ведет себя именно как последовательно включенный резистор.

где: ε – ЭДС
I – сила тока
R – сопротивление нагрузки
r – внутреннее сопротивление источника

Из формулы видно, что с возрастанием внутреннего сопротивления уменьшается мощность вследствие просадки во внутреннем сопротивлении. Это видно и из закона Ома для участка цепи.

3.3 Правило Кирхгофа нас будет интересовать только одно: сумма токов, входящих в цепь равна току (сумме токов), выходящему из нее. Т.е. какой бы не была нагрузка и из скольки бы ветвей она не состояла, сила тока в одном из питающих проводов будет равна силе тока во втором проводе. Собственно, этот вывод вполне очевиден, если мы говорим о замкнутой цепи.

С законами протекания тока вроде все ясно. Посмотрим как это выглядит в реальном «железе».

4. Начинка

Все БП во многом схожи по схеме и элементной базе. Это вызвано тем, что по большому счету они выполняют одни и те же функции: изменение напряжения (всегда), выпрямление (чаще всего), стабилизация (часто), защита (часто). Теперь рассмотрим способы реализации этих функций.

4.1. Изменение напряжения чаще всего реализуется при помощи различных трансформаторов. Этот вариант наиболее надежен и безопасен. Существуют так же безтрансформаторные БП. В них для понижения напряжения используется емкостное сопротивление конденсатора, включенного последовательно между источником тока и нагрузкой. Выходное напряжение таких БП полностью зависит от тока нагрузки и ее наличия. Даже при кратковременном отключении нагрузки такие БП выходят из строя. Кроме того, они могут только понижать напряжение. Поэтому я не рекомендую такие БП для питания РЭА. Итак, остановимся на трансформаторах. В линейных БП используются трансформаторы на 50Гц (частота промышленной сети). Трансформатор состоит из сердечника, первичной обмотки и нескольких вторичных обмоток. Переменный ток, поступая на первичную обмотку создает в сердечнике магнитный поток. Этот поток, как магнит, наводит ЭДС во вторичных обмотках. Напряжение на вторичных обмотках определяется количеством витков. Отношение количества витков (напряжения) вторичной обмотки к количеству витков (напряжению) первичной обмотки называется коэффициентом трансформации (η). Если η>1 трансформатор называют повышающим, в противном случае – понижающим. Есть трансформаторы у которых η=1. Такие трансформаторы не меняют напряжение и служат только для гальванической развязки цепей (цепи считаются гальванически развязанными, если у них нет непосредственного общего электрического контакта. Хотя токи, протекающие через них, могут действовать друг на друга. Например «Blue Tooth» или лампочка и поднесенная к ней солнечная батарея или ротор и статор электродвигателя или неоновая лампа, поднесенная к антенне передатчика). Поэтому использовать их в БП нет смысла. Импульсные трансформаторы работают по такому же принципу с той лишь разницей, что на них не подается напряжение непосредственно из розетки. Сначала оно преобразуется в импульсы более высокой частоты (обычно 15-20кГц) и уже эти импульсы подаются на первичную обмотку трансформатора. Частота следования этих импульсов называется частотой преобразования импульсного БП. С возрастанием частоты увеличивается индуктивное сопротивление катушки, поэтому обмотки импульсных трансформаторов содержат меньшее количество витков по сравнению с линейными. Это делает их более компактными и легкими. Однако импульсные БП характеризуются бОльшим уровнем помех, худшим тепловым режимом и схемотехнически более сложны, следовательно менее надежны.

4.2. Выпрямление подразумевает преобразование переменного (импульсного) тока в постоянный. Этот процесс заключается в разложении положительных и отрицательных полуволн на соответствующие полюса. Есть достаточно много схем, позволяющих это сделать. Рассмотрим те, которые наиболее часто используются.

4.2.1. Четвертьмост

Рис.3

Самая простая схема однополупериодного выпрямителя. Работает следующим образом. Положительная полуволна проходит через диод и заряжает С1. Отрицательная полуволна блокируется диодом и цепь оказывается как бы оборванной. В этом случае нагрузка питается за счет разрядки конденсатора. Очевидно, что для работы на 50Гц емкость С1 должна быть сравнительно велика, чтобы обеспечивать низкий уровень пульсаций. Поэтому схема применяется в основном в импульсных БП ввиду более высокой рабочей частоты.

4.2.2 Полумост (удвоитель Латура-Делона-Гренашера)

Рис.4

Принцип работы похож на четвертьмост, только здесь они соединены как бы последовательно. Положительная полуволна проходит через VD1 и заряжает С1. На отрицательной полуволне VD1 закрывается и С1 начинает разряжаться, а отрицательная полуволна проходит через VD2. Таким образом между катодом VD1 и анодом VD2 появляется напряжение, в 2 раза превосходящее напряжение вторичной обмотки трансформатора (рис.4а). Этот принцип можно использовать для построения расщепленного БП. Так называются БП, выдающие 2 одинаковых по модулю, но противоположных по знаку напряжения (рис.4б). Однако не следует забывать, что это 2 соединенных последовательно четвертьмоста и емкости конденсаторов должны быть достаточно велики (из расчета, как минимум, 1000мкФ на 1А потребляемого тока).

4.2.3. Полный мост

Самая распространенная схема выпрямителя имеет наилучшие нагрузочные характеристики при минимальном уровне пульсаций и может применяться как в однополярных (рис.5а), так и в расщепленных БП (рис.5б).

Рис.5

На рис.5в,г показана работа мостового выпрямителя.

Как уже говорилось, различные схемы выпрямителей характеризуют разные значения коэффициента пульсаций. Точный расчет выпрямителя содержит громоздкие вычисления и на практике редко бывает необходим, поэтому ограничимся ориентировочным расчетом, который можно выполнить по таблице

Схема

U2

I2

Uобр

Iпр.макс

q0, %

Четвертьмост

0,75U0

2I0

3U0

7I0

Полумост

0,38U0

2,8I0

1,5U0

7I0

Мост

0,75U0

1,41I0

1,5U0

3,5I0

где: U2 – напряжение вторичной обмотки
I2 – предельно допустимый ток вторичной обмотки
Uобр – Предельно допустимое обратное напряжение диодов (кенотронов, тиристоров, газотронов, игнитронов)
Iпр.макс – Предельно допустимый прямой ток диодов (кенотронов, тиристоров, газотронов, игнитронов)
q0 – коэффициент пульсаций на выходе
U0 – Выводное напряжение выпрямителя
I0 – максимальный ток нагрузки

Емкость сглаживающего конденсатора можно вычислить по формуле

где: q – коэффициент пульсаций
m – фазность
f – частота пульсаций
Rн – сопротивление нагрузки ()
Rф – сопротивление резистора фильтра (это формула для резистивно-емкостных фильтров, но в качестве резистора можно взять выходное сопротивление выпрямителя )

4.3. Фильтрация

Пульсации вносят помехи в работу аппарата, который питается от БП. Кроме того, они делают невозможной работу стабилизаторов ввиду того, что в интервалах между полуволнами (абсолютная синусоида) напряжение падает практически до нуля. Рассмотрим некоторые виды сглаживающих фильтров.

4.3.1. Пассивные фильтры могут быть резистивно-емкостными индуктивно-емкостными и комбинированными.

Рис.6

Резистивно-емкостные фильтры (рис.6) характеризуются сравнительно большим падением напряжения. Это связано с применением в них резистора. Поэтому для работы с токами более 500мА такие фильтры не подходят ввиду больших потерь и рассеиваемой мощности. Резистор рассчитывается следующим образом
где: Uвып – выходное напряжение выпрямителя
Uп – напряжение питания нагрузки
Iн – ток нагрузки

Рис.7

Индуктивно-емкостные фильтры характеризуются сравнительно высокой сглаживающей способностью, но уступают другим по массогабаритным параметрам. Основная идея индуктивно – емкостного фильтра в соотношении реактивных сопротивлений его компонентов , т.е. фильтр должен обладать хорошей добротностью. Сам фильтр рассчитывается по следующей формуле

где: q – коэффициент сглаживания
m – фазность
f – частота
— индуктивность дросселя
– емкость конденсатора.

В любительских условиях вместо дросселя можно использовать первичную обмотку трансформатора (ни того, от которого все питается), а вторичную замкнуть.

4.3.2. Активные фильтры применяются в тех случаях, когда пассивные фильтры не годятся по массогабаритным или температурным параметрам. Дело в том, что, как уже говорилось, чем больше ток нагрузки, тем больше емкость сглаживающих конденсаторов. На практике это вытекает в необходимость применения громоздких электролитических конденсаторов. В активном фильтре используется транзистор в схеме эмиттерного повторителя (каскад с общим коллектором), поэтому сигнал на эмиттере практически повторяет сигнал на базе (рис.8)

Рис.8

Цепь R1C1 рассчитывается как резистивно – емкостной фильтр, только в качестве потребляемого тока берется ток в цепи базы

Однако, как видно из формулы, режим фильтра (в том числе и коэффициент сглаживания) будет зависеть от потребляемого тока, поэтому его лучше зафиксировать (рис.9)

Рис.9

Схема работает при условии, что , при чем выходное напряжение будет составлять примерно 0,98Uб в следствии просадки напряжения в повторителе. За сопротивление нагрузки принимаем R2.

4.3.3 Помехозащитные фильтры

Надо сказать, что радиопомехи могут проникать не только из сети в прибор, но и из прибора в сеть. Поэтому оба направления следует защищать от помех. Особенно это касается импульсных БП. Как правило, это сводится к подключению конденсаторов небольшой емкости (0,01 – 1,0мкФ) параллельно цепи, как это показано на рис.10.

Рис.10

Как и в случае со сглаживающими фильтрами, помехозащитные фильтры работают при условии, что емкостное сопротивление конденсаторов на частоте возникновения помехи много меньше сопротивления нагрузки.

Возможно, что помеха возникает ни от спонтанного перепада тока в сети или прибора, а от постоянной «вибрации». Это относится, например, к импульсным БП или передатчикам в телеграфном режиме. В этом случае может потребоваться еще и индукционная развязка (рис.11).

Рис.11

Однако конденсаторы должны быть подобраны так, чтобы не возникал резонанс в обмотках дросселей и трансформаторов.

4.4. Стабилизация

Существует целый ряд устройств, блоков и узлов, которые могут работать только от стабилизированных источников тока. Например генераторы, в которых от напряжения зависит скорость зарядки/разрядки конденсаторов в цепях ОС и, следовательно, частота и форма генерируемого сигнала. Поэтому в БП чаще всего стабилизируют именно выходное напряжение, в то время как ток стабилизируют чаще всего в зарядных устройствах и ИБП, да и то не всегда. Существует достаточно много способов стабилизации напряжения, но на практике чаще всего встречаются параметрические стабилизаторы в том или ином виде. Рассмотрим их работу.

4.4.1. Простейший стабилизатор состоит из стабилитрона и ограничительного резистора (рис.12).

Рис.12

Принцип работы такого стабилизатора основан на изменении падения напряжения в ограничительном резисторе в зависимости от тока. При чем вся схема работает при условии, что
Действительно, если ток, протекающий через нагрузку будет превосходить ток стабилизации, то стабилитрон не сможет обеспечить должный перепад по правилу параллельного соединения

Как видно из формулы, наибольшее влияние на общее сопротивление цепи оказывает наименьшее сопротивление. Дело в том, что с увеличением обратного напряжения растет его обратный ток, поэтому он и удерживает напряжение в определенных рамках (закон Ома для участка цепи).

4.4.2. Эмиттерный повторитель

Тогда что делать, если потребляемый ток должен превосходить ток стабилизации стабилитрона?

Рис.13

На помощь приходит наш старый добрый эмиттерный повторитель прирожденный усилитель по току. В конце концов что такое падение напряжения на 2% по сравнению с приращением тока на 1000%!? Внедряем (рис.13)! Ток вырос примерно в h21 раз по сравнению со стабилизатором на стабилитроне. На эмиттере буде примерно 0,98UБ

4.4.3. Наращивание напряжения стабилизации

Проблема решена, а как быть если требуется стабилизировать напряжение, скажем, 60В? В этом случае можно соединять стабилитроны последовательно. Таким образом 60В это 6 стабилитронов по 10В или 5 по 12В (рис.14).

Рис.14

Как и для любой последовательной цепи, здесь работает правило

где: — общее напряжение стабилизации цепочки
n – количество стабилитронов в цепи
— напряжение стабилизации каждого стабилитрона.

При чем напряжение стабилизации у стабилитронов может отличаться, но ток стабилизации должен быть одинаковым.

4.4.4. Наращивание тока нагрузки

Таким образом решается вопрос с высоким напряжением. Если требуется повысить нагрузочную способность (предельно допустимый ток нагрузки) используются каскады эмиттерных повторителей, образующие составной транзистор (рис.15).

Рис.15

Параметрический стабилизатор и эмиттерный повторитель рассчитываются так же, как и в предыдущих схемах. R2 включен в схему для стока потенциалов с базы VT2 когда VT1 закрыт, однако должно выполняться условие , где ZVT1 – импеданс VT1 в открытом состоянии.

4.4.5. Регулировка выходного напряжения

В ряде случаев бывает необходимо подстраивать или регулировать выходное напряжение стабилизатора (рис.16).

Рис.16

В этой схеме нагрузкой считается R2, и ток через стабилитрон должен превосходить ток через R2. Следует помнить, что если напряжение снижено до «0», то на переходе коллектор-база действует полное входное напряжение. Если заявленный режим транзистора не достигает этого напряжения, то транзистор неизбежно выйдет из строя. Так же следует отметить, что на выходе стабилизаторов с эмиттерными повторителями очень опасны конденсаторы большой емкости. Дело в том, что в этом случае транзистор оказывается зажатым между двумя большими емкостями. Если разрядить выходной конденсатор, то сглаживающий конденсатор разрядится через транзистор и транзистор выйдет из строя от перегрузки по току. Если разрядить сглаживающий конденсатор, то на эмиттере напряжение станет выше, чем на коллекторе, что так же неизбежно приведет к пробою транзистора.

4.4.6 Стабилизация тока применяется довольно редко. Например зарядных устройствах для АКБ. Самым простым и надежным способом стабилизировать ток является использование каскада с общей базой и светодиодом в качестве стабилизирующего элемента.

Рис.17

Принцип работы такой схемы весьма прост: при снижении тока через нагрузку уменьшается падение напряжения в каскаде. Таким образом на нагрузке повышается напряжение, а следовательно (по закону Ома) и ток. А вырасти выше нужного предела току не позволяет зафиксированный светодиодом режим базы транзистора, т.е. коэффициент усиления не позволяет выдать такой ток на выходе, ибо транзистор работает в режиме насыщения.

где: R1 – сопротивление резистора R1
Uпр.св – прямое напряжение на светодиоде
UБЭ.нас – напряжение между эмиттером и базой в режиме насыщения
IH – необходимый ток нагрузки.

где: R2 – сопротивление резистора R2
Е – входное напряжение стабилизатора
Uпр.св – максимальное прямое напряжение светодиода
Iпр.max – максимальный прямой ток светодиода.

Импульсные БП будут рассмотрены во второй части статьи.

Павел А. Улитин aka Soundoverlord

Теги:

  • Блок питания

Доброго времени суток. Сегодня мой пост о стабилизаторах напряжения. Что же это такое? Прежде всего, любой радиоэлектронной схеме для работы необходим источник питания. Источники питания бывают разные: стабилизированные и нестабилизированные, постоянного тока и переменного тока, импульсные и линейные, резонансные и квазирезонансные. Такое большое разнообразие обусловлено различными схемами, от которых будут работать электронные схемы. Ниже приведена таблица сравнения схем источников питания.

Для сборки радиоэлектронного устройства можно преобрески

Показатель Линейный источник питания Импульсный источник питания
Стоимость Низкая Высока
Масса Большая Небольшая
ВЧ-шум Отсутствует Высокий
КПД 35 — 50 % 70 — 90 %
Несколько выходов Нет Есть

Для питания электронных схем, которые не требуют высокой стабильности питающего напряжения постоянного тока или большой выходной мощности, целесообразно применять простые, надёжные и дешевые линейные источники напряжения. Основой любого линейного источника напряжения является параметрический стабилизатор напряжения. Основой таких устройств является элемент с нелинейной вольт-амперной характеристикой, у которого напряжение на электродах мало зависит от протекающего через элемент тока. Одним из таких элементов является стабилитрон.

Стабилитрон представляет собой особую группу диодов, режим работы которых характеризуется обратной ветвью вольт-амперной характеристики в области пробоя. Рассмотрим поподробнее вольт-амперную характеристику диода.


Вольт-амперная характеристика диода

Принцип работы стабилитрона

Когда диод включён в прямом направлении (анод – «+», катод – «–»), то он свободно начинает пропускать ток при напряжении Uпор, а при включении в обратном направлении (анод – «–», катод – «+») через диод может проходить лишь ток Iобр, который имеет значение нескольких мкА. Если увеличивать обратное напряжение Uобр на диоде до определённого значения Uобр.max произойдёт электрический пробой диода и если ток достаточно вели, то происходит тепловой пробой и диод выходит из строя. Диод можно заставить работать в области электрического пробоя, если ограничить ток, который проходит через диод (напряжение пробоя для разных диодов составляет 50 – 200 В).

Стабилитрон же разработан таким образом, что его вольт-амперная характеристика в области пробоя обладает высокой линейностью, а напряжение пробоя достаточно постоянно. Таким образом можно сказать, что стабилизация напряжения стабилитроном осуществляется при его работе на обратной ветви вольт-амперной характеристики, в области же прямой ветви стабилитрон ведёт себя аналогично обыкновенному диоду. Стабилитрон обозначается следующим образом


Обозначение стабилитрона

Основные параметры стабилитрона

Рассмотрим основные параметры стабилитрона по его вольт-амперной характеристике.


Вольт-амперная характеристика стабилитрона

Напряжение стабилизации Uст определяется напряжением на стабилитроне при протекании тока стабилизации Iст. В настоящее время выпускаютя стабилитроны с напряжением стабилизации от 0,7 до 200 В.

Максимально допустимый постоянный ток стабилизации Iст.max ограничен значением максимально допустимой рассеиваемой мощности Pmax, зависящей в свою очередь от температуры окружающей среды.

Минимальный ток стабилизации Iст.min определяется минимальным значением тока через стабилитрон, при котором ещё полностью сохраняется работоспособность прибора. Между значениями Iст.max и Iст.min вольт-амперная характеристика стабилитрона наиболее линейна и напряжение стабилизации изменяется незначительно.

Дифференциальное сопротивление стабилитрона rСТ – величина, определяемая отношением приращения напряжения стабилизации на приборе ΔUCT к вызвавшему его малому приращению тока стабилизации ΔiCT.

Стабилитрон, включённый в прямом направлении, как обычный диод, характеризуется значениями постоянного прямого напряжения Uпр и максимально допустимого постоянного прямого тока Iпр.max.

Параметрический стабилизатор

Основная схема включения стабилитрона, которая является схемой параметрического стабилизатора, а также источником опорного напряжения в стабилизаторах других типов приведена ниже.


Схема включения стабилитрона

Данная схема представляет собой делитель напряжения, состоящий из балластного резистора R1 и стабилитрона VD, параллельно которому включено сопротивление нагрузки RН. Такой стабилизатор напряжения обеспечивает стабилизацию выходного напряжения при изменении напряжения питания UП и тока нагрузки IН.

Рассмотрим принцип работы данной схемы. Увеличении напряжения на входе стабилизатора приводит к увеличению тока который проходит через резистор R1 и стабилитрон VD. За счёт своей вольт-амперной характеристики напряжение на стабилитроне VD практически не изменится, а соответственно напряжение на сопротивлении нагрузки Rн тоже. Таким образом практически всё изменение напряжение будет приложено к резистору R1. Таким образом достаточно легко подсчитать необходимые параметры схемы.

Расчёт параметрического стабилизатора.

Исходными данными для расчёта для расчёта простайшего параметрического стабилизатора напряжения являются:

входное напряжение U0;

выходное напряжение U1 = Ust – напряжение стабилизации;

выходной ток IH = IST;

Для примера возьмём следующие данные: U0 = 12 В, U1 = 5 В, IH = 10 мА = 0,01 А.

1. По напряжению стабилизации выбираем стабилитрон типа BZX85C5V1RL (Ust = 5,1 В, дифференциальное сопротивление rst = 10 Ом).

2. Определяем необходимое балластное сопротивление R1:


3. Определяем коэффициент стабилизации:


4. Определяем коэффициент полезного действия


Увеличение мощности параметрического стабилизатора

Максимальная выходная мощность простейшего параметрического стабилизатора напряжения зависит от значений Iст.max и Pmax стабилитрона. Мощность параметрического стабилизатора может быть увеличена, если в качестве регулирующего компонента использовать транзистор, который будет выступать в качестве усилителя постоянного тока.

Параллельный стабилизатор


Схема ПСН с параллельным включением транзистора

Схема представляет собой эмиттерный повторитель, параллельно транзистору VT включено сопротивление нагрузки RH. Балластный резистор R1 может быть включён как в коллекторную, так ив эмиттерную цепи транзистора. Напряжение на нагрузке равно


Схема работает следующим образом. При увеличении тока через резистор RH, а соответственно и напряжения (U1 = UCT) на выходе стабилизатора, происходит увеличение напряжения база-эмиттер (UEB) и коллекторного тока IK, так как транзистор работает в области усиления. Возрастание коллекторного тока приводит к увеличению падения напряжения на балластном резисторе R1, что компенсирует рост напряжения на выходе стабилизатора (U1 = UCT). Поскольку ток IСТ стабилитрона является одновременно базовым током транзистора, очевидно, что ток нагрузки в этой схеме может быть в h21e раз больше, чем в простейшей схеме параметрического стабилизатора. Резистор R2 увеличивает ток через стабилитрон, обеспечивая его устойчивую работу при максимальном значении коэффициента h21e, минимальном напряжении питания U0 и максимальном токе нагрузки IН.

Коэффициент стабилизации будет равен


где RVT – входное сопротивление эмиттерного повторителя


где Re и Rb – сопротивления эмиттера и базы транзистора.

Сопротивление Re существенно зависит от эмиттерного тока. С уменьшением тока эмиттера сопротивление Re быстро возрастает и это приводит к увеличению RVT, что ухудшает стабилизирующие свойства. Уменьшить значение Re можно за счёт применения мощных транзисторов или составных транзисторов.

Последовательный стабилизаттор

Параметрический стабилизатор напряжения, схема которого представлена ниже, представляет собой эмиттерный повторитель на транзисторе VT с последовательно включённым сопротивлением нагрузки RH. Источником опорного напряжения в данной схеме является стабилитрон VD.


Схема ПСН с последовательным включением транзистора

Выходное напряжение стабилизатора:


Схема работает следующим образом. При увеличении тока через резистор RH, а соответственно и напряжения (U1 = UST) на выходе стабилизатора происходит уменьшение отпирающего напряжения UEB транзистора и его базовый ток уменьшается. Это приводит к росту напряжения на переходе коллектор – эмиттер, в результате чего выходное напряжение практически не изменяется. Оптимальное значение тока опорного стабилитрона VD определяется сопротивлением резистора R2, включённого в цепь источника питания U0. При постоянном значении входного напряжения U0 базовый ток транзистора IB и ток стабилизации связаны между собой соотношением IB + IST = const.

Коэффициент стабилизации схемы


где Rk – сопротивление коллектора биполярного транзистора.

Обычно kST ≈ 15…20.

Коэффициент стабилизации параметрического стабилизатора напряжения может быть существенно увеличен при введении в его схему отдельного вспомогательного источника с U’0 > U1 и применении составного транзистора.


Схема ПСН с составным транзистором и питанием стабилитрона от отдельного источника напряжения

Теория это хорошо, но без практического применения это просто слова.

admin

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Наверх