Электрификация

Справочник домашнего мастера

Усилитель на полевом транзисторе

Содержание

Электронные схемы и статьи на тему «УНЧ на полевых транзисторах»

Ниже приведены принципиальные схемы и статьи по тематике «УНЧ на полевых транзисторах» на сайте по радиоэлектронике и радиохобби RadioStorage.net .

Что такое «УНЧ на полевых транзисторах» и где это применяется, принципиальные схемы самодельных устройств которые касаются термина «УНЧ на полевых транзисторах».

Приведена электронная принципиальная схема несложного высококачественного усилителя мощности ЗЧ на 20 Ватт, выполнена полностью на транзисторах, на выходе — полевые транзисторы КП904. Схема простого и мощного усилителя низкой частоты с выходным каскадом на полевых транзисторах КП912. Максимальная выходная мощность — 65 Ватт. Приведена принципиальная схема широкополосного усилителя мощности ЗЧ (УМЗЧ), выполненного по симметричной схеме на полевых транзисторах КП904. В радиолюбительской практике широкое распространение получил усилитель мощности ЗЧ (УМЗЧ), выполненный по симметричной схеме. Комплементарные биполярные транзисторы его входного каскада включены по схеме двухтактного дифференциального усилителя, а следующего за ним — по схеме … Принципиальная схема усилителя мощности с МДП -транзисторами в выходном каскаде, мощность порядка 12Вт. Схема приведена на следующем рисунке. Его основные технические характеристики … В усилителе мощности звуковой частоты класса АВ, описанном в этой статье, применяются в выходном каскаде пара комплементарных полевых МОП транзисторов. Эта особенность позволяет улучшить рабочие характеристики по сравнению с эквивалентным выходным каскадом на биполярных… Построение усилителей мощности звуковой частоты (УМЗЧ) на полевых транзисторах привлекает разработчиков возможностью достижения «ламповой» мягкости звучания (вольтамперные характеристики полевых транзисторов очень похожи на аналогичные характеристики вукуумных ламп)… Карел Бартон построил свой High-End УМЗЧ на полевых транзисторах с гексагональной структурой (HEXFET фирмы International Rectifier). Входные каскады выполнены на дискретных биполярных транзисторах с использованием симметричной дифференциально-каскодной схемотехники… «Полевой» УМЗЧ Эндре Пирета заметно прост, но также соответствует нормам высококачественного звуковоспроизведения. Оригинально (без привычных дифференциальных усилителей) решен входной каскад — это двухтактный комплементарный каскад … Мощный УМЗЧ с работой всех каскадов в режиме класса А, обеспечивающий на 8-омной нагрузке 32 Вт при потрясающе высоком реальном КПД 45% Ричард Барфут обращает внимание, что в обычном резистивном усилительном каскаде с ОЭ и разделительным конденсатором теоретически … Схема УМЗЧ, разработанного Мэттом Такером. Первый дифференциальный каскад выполнен на биполярных транзисторах Q1Q5 по типовой схеме с токовым зеркалом Q7Q8 в нагрузке, а каскад усиления напряжения — на Q9Q13 с ОЭ и нагрузкой на генератор тока Q6Q2 … Схема электрическая принципиальная усилителя приведена на рисунке (в скобках приведены замененные элементы). Данная конструкция является модернизациейразработки . Принципиальная схема УМЗЧ на MOSFET транзисторах (200Вт). Все основные части усилителя — трансформатор, радиаторы … Несколько принципиальных схем высококачественных УМЗЧ на полевых транзисторах, привлекающие своей простотой и техническими характеристиками. Применение полевых транзисторов в усилителе мощности позволяет значительно повысить качество звучания при общем упрощении схемы…

Project 101 – усилитель на полевых транзисторах от Рода Эллиота

Я часто говорил, что не являюсь фанатом усилителей мощности на полевых транзисторах, но этот усилитель изменил мои взгляды, и я считаю, что это «эталонная» система во всех отношениях. Он использует полевые транзисторы. Производительность очень хорошая, с невероятно низким уровнем искажений, большой мощностью, широкой полосой пропускания и «самозащитой» выходных транзисторов. Но это не означает, что усилитель не выйдет из строя, просто он гораздо более терпим к сбоям, чем биполярный транзисторный усилитель, а для ограничения тока требуется всего лишь пара стабилитронов.

Все дорожки на печатной плате выполнены как можно более короткими, что сводит к минимуму вероятность появления шума. Усилитель будет стабильно работать при напряжениях питания от ±5 В до ±70 В.

При напряжении питания ±70 В (которое не должно превышаться!), выходная мощность составляет около 180 Вт/8 Ом или 250 Вт/4 Ом. Кратковременная мощность около 240 Вт/8 Ом или 380 Вт/4 Ом. Рекомендуемое напряжение питания составляет ±56 В.

Если максимальная мощность не нужна, я предлагаю использовать напряжение питания ±56 В, полученное от трансформатора с вторичными обмотками 40 В + 40 В. Вы получите мощность около 150 Вт/8 Ом от такого напряжения, а также уменьшите требования, предъявляемые к выходным транзисторам и радиаторам.

На фото показана печатная плата. Выходные транзисторы монтируются под платой и крепятся винтами. Никакой другой монтаж не требуется. Зеленая жила вдоль переднего края плата является землей, так что основные токонесущие дорожки не были повреждены. Вся входная часть находится между электролитическими конденсаторами и намеренно максимально компактна. Это повышает производительность, гарантируя отсутствие длинных дорожек для входного каскада, которые в противном случае могут ловить шум, который может серьезно ухудшить звучание.

Характеристики:

Значения искажений показывают, что нагрузка на усилитель дает очень небольшие отклонения. В форме искажения нет видимых или слышимых компонентов высокого порядка. Выходное сопротивление измерялось на полностью готовом усилителе, включая внутреннюю проводку. Это влечет за собой около 200 мм провода (на канал), поэтому выходной импеданс самого усилителя явно ниже указанного. При нагрузке 8 Ом коэффициент демпфирования при 1 кГц составляет около 800 (8/10 милли Ом).

Шум измерялся при разомкнутом входе, и при -54 дБВ может выглядеть не слишком хорошо, но это невзвешенное измерение с шириной полосы, значительно превышающей 100 кГц. Несмотря на это, отношение сигнал/шум (в расчете на полную мощность) составляет 86 дБ (невзвешенный), а сам усилитель полностью бесшумный в АС. Даже подключение наушников непосредственно к выходам усилителя показало, что шума не было слышно.

Интермодуляционные искажения я не смог измерить, так как нет подходящего оборудования. Но я добавил графики измерений. Большая часть гармоник присутствует в двух генераторах, которые я использовал, и усилитель практически ничего не дает.

1 кГц + 2 кГц, +30 дбВ, выход 8 Ом

1 кГц + 2 кГц, -25 дбВ, выход 8 Ом

10 кГц + 12 кГц, +20 дбВ, выход 8 Ом

Описание

Первое, что вы заметите, это то, что номиналы элементов не показаны. Учитывая производительность схемы и тот факт, что я уже продал пару готовых усилителей, я не собираюсь раскрывать все свои секреты. Если вы хотите узнать номинал деталей, вы должны купить печатную плату.

Обратите внимание: наиболее важным аспектом дизайна является компоновка печатной платы, и очень сомнительно, что если вы создадите свою собственную плату, вы получите такие же параметры как у меня. Выходная мощность практически не изменяется, но искажения и стабильность достигаются благодаря компактной и тщательно спроектированной компоновке, которая сводит к минимуму любые неблагоприятные соединения на дорожках печатной платы, которые могут вызывать искажения.

Версия усилителя с пониженной мощностью

Как показано на приведенных ниже схемах усилитель может быть выполнен в версии с высокой или низкой мощностью. Если Вы выбрали версию с одной парой выходников, то лучше ограничится питанием до ±42 В, чтобы она могла управлять нагрузками на 4 и 8 Ом без избыточного рассеивания мощности. При этом напряжении можно получить около 80 Вт/8 Ом или 140 Вт/4 Ом. Естественно, двойные пары выходных транзисторов также могут использоваться при этом напряжении, обеспечивая гораздо лучшие тепловые характеристики (и, следовательно, более холодную работу), гораздо большую пиковую нагрузку по току и немного более высокую мощность. Эта версия может использоваться при любом напряжении от ±25 В до ±42 В.

В качестве выходных полевых транзисторов используются Hitachi/Renesas, 2SK1058 (N-канал) и 2SJ162 (P-канал). Они разработаны специально для аудио и намного более линейны, чем многие другие. К сожалению, они не дешевы, но их производительность в аудио намного лучше, чем в вертикальных MOSFET, HEXFET и т.д. Обратите внимание, что использование HEXFET или любого другого вертикального типа MOSFET не допускается.

Альтернатива (и, возможно, незначительно лучше, чем у серии 2SK/2SJ) – это Exicon ECX10N20 и ECX10P20 (доступны от Profusion PLC в Великобритании). Они были использованы в большинстве усилителей, которые я построил и работают очень хорошо. Таким образом, проверяйте доступность деталей перед покупкой печатной платы. Вы также можете использовать BUZ901P/BUZ905P или ALF08N16V/ALF08P16V. Минимальное номинальное напряжение составляет 160 В. Все остальные части вполне стандартные. Renesas также производит полевые транзисторы 2SK2221/2 и 2SJ351/2. Они имеют меньшую мощность (рассеиваемая мощность 100 Вт), но имеют довольно разумную цену и должны подходить для пониженных напряжений питания. ±42 В – рекомендуемое максимальное напряжение при использовании 2 пар в конфигурации высокой мощности, показанной ниже. Питании ±56 В допускается при нагрузке 8 Ом.

Версия усилителя с повышенной мощностью

Используется та же самая печатная плата, но есть дополнительная пара выходных транзисторов. Поскольку устройства работают параллельно, исходные резисторы используются для принудительного разделения тока. Хотя они могут быть заменены обычной жилой. Эта версия может работать при абсолютном максимальном напряжении питания до ±70 В (рекомендуется ±56 В) и будет выдавать среднее значение мощности в 180 Вт/8 Ом или 250 Вт/4 Ом. Пиковая мощность составляет 240 Вт/8 Ом или 380 Вт/4 Ом.

Транзисторы и полевые транзисторы в этой версии те же, что и для варианта с пониженной мощностью. Показанные дополнительные конденсаторы (C11 и C12) предназначены для балансировки емкости затвора. Транзисторы с P-каналом имеют значительно более высокую емкость затвора, чем их аналоги с N-каналом, а крышки гарантируют, что две стороны усилителя примерно равны. Без этих заглушек усилитель почти всегда будет нестабильным.

Как отмечено выше, печатная плата одинакова для обеих версий. Версия с высокой мощностью также может использоваться при более низких напряжениях питания, с небольшим увеличением мощности, но значительно более низкими рабочими температурами даже при максимальной мощности и большей надежностью.

В обеих версиях страница конструкторов дает дополнительную информацию, а схемы содержат расширенную цепь Цобеля на выходе для большей стабильности при самых сложных нагрузках. Это предусмотрено на печатной плате и позволяет усилителю оставаться стабильным практически при любых условиях.

Вся схема была оптимизирована для минимального тока в драйвере класса A, но при этом обеспечивала достаточный привод для обеспечения полной мощности до 25 кГц. Скорость нарастания в два раза выше, чем требуется для полной мощности при 20 кГц (15 В/мкс). Ее довольно просто увеличить, но этот усилитель уже превосходит многие другие, и более быстрая работа не требуется и не желательна.

В обеих версиях усилителя R7 и R8 выбраны для обеспечения тока в 5 мА через каскад усилителя напряжения. Вам нужно будет изменить значение, если будете использовать другое напряжение питания.

R7 = R8 = Vs / 10 (кОм) (где Vs – напряжение питания)

Например, установка правильного тока при питании ±42 В:

R7 = R8 = 42/10 = 4,2 кОм (используйте стандартное значение – 3,9 кОм)

Конструкция

Как указывалось выше, я настоятельно рекомендую вам приобрести плату для этого усилителя, иначе вы почти наверняка получите результаты, которые далеко не соответствуют реальным возможностям усилителя. Печатная плата также делает конструкцию легкой, кроме блока питания, установленного на самой плате. Как и многие другие усилители мощности, полевые транзисторы монтируются под платой, для чего требуется всего два (или четыре) винта для крепления печатной платы и выходных устройств. Как всегда, полная информация о конструкции будет доступна при покупке платы.

Радиаторы. Поскольку усилитель предназначен для использования в Hi-Fi, вентиляторы нежелательны, поэтому радиатор должен быть значительным. Я предлагаю вам использовать радиатор с тепловым сопротивлением около 0,4 °C/Вт для версии с высокой мощностью. Конечно, она может быть несколько меньше для версии с низким энергопотреблением, но я рекомендую, чтобы она была не меньше чем ~ 1 °C/Вт.

Используемые радиаторы должны иметь полностью плоскую заднюю стенку, без каких-либо выступов или чего-либо еще. Выходные транзисторы должны быть электрически изолированы от радиатора, и вы можете использовать тонкие изоляторы из слюды, каптона (25 мкм) или оксида алюминия. Не пытайтесь использовать силиконовые прокладки – они имеют слишком большое тепловое сопротивление и приведут к выходу из строя транзисторов.

Предлагаемый блок питания полностью условен. Трансформатор для источника питания должен соответствовать ожидаемой мощности, которую вы хотите получить от усилителя. В следующей таблице приведены рекомендуемые значения напряжения трансформатора и мощность для одного канала. Используйте два трансформатора или один с удвоенным значением мощности для стерео. Например, трансформатор с питанием на вторичке 40-0-40 В и мощность 300 Вт может использоваться для стереофонического усилителя мощностью 150 Вт, который используется для Hi-Fi.

АС, В DC, В Вт Вт/8 Ом
20-0-20 ±28 100 40 Отлично подойдет для использования в маломощном варианте
25-0-25 ±35 100 50 Штраф за использование в системе Hi-Fi
30-0-30 ±42 160 80 Максимальное напряжение для версии с пониженной мощностью
40-0-40 ±56 200 150 Рекомендуемое напряжение питания для версии с повышенной мощностью
50-0-50 ±70 300 240 Абсолютный максимум, может использоваться, но не рекомендуется

Обратите внимание, что все показанные мощности являются «кратковременными» или пиковыми – постоянная мощность всегда будет меньше, поскольку источник питания падает при нагрузке. Пиковые уровни мощности обычно достигаются (или приближаются) к большинству музыки, потому что ее переходные процессы обычно на 6–10 дБ превышают среднюю выходную мощность. Показанные значения мощности трансформатора приведены только для справки – можно использовать более крупные или меньшие блоки с незначительным увеличением или уменьшением пиковой мощности.

На рисунке выше показана принципиальная электрическая схема источника питания ±56 В, и в этом нет ничего нового. Как всегда я рекомендую диодный мост 400 В/35 А с установкой на радиатор.

Конденсаторы фильтра должны быть рассчитаны (как минимум) на номинальное напряжение питания, а лучше выше. Если возможно, используйте конденсаторы с температурой 105 °C.

Примечание. Предохранитель следует выбирать в соответствии с размером силового трансформатора. Для любого тороидального трансформатора мощностью выше 300 Вт настоятельно рекомендуется схема плавного пуска. Используйте предохранитель, рекомендованный производителем трансформатора.

Источник постоянного тока должен быть взят от клемм конденсатора, а не от диодного моста. Использование нескольких маленьких конденсаторов даст лучшую производительность, чем один большой, и, как правило, так дешевле. Например, производительность 10 конденсаторов емкостью 1000 мкФ намного лучше (во всех отношениях), чем один на 10000 мкФ.

Приобретая печатную плату, вы не только получите все значения компонентов, но также получите доступ к информации для источника питания, оптимизированного для наилучшей производительности для обычного источника питания.

Тестирование

Подключите к подходящему источнику питания – помните, что заземление должно быть подключено! При первом включении используйте последовательно с каждым источником питания «защитные» резисторы от 10 до 22 Ом, чтобы ограничить ток, если вы допустили ошибку в проводке.

УНЧ КЛАССА А НА ПОЛЕВЫХ ТРАНЗИСТОРАХ

Это однотактный MOSFET усилитель класса A. Зачем он нужен, ведь своим КПД такая схема не выдерживает никакой критики? УНЧ класса А имеет очень хороший звук, и как правило не предназначен для того, чтобы играть очень громко, он должен играть очень качественно. Такие усилители имеют свои неоспоримые преимущества — они дают чистый, неискаженный звук, вот почему мечта многих аудиофилов — иметь усилитель класса А высокого класса.

Схема усилителя класса А на MOSFET

Этот усилитель был создан на основе принципиальной схемы, показанной выше. Вместо 2SK1058 использовался 2SK2221, потому что различия между ними невелики. Кроме того, 4700 мкФ был заменен на конденсатор 6800 мкФ.

Схема БП УНЧ класса А

Источник питания потребовал некоторых изменений. В выпрямительном мосту использованы диоды BYW 29/100. Конденсаторы 100 нФ расположены вокруг диодов для фильтрации шума при их переключении. Конденсаторы 1 мкФ размещены параллельно конденсаторов 10000 мкФ для фильтрации. Все представлено на схеме блока питания.

После сборки усилитель сразу заработал и весьма впечатляюще. Однако следует отметить, что в его случае используйте хорошую фильтрацию на источнике питания, чтобы устранить гудение. Но в остальном это довольно простой проект, с которым может справиться даже не слишком опытный радиолюбитель.

В качестве нагрузки транзистора выступают четыре не индуктивных проволочных резистора мощностью по 10 Вт. Да, класс А очень неэффективен в плане расхода мощности. Уходит более 60 Вт, чтобы получить только несколько ватт звука из динамика.

Это типичный пример усилителя SE. Резистор действует как источник тока для транзистора. Ток покоя легко рассчитывается как 0,8 А. Потеря мощности составляет около 20 Вт. Теоретическая максимальная мощность составляет 5 Вт.

Схема усилителя класса А — второй вариант

А это несколько модифицированная схема: транзистор T2 заменяет резистор 15 Ом 40 Вт в верхней схеме и является источником тока для T3, T1 и R1 для поддержания тока источника тока равным Ube (0,7 В) / R1 (0,47 Ом) = 1,5 А. Мощность на R1 = Ube (0,7 В) x I (1,5 А) = 1 Вт. Мощность на T2, а также на T3 = Uds (17,5 В) xI (1,5 А) = 26 Вт. Транзисторы Т2 и Т3 в совокупности отводят тепло мощностью 52 Вт. А мощность на динамике около 12 Вт (на 8 Ом). Самым большим преимуществом источника тока является то, что для переменного напряжения он имеет очень высокое сопротивление.

Если требуется УНЧ класс «А» чисто для наушников — смотрите эту схему. В общем попробуйте собрать этот УМЗЧ А-класса и послушать — будете приятно удивлены!

Схемы усилителей

В статье рассматриваются различные схемо­технические решения для улучшения линейности работы выходного каскада УМЗЧ на n-канальных полевых транзисторах.

УМЗЧ Creek 4330

Классический выходной каскад на двух n-ка­нальных полевых транзисторах был предложен Дж. Линсли Худом ещё в 1969 г. В этой схеме (рис.1) в фазоинверторном каскаде для n-канальных мощ­ных полевых транзисторов VT1 и VT2 использует­ся также n-канальный транзистор VT3 меньшей мощности. Использование в выходном каскаде мощных транзисторов одного типа проводимости вызвано тем, что n-канальные и р-канальные тран­зисторы, имеющие одинаковую мощность и напря­жение сток-исток, очень сильно отличаются по ос­тальным параметрам: крутизне, напряжению отсечки и т.д. Соответственно, при их совместном использовании в выходном каскаде УМЗЧ крайне трудно добиться его качественной работы.

Рис. 1

В этой схеме ток источника тока I1 делится по­левым транзистором VT3 на две части. Это два то­ка протекают через резисторы R1 и R2, имеющие одинаковый номинал. Таким образом, создается U3И для выходных транзисторов VT1 и VT2. Причём при работе каскада сумма U3ИVT1 + U3ИVT2 = const. Т.е. обеспечивается абсолютно точное противо­фазное управление транзисторами выходного ка­скада VT1 и VT2.

Эта схема была разработана для УМЗЧ с глубо­кой ООС, значительно уменьшающей выходное со­противление УМЗЧ. Однако в настоящее время для звуковоспроизводящей аппаратуры высокого класса считается предпочтительным разрабаты­вать УМЗЧ, не использующие глубокую ООС. А в этом случае схема рис. 1 имеет весьма ощутимый недостаток, а именно высокое выходное сопротив­ление, что не позволяет такому УМЗЧ работать на акустическую систему (АС) с импедансом 4…8 Ом.

Модернизированный вариант УМЗЧ Дж. Лин­сли Худа показан на рис.2. Основное отличие этой схемы — замена транзистора VT3 р-канальным прибором. По сути, схема рис.2 — это повторитель входного напряжения с низким выходным сопро­тивлением.


Рис. 2

Однако у такого выходного каскада также есть не­достаток: для обеспечения малых КНИ требуется зна­чительный ток покоя выходных транзисторов — не ме­нее 75…100 мА. Основная причина этого — наличие местной ООС через резистор R1 в фазоинверторе на VT1, что снижает его коэффициент усиления.

Ещё один недостаток такой схемы — это то, что нелинейная выходная ёмкость затвор-исток тран­зистора VT2 включена параллельно этому же ре­зистору R1. Это оказывает частотно-зависимое влияние на местную ООС, что ухудшает линей­ность каскада на высоких частотах.

Рассмотрим ещё один вариант построения вы­ходного каскада с n-канальными выходными тран­зисторами, а именно с использованием диффе­ренциального фазоинвертора (рис.3). Эта схема содержит не только источник образцового тока, но и источник образцового напряжения, что зна­чительно усложняет её по сравнению со схемами, показанными на рис.1 и рис.2. Однако из-за это­го она имеет тот же недостаток, что и схема рис. 1, — высокое выходное сопротивление при от­сутствии глубокой ООС.

Рис. 3

Чтобы устранить этот недостаток, доработаем схему с дифференциальным фазоинвертором, исключив из нее источник образцового напряжения и введя ме­стную ООС (рис.4). Эта схема как бы объединяет схемы, показанные на рис.2 и рис.3. В схеме присутствует дифференциальный фазоинвертор на p-канальных транзисторах, и, в то же время, имеется местная ООС, ко­торая превращает весь выходной ка­скад в повторитель входного напря­жения.

Для работы схемы важно, чтобы напряжение отсечки выходных тран­зисторов было заметно ниже, чем на­пряжение отсечки транзисторов фа­зоинверторного каскада. Этого можно добиться, если в качестве выходных транзисторов VT1 и VT2 использовать полевые транзисторы типа «Logic lev­el» с напряжением отсечки менее 2 В, а в качестве транзисторов VT3 и VT4 — обычные полевые транзисторы с на­пряжением отсечки 3,5…4 В.

Можно конечно использовать транзисторы и с одинаковым напряжени­ем отсечки, однако в этом случае по­надобится организация дополнительного смещения для тран­зистора VT4.

Достоинство схемы, показанной на рис.4, — существенное повышение линейности работы выходного каска­да УМЗЧ. Происходит это по двум причинам:

  • во-первых, нелинейная емкость затвор-исток транзистора VT2 больше не является частью местной ООС, как это имело место в схеме, показанной на рис.2;
  • во-вторых, увеличенный коэффициент усиле­ния каскада фазоинвертора до замыкания петли ООС.

Чтобы сравнить работу схем, показанных на рис.2 и рис.4, достаточно просто в схеме рис.4 закоротить транзистор VT4 перемычкой, и схема рис.4 тут же превратиться в схему рис.2. При этом разница в звучание УМЗЧ будет более чем за­метная.

Рис. 4

Оказалось, что в схеме рис.4 ток покоя выход­ных транзисторов VT1 и VT2 можно уменьшить практически вдвое, по сравнению со схемой рис.2 — до 50…60 мА. Но даже в этом случае уро­вень КИИ в схеме рис.4 был ниже, и звучала она заметно лучше.

Выходной каскад УМЗЧ.

На рис.5 показана полная схема выходного кас­када УМЗЧ, построенного на основании схемы рис.4.

Рис. 5

Основные характеристики этого УМЗЧ:

  1. Выходная мощность (на нагрузке 4 Ом) 70 Вт.
  2. Рабочий диапазон частот (при неравномер­ности 1 дБ) 3 Гц — 50000 Гц.
  3. Коэффициент нелинейных искажений (в ди­апазоне 20 Гц — 20 кГц), менее 0,05%.
  4. Разделение каналов, более 60 дБ.
  5. Отношение сигнал / шум, более 100 дБ.

УМЗЧ обеспечивает выходную мощность 40 Вт на нагрузке 8 Ом при напряжении питания ±35 В.

Выходной каскад УМЗЧ выполнен на мощных n-канальных транзисторах HUF76639 типа Logic Level, которые имеют следующие основные параметры:

  1. Напряжение пробоя сток-исток 100 В.
  2. Предельный ток затвора транзистора 50 А.
  3. Сопротивление сток-исток во включенном состоянии (при токе 10А) 0,027 Ом.
  4. Напряжение отсечки, не более 3 В.
  5. Емкость затвор-исток (при напряжении 25 В) 2400 пФ.
  6. Максимальная рассеиваемая мощность 180 Вт.
  7. Предельная температура 150°С.

Ток покоя выходных транзисторов VT5 и VT6 контролируют на резисторе R16 номиналом 0,47 Ом. Ток покоя должен составлять около 70 мА, и его выставляют подстроечным резистором R24. При этом напряжение на R16 между контрольны­ми точками В1 и В2 должно составлять 33 мВ.

Интересное свойство УМЗЧ, показанного на рис.5, — это симметричное ограничение по току выходного сигнала. При использовании в качест­ве выходных транзисторов VT5 и VT6 HUF76639 оно составляет 30…35А пикового значения, что замет­но меньше максимального тока для данного типа транзисторов. Для достижения этого в схеме уста­новлены резисторы R16 и R17, которые обеспечи­вают защиту УМЗЧ при КЗ на его выходе, при этом минимально влияя на его работу. При отсутствии этих резисторов при КЗ нагрузки возможно само­возбуждении УМЗЧ. При этом возникала кратко­временная перегрузка транзистора VT6 по напря­жению на затворе, этакая «игла» напряжения, которая приводит к выходу из строя транзисторов VT5и VT6.

Наличие в схеме резисторов R16 и R17 устра­няет возможность выхода из строя VT5 и VT6, да­же при относительно длительном КЗ (при котором сгорали предохранители в выпрямителях источни­ка питания УМЗЧ).

При этом R16 и R17 берут на себя основную мощность теплового удара при КЗ. Поэтому они должны быть с мощностью не менее 6 Вт и повы­шенной теплостойкости.

В выходном каскаде УМЗЧ используется общая обратная связь с точки соединения транзисторов

VT5 и VT6 на вход усилителя. Но выходной каскад (рис.5) неплохо работает и без ОООС. При этом он имеет низкое выходное сопротивлением (око­ло 0,1 Ом) и КНИ примерно 0,2% на нагрузке 8 0м при токе покоя в 100 мА. При увеличении тока по­коя КНИ резко уменьшается.

Никакой асимметрии выходного сопротивления плеч на VT5 и VT6 (хотя один из них включён по схе­ме ОС, а второй — ОИ) в УМЗЧ нет из-за наличия местной ООС. Поскольку схема рис.5 хорошо ра­ботает сама по себе, её параметры ещё более улучшаются при охвате всего УМЗЧ общей ООС — ведь такая глубокая ООС ей не нужна для достиже­ния малого КНИ и низкого выходного сопротивле­ния. Без общей ООС в выходном каскаде КНИ на­чинает расти примерно с частоты 4…5 кГц.

Благодаря тому, что выходные транзисторы уп­равляются точно противофазными напряжениями на затворах, этот двухтактный каскад может быть по желанию пользователя смещен в класс работы В, АВ или даже в почти чистый класс А. Если исполь­зовать эффективный радиатор и понизить напря­жение питания до 20…24 В, то можно ещё больше увеличить ток покоя выходных транзисторов VT5 и VT6 и перевести схему из работы в классе АВ го­раздо ближе к работе в классе А. При этом КНИ вы­ходного каскада (без общей ООС) может соста­вить 0,05%.

Скорость нарастания выходного напряжения для данного выходного каскада УМЗЧ составляет около 35 В/мкс, что обеспечивает полосу полной мощности 200 кГц.

Диод D8 защищает р-канальный транзистор VT2 от положительного напряжения затвор-исток.

Диоды D6, D7 защищают выходные транзисто­ры VT5 и VT6. Конечно, диод — элемент нелиней­ный, и его наличие в звуковом тракте крайне не­желательно. В данном случае нелинейность диодов влияет на работу схемы крайне незначи­тельно. Дело в том, что D6, D7 включены по току дифференциально, то есть когда сопротивление у одного уменьшается, у второго оно растёт. Для звукового сигнала эти диоды включены последо­вательно, поскольку выходное сопротивление ге­нератора тока на транзисторах VT1, VT3 достаточ­но большое. Таким образом, в рабочем диапазоне токов диодов D6, D7 их нелинейность практичес­ки полностью компенсируется.

При настройке УМЗЧ также может потребовать­ся подбор в небольших пределах номинала R21 (150…330 Ом) для правильной температурной компенсации тока покоя. Если ток покоя с нагре­вом увеличивается, то сопротивление R21 надо уменьшить, и наоборот. Лучше сделать небольшой отрицательный наклон температурной характери­стики УМЗЧ, чтобы с прогревом теплоотвода ток покоя слегка уменьшался примерно на 10… 15% после работы на полной мощности в течение не­которого времени.

Конструкция и детали выходного каскада.

Выходные транзисторы VT5 и VT6 помещены на ра­диатор с тепловым сопротивлением не больше 1 …1,5°С/Ватт, закреплены посредством прижима свер­ху алюминиевым блоком 10х10х45мм. Изоляция тран­зисторов — только слюдяная с теплопроводящей смазкой с обеих сторон. В качестве изоляционной про­кладки нельзя использовать силиконовые проклад­ки — только слюду или, в крайнем случай, керамику обя­зательно с термопастой. Радиатор следует заземлить.

Для обеспечения термостабильности УМЗЧ транзистор VT1 следует разместить на общем ра­диаторе транзисторов VT5 и VT6, лучше всего пря­мо между ними. Номинал резистора R21 опреде­ляет крутизну температурной компенсации и может быть слегка изменен, при использовании другого типа выходных транзисторов.

В качестве R24 следует использовать много­оборотный подстроенный резистор, например, ти­па СП-38а.

Индуктивность L1 представляет собой отрезок провода сечением 0,5..0,75 мм2 и длиной 15 см между точкой соединения транзисторов VT5 и VT6 и выходными клеммами усилителя. Этого обычно хватает для обеспечения стабильности на ёмкост­ной нагрузке.

Без этой небольшой индуктивности выходной каскад может возбуждаться даже при работе на от­носительно небольшую емкостную нагрузку 5000… 10000 пФ. Надо проверить стабильность работы УМЗЧ при входном прямоугольном сигнале с частотой 1 кГц с емкостью нагрузки от 5000 пФ до 1…2 мкФ. Лучше всего в качестве L1 R30 ис­пользовать резистор 1 Ом 3 Вт с намотанными на него 10 витками провода ПЭВ или ПЭЛ диаметром 1 мм. Это в целом обеспечит хорошую стабиль­ность работы УМЗЧ на реактивную нагрузку.

Выходные транзисторы VT5 и VT6 можно заме­нить HUF76633P3, но при этом выходная мощность УМЗЧ уменьшится до 30 Вт. Другие типы транзи­сторов лучше не устанавливать. Дело в том, что схема УМЗЧ оптимизирована для того, чтобы при КЗ в нагрузке сгорали предохранители на 3 А в вы­прямителях источника питания УМЗЧ, без по­вреждения выходных транзисторов. Поэтому при использовании в качестве VT5 и VT6 других мощ­ных n-канальных Logic level транзисторов они мо­гут быть повреждены при КЗ нагрузки.

Кроме того, применение Logic level транзисто­ров другого типа, например, IRFP15QN потребует заметной переработки схемы, поскольку они име­ют крутизну в 2-3 раза меньше, чем транзисторы HUF76639.

В качестве VT2 VT4 в предвыходном каскаде можно использовать p-канальные транзисторы ZVP2110 или ZVP2120. В самом крайнем случае — IRF9610 вместо ZVP3310.

Транзистор VT3 типа ВС640 можно заменить транзистором типа BD140 (производства компа­нии «Филипс»).

Подготовил: Валерий Костырко, г. Воронеж

Источник: журнал Радиоаматор №9, 2015

Схема предварительного гитарного усилителя на полевых транзисторах.

Эффекты distortion, overdrive и канал чистый звук с радикально ламповым
звучанием.

Как ни крути, но классические модели гитарных ламповых усилителей, по мнению значительной части профессиональной публики — до сих пор являются эталоном звучания. В отличие от транзисторных (solid state) устройств, они дают наиболее качественный и «тёплый» гитарный звук и представляют собой один из тех редких случаев, когда современные технологии так и не смогли превзойти безупречную классику жанра.
Причём, в серьёзных моделях усилителей и комбиков предусмотрен весьма немалый запас усиления, что позволяет получать перегруз в лучших традициях лампового звучания без использования внешних металлоконструкций типа: Overdrive и Distortion.
Что касается недостатков, то они понятны и ёжику — это высокая цена и недетские массогабариты.
А можно ли заполучить подобный «ламповый» гитарный звук от полупроводникового устройства?
Можно, но для это надо сильно постараться, и достоверно понять: а за счёт чего, собственно, лампа в гитарном усилителе звучит «по ламповому»?
По большому счёту — статья, посвящённая схеме легенды лампового звука «Marshall JCM900», опубликованная нами (с подробным описанием и диаграммами) на странице , и имела главную цель — ознакомить заинтересованную аудиторию с процессом формирования динамических процессов изделия как на чистом звуке, так и в режимах distortion/overdrive. Поэтому, поимев на странице по ссылке некоторую долю познаний, можно наморщить мозг и озвучить предварительные соображения:
1. Вольт-амперные характеристики вакуумных приборов играют значительную, но не принципиальную роль в формировании спектральной составляющей исходящего звука. Непринципиальную — ввиду того, что те же полевые транзисторы имеют достаточно близкие ВАХ и умеют выдавать чистый звук, спектрально приближённый к ламповому.
2. А вот, огромный динамический диапазон ламповых каскадов, присущий им за счёт высоких напряжений анодного напряжения — это собака, зарытая в сути первопричины пресловутого лампового звучания гитарного усилителя. И особенно это проявляется в режимах перегруза distortion/overdrive!
О чём это я?
А о том, что если мы вдумаемся в схему, приведённую по ссылке, то увидим, что первый каскад — это линейный усилитель, третий — тоже, а четвёртый — и вовсе повторитель напряжения. Т.е. всё формирование перегруза происходит во втором каскаде и диодном ограничителе, выполненном по достаточно нетрадиционной схеме.
А если ещё там же пройтись по диаграммам выходного сигнала, то можно отчётливо увидеть, что практически при любых положениях регуляторов усиления — ограничение сигнала происходит в достаточно мягкой форме, кроме, пожалуй, самых крайних положений, что на практике приводит к появлению некоторого количества песка в звучании инструмента.
Переходим к сути задачи:
Схема транзисторного аналога лампового гитарного усилителя должна быть выполнена на полевиках, являющихся твердотельными аналогами вакуумных приборов.
Напряжение питания усилителя должно быть максимально высоким.
А поскольку увеличить его до 250…300 В нам едва ли удастся — придётся увеличивать количество усилительных каскадов, причём ограничение сигнала в каждом из них должно происходить в предельно мягкой форме.
Итак, подведём итоги! Главной целью сегодняшнего мероприятия является получение динамических характеристик нашего усилителя, максимально приближенных к ламповым аналогам, при бережном сохранении форм АЧХ, графики которых также были приведены на странице по вышеуказанной ссылке.
А понадобится нам для этого:
– голова с идеей — 1 шт,
– ухо без признаков заложенности — минимум 1 шт,
– гитарка, желательно со струнами — 1 шт,
– руки парные из правильного места — ровно две.
Разные деталюшки…. Ну и схема электрическая принципиальная — также окажется в хозяйстве совсем не лишней.

Рис. 1
Схема выполнена на полевых транзисторах 2SK117 с нормированным коэффициентом шума, что обеспечивает ей отличные шумовые характеристики.
Первый каскад (Т1) представляет собой усилитель, выполненный по схеме с общим истоком. В его функции входит не только усиление входного сигнала на 18…19 дБ, но и некоторое обогащение его спектра частотами чётных (в основном 2-ой) гармоник, что особенно ощутимо при звучании чистой (неперегруженной) гитары, либо при низком уровне перегруза.
Интегрирующая цепочка R4, С4 предотвращает пролезание и последующее усиление радиочастотных помех.
Далее сигнал поступает на истоковый повторитель (Т2), к выходу которого подключён канал чистого звука, а так же переменный резистор R9, являющийся регулятором уровня усиления канала перегруза.
Диодный ограничитель (D1-D4) совместно с резисторами R11-R13 осуществляет очень мягкое ограничение поступающего на него сигнала, фиксируя его максимальную амплитуду на уровне ~ 2 В.
Следующие два одинаковых каскада на транзисторах Т3, Т5 с такими же диодными ограничителями на выходе имеют усиление по напряжению ~ по 20…21 дБ каждый.
Помимо прочего, сток транзистора Т5 является выходом канала с низким уровнем перегруза, который условно можно назвать — «overdrive».
Ну и последний каскад, замыкающий процесс шлифовки гитарного звука, выполнен на транзисторе Т6. Он усиливает сигнал, поступающий с последнего диодного ограничителя, и посредством мягкого однотактного ограничения подводит черту под динамической и частотной обработкой сигнала.
Кстати, нелишне будет отметить, что за форму АЧХ усилителя отвечают, в той или иной степени, практически все неэлектролитические конденсаторы, приведённые на схеме.
Переключателями S1 и S3 осуществляется корректировка частотной характеристики усилителя по аналогии с маршаловским агрегатом, но, в отличие от него, не исключена возможность производить эти манипуляции при любом уровне усиления.
Истоковый повторитель (Т4) собирает все сигналы, поступающие с переключателей S2 и S4 режимов усиления сигнала, и передаёт их на трёхполосный регулятор тембра, выполненный в строгом соответствии со схемой, находящейся в чреве усилителя «Marshall JCM900».
С описанием работы схемы — пожалуй, всё. А смотреть диаграммы выходных напряжений, графики АЧХ, а также описывать процесс настройки схемы будем уже на следующей странице.

Привет, коллеги-гитаристы! Электроника уже давно стала важной частью мира музыкальных инструментов, в том числе и гитар! Это различные эффекты для обработки звука, концертная и студийная аппаратура и так далее…

Для расширения звуковых возможностей гитары применяется и, так называемая, активная электроника. Прямо в корпусе инструмента размещают компактные предусилители, бустеры, эквалайзеры и различные эффекты. Электроника может быть сразу встроена в гитару на заводе, либо куплена отдельно. И, конечно же, есть гитаристы, которые дружат с паяльником и мастерят платы сами.

Я тоже люблю иногда чего-нибудь спаять и хочу вам показать мою экспериментальную сборку предусилителя на полевом транзисторе. Преамп в моей гитаре поселился уже давно и его влияние на звук мне, в общем, понравилось. Думаю пришла пора поделиться результатами и с вами.

Итак, мой подопытный инструмент — бюджетная гитара «Джексон», купленная на Ибэе в 12-м году в США за 12 тыс. (это с доставкой 3 тыс.!). В России она стоила тогда около 20 тыс. Это модель Dinky JS32R и в плане звука гитара ничего особенного не представляет. Её корпус сделан из индийского кедра, сборка из тех же краёв. Такие гитары зовут ещё «индусами».

Ну а теперь рассмотрим сам преамп. Автор схемы J. Donald Tillman. Ссылка на его статью — A Discrete FET Guitar Preamp. Схема, по сути, очень простая:

Тразистора J201 у меня в наличии не было и я, по ситуации, использовал отечественный аналог КП303А. В крайнем случае можно использовать литеры Б, Ж и И. На их параметры можно взглянуть в этой таблице:

Вот что говорит о преампе сам

  • Звук отличный
  • Не люблю звук операционных усилителей, а звук полевого транзистора ближе к звучанию ламп
  • Питание от 9-вольтовой батареии, даже севшей до 8 В
  • Очень высокое входное сопротивление — 3 МОм. 1 МОм минимальное для гитарных устройств.
  • Среднее выходное сопротивление 6 кОм.
  • Усиление 3 дБ, больше не надо
  • Малошумный
  • Изящный перегруз.

Схема подключения очень проста. Сигнал со звукоснимателей поступает на коммутатор, а уже с него на преамп. С преампа усиленный сигнал через потенциометр поступает на гнездо, далее через гитарный кабель куда вам угодно.
Гнездо для джека используется 3-контактное. Это решение позволяет подавать питание на преамп только при подключенном кабеле. Батарейки хватит надолго — минимум на несколько месяцев. Главное — не забывать вынимать кабель из гитары!
На фото видно, как был встроен преамп. Плату я припаял прямо к ножкам потенциометра. Также внутри хватило места и для гнезда для батарейки. Регулятор тона я вообще убрал, так как не пользуюсь им.

А сейчас послушаем сэмплы. Я использовал цифровую педаль Digitech Distortion factory DF-7 в режиме эмуляции популярной педали Boss metal Zone MT2. В педали был задействован встроенный спикерсимулятор и далее сигнал передавался в линейный вход звуковой карты компьютера.
Все крутилки на примочке были посередине. В обработке звука на компьютере была использована лишь нормализация уровня. Начинаем!

Чистый звук. Арпеджио (бридж, бридж-нек, нек)

На чистом звуке с преампом арпедижо звучат явно повыразительней. Без преампа — глухо!

Чистый звук. Ритм (бридж, бридж-нек, нек)

Ритм на чистом звуке с преампом также звучит заметно ярче, но уже чуствуется лёгкий перегруз!

Distortion. Ритм

http://artistalker.ru/wp-content/uploads/onboard-preamp-dlya-elektrogitary-na-polevom-tranzistore/dist_rhytm_bridge.mp3

С дисторшном явной разницы нет. С преампом, мне кажется, стало чуть поменьше нижней середины и низких частот.

Distortion. Гамма

http://artistalker.ru/wp-content/uploads/onboard-preamp-dlya-elektrogitary-na-polevom-tranzistore/dist_gamma.mp3

То же самое, с преампом чуть поменьше нижней середины и низких частот.

Distortion. Тэппинг

http://artistalker.ru/wp-content/uploads/onboard-preamp-dlya-elektrogitary-na-polevom-tranzistore/dist_tapping.mp3

А вот на тэппинге влияние преампа чувствуется получше, звук становится немного повыразительней!

Distortion. Шред:)

http://artistalker.ru/wp-content/uploads/onboard-preamp-dlya-elektrogitary-na-polevom-tranzistore/dist_shred.mp3

На переменном штрихе результат оказался вовсе странным. Даже при моём корявом звукоизвлечении слышно, что с преампом звук становится наоборот поглуше! Странно, но факт!

Итоги

В общем, на мой взгляд, преамп пусть немного, но всё же улучшил звучание гитары — она заиграла повыразительней на чистом звуке! На дисторшне особой разницы нет, а на шреддинге звук стал даже чуть глуше.

Если вы решите сделать это устройство, то прилагаю небольшой архив — . В нём макет платы в формате SprintLayout5 и всякие дополнительные материалы. Насчёт рекомендации к использованию — попробуйте, хуже не будет! Желаю вам хорошего гитарного звука! До встречи!

Предусилитель корректор на полевых транзисторах

Предусилитель-корректор на транзисторах предназначен для работы в самых высококачественных стереофонических проигрывателях.

Основные параметры:

  • Коэффициент усиления на частоте 1кГц — 125;
  • Входное сопротивление, кОм — 47;
  • Входная емкость, пФ — 26;
  • Относительный уровень шумов (при входном сигнале 5 мВ на частоте 1 кГц со взвешивающим фильтром (АЧХ вида МЭК «А»), дБ — —82;
  • Перегрузочная способность, дБ — 26;
  • Коэффициент гармоник (при выходном напряжении 20 В), % — 0,03;
  • Миним альное сопротивление нагрузки, кОм 5;
  • Максимальная емкость нагрузки, пФ — 2000.

Принципиальная схема

Предусилитель (на рисунке показана схема одного из каналов) содержит два дифференциальных каскада (V1, V2 и V3, V4) и выходной каскад (V5) с источником тока (V6) в качестве нагрузки. Линейность предусилителя настолько высока, что при номинальном выходном напряжении уровень гармоник оказался ниже уровня его собственных шумов.

Амплитудно-частотная характеристика устройства формируется не тремя, как обычно, а четырьмя RC-цепями с постоянными времени 75, 318, 3180 и 7950 мкс. Эти постоянные реализованы соответственно цепями R12 C7, R12 R14 C9, R15 C9 и R14 C8.

Другая особенность предусилителя — в способе формирования АЧХ системы головка — усилитель в области высших частот. В данном случае применена апериодическая коррекция с помощью цепи R13C7. Сопротивление резистора R13 выбирают в зависимости от индуктивности головки: R13 = 2,8 * 10^4 * Lг.

Для того чтобы АЧХ предусилителя не отличалась от требуемой более чем на 0,8 дБ, сопротивления резисторов R2—R4, R12—R15 и емкость конденсаторов С7-С9 не должны отличаться от указанных на схеме более чем на +/- 5 %. Все постоянные резисторы должны быть типа МЛТ (R22, R23 — МОН-0,5). Использовать резистор ВС и УЛМ нежелательно из-за повышенного уровня их собственных шумов.

Детали и из замена

Полевые транзисторы для первого каскада необходимо подобрать по напряжению отсечки (допустима разница до 0,5 В) и начальному току стока (токи могут различаться не более чем на 25 %).

Кроме указанных на схеме, в предусилителе можно использовать любые транзисторы серий КП302, К303, КП307 (V1, V2); КТ342 и КТ373 с индексами А, Б, Г (V3, V4); КТ203А, KT502F — КТ502Е, КТ361В — КТ361Е (V5) КТ601А, КТ503Г — КТ503Е, КТ315В — КТ315Е (V6). При использовании транзисторов серий КТ315 и КТ361 напряжение питания рекомендуется снизить до ± 20 В. Диоды V7, V8 — любые кремниевые маломощные. Для питания необходим источник е напряжением пульсаций не более 5 мВ.

Налаживание предусилителя

Налаживание предусилителя-корректора сводится к установке на коллекторах транзисторов V5, V6 нулевого напряжения (подстроечным резистором R5) и балансировке каналов подстроенными резисторами R8 и R8 (в другом канале).

Источник: Борноволоков Э. П., Фролов В. В. — Радиолюбительские схемы.

РАДИОпоиск

АНТОЛОГИЯ «ТРАНЗИСТОРНЫЕ УНЧ»
по материалам журналов «РАДИО» 1976-1989

Я не преследую цель создать некую библиотеку схем ТРАНЗИСТОРЫХ УНЧ. Моя задача — показать ТЕНДЕНЦИЮ.
Перелистав свою коллекцию журналов РАДИО (1955 -2013), я вознамерился показать, как с течением времени менялся интерес к данной теме, и как часто схемы транзисторных УНЧ появлялись на страницах журнала.
Хотелось бы отметить также, что схемы различных транзисторных УНЧ, которые кочуют из сайта в сайт (без указания первоисточника, зачастую выдаваемые за собственные гениальные схемные творения) произошли именно отсюда…

1976
№2, с.38, Широкополосный стереофонический усилитель

№4, с.56, Простой стереофонический усилитель
№5, с.34, Любительский стерео

№8, с.34, Четырёхканальный квадрафонический

1977
№1, с.53, Стереофонический усилитель

№6, с.51, Стереофонический электрофон
№9, с.35, Искажения в двухтактных усилителях НЧ (теория)
№10, с.42, Операционные усилители в усилителях мощности НЧ

1978
№1, с.54, УНЧ сельского радиолюбителя
№2, с.31, Универсальный предварительный усилитель НЧ
№3, с.40, Выходной каскад усилителя НЧ
№4, с.34, Многополосные регуляторы тембра (начало)
№5, с.39, Предварительный стереоусилитель
№5, с.40, Многополосные регуляторы тембра (окончание)
№5, с.42, Два усилителя для «Ноты»

№6, с.45, Высококачественный усилитель мощности
№8, с.33, О динамических искажениях в транзисторных усилителях НЧ
№8, с.45, Мощный усилитель НЧ

№11, с.36, Усилитель мощности с малыми динамическими искажениями
№12, с.34, Стереофонический усилитель

1979
№2, с.38, Звуковой усилитель мощности
№3, с.29, Усилитель с высокими динамическими характеристиками
№4, с.42, Простой усилитель НЧ
№4, с.52, Усилитель НЧ (для транзисторного приёмника)

№6, с.43, Широкополосный усилитель мощности
№7, с.32, Стереофонический усилитель

№8, с.34, Усилитель с отрицательным выходным сопротивлением
№8, с.50, Стереофонический усилитель НЧ
№11, с.36, О способах включения нагрузки усилителей НЧ
№12, с.40, Снижение искажений в усилителях мощности
№12, с.52, Усилитель мощности НЧ

1980
№1, с.44, Усилитель с двойным дифференциальным входом
№3, с.47, Усилитель НЧ с синфазным стабилизатором тока
№4, с.37, Блок регулировки громкости и тембра
№4, с.40, Приставка к осциллографу для оценки качества усилителей
№7, с.36, Устойчивость усилителя и естественность звучания
№8, с.50, Усилитель НЧ
№11, с.27, Усилитель мощности

№5-6, с.53, «Олимп»

№7-8, с.34, Термостабильный усилитель
№9, с.42, Усилитель с ЭМОС по ускорению диффузора
№10, с.34, Симметричный усилитель мощности
№12, с.36, Феномен «транзисторного» звучания

1982
№1, с.52, Усилитель мощности с электронной защитой
№6, с.49, Усилитель НЧ для электрогитары
№8, с.31, Усилительный блок любительского радиокомплекса

1983
№1, с.49, Стереофонический усилитель НЧ (начало)
№2, с.38, Стереофонический усилитель НЧ (окончание)
№2, с.54, Полевые транзисторы в выходном каскаде усилителя мощности
№3, с.44, Индикатор выходной мощности
№4, с.36, Высококачественный усилитель мощности

№7, с.51, Усилитель НЧ с малыми искажениями
№10, с.44, Высоколинейный термостабильный усилитель НЧ
№11, с.36, МДП-транзисторы в усилителях НЧ

1985
№1, с.26, Усилитель мощности ЗЧ
№3, с.34, Мощный усилитель ЗЧ с импульсным питанием
№4, с.32, Высококачественный предварительный усилитель
№5, с.35, Схемотехника усилителей мощности ЗЧ (начало)
№6, с.25, Схемотехника усилителей мощности ЗЧ (окончание)
№8, с.25, Параллельный усилитель в УМЗЧ

№9, с.31, Качество и схемотехника УМЗЧ
№11, с.37, Нормирующий усилитель

1987
№2, с. 26, УМЗЧ с малыми нелинейными искажениями
№3, с. 33, Стабилизация тока покоя в усилителях мощности ЗЧ
№4, с. 28, Усилитель мощности ЗЧ
№6, с.39, Усилитель мощности с «плавающим» источником питания
№8, с. 32, Комбинированный индикатор выходной мощности усилителя ЗЧ
№9, с.34, Коммутационные искажения в усилителях мощности ЗЧ

1988
№3, с.43, Широкополосный УМЗЧ
№4, с.50, УМЗЧ с автоматической стабилизацией тока покоя выходных транзисторов
№6, с.55, УМЗЧ с нестандартным включением ОУ
№7, с.43, УМЗЧ для автомобильного радиокомплекса
№9, с.33, УМЗЧ с выходным каскадом на полевых транзисторах
№11, с.34, Индикатор выходной мощности УМЗЧ

1989
№1, с.44, Простой высококачественный УМЗЧ
№2, с. 46, УМЗЧ для бытового радиокомплекса
№6, с.55, УМЗЧ высокой верности
№9, с.64, УМЗЧ без общей ООС
№10, с.56, УМЗЧ с глубокой ООС
№11, с.86, УМЗЧ для автомобильной магнитолы
№12, с.52, УМЗЧ с компенсацией нелинейности амплитудной характеристики

Простая схема предусилитель для унч. Принципиальная схема, чертеж печатной платы предварительного усилителя NATALY

Предусилитель для микрофона , он же предварительный усилитель или усилитель для микрофона — это такой вид усилителя, назначение которого — усиление слабого сигнала до величины линейного уровня (порядка 0,5-1,5 вольт), то есть до приемлемой величины, при которой работают обычные усилители звуковой мощности.

Входным источником акустических сигналов для предварительного усилителя обычно являются звукосниматели виниловых пластинок, микрофоны, звукосниматели различных музыкальных инструментов. Ниже приводится три схемы микрофонных усилителей на транзисторах, а так же вариант усилителя микрофона на микросхеме 4558. Все их без труда можно собрать своими руками.

Схема простого микрофонного предусилителя на одном транзисторе

Данная схема микрофонного предусилителя работает как с динамическим, так и с электретными микрофонами.

Динамические микрофоны по конструкции схожи с громкоговорителями. Акустическая волна оказывает воздействие на мембрану и на прикрепленную к ней акустическую катушку. В момент колебания мембраны, в катушке, находящейся под воздействием магнитного поля постоянного магнита, образуется электрический ток.

Работа электретных микрофонов базируется на возможности определенных видов материалов с повышенной диэлектрической проницаемостью (электретов) менять поверхностный заряд под воздействием акустической волны. Данный тип микрофонов отличается от динамического высоким входным сопротивлением.

При использовании электретного микрофона, для смещения напряжения на микрофоне, необходимо установить сопротивление R1

микрофонный усилитель на одном транзисторе

Поскольку эта схема микрофонного усилителя для динамического микрофона, то при использовании электродинамического микрофона его сопротивление должно быть в диапазоне от 200 до 600 Ом. При этом C1 необходимо поставить до 10 мкф. Если это будет электролитический конденсатор, то его плюсовой вывод необходимо подключить в сторону транзистора.

Питание осуществляется от батареи крона или же от стабилизированного источника питания. Хотя лучше от батареи, чтобы исключить шумы. можно заменить на отечественный . Конденсаторы электролитические на напряжение 16 вольт. Для предотвращения помех, подключать предусилитель к источнику сигнала и к входу усилителя необходимо экранированным проводом. Если необходимо дальнейшее мощное усиление звука, то можно собрать усилитель на микросхеме .

Микрофонный предварительный усилитель на 2-х транзисторах

Структура построения любого предусилителя очень сильно влияет на его шумовые характеристики. Если брать во внимание тот факт, что используемые в схеме предусилителя качественные радиодетали все равно в той или иной мере приводят к искажениям (шумам), то очевидно, что единственный выход получить более-менее качественный микрофонный усилитель — это сократить число радиокомпонентов схемы. Примером может послужить следующая схема двухкаскадного предварительного .

С данном варианте количество разделительных конденсаторов сведено к минимуму, поскольку транзисторы включены по схеме с общим эмиттером. Так же между каскадами существует непосредственная связь. Для стабилизации режима работы схемы, при изменении внешней температуры и напряжения питания, в схему добавлена ООС по постоянному току.

Предусилитель для электретного микрофона на трех транзисторах

Это еще один вариант . Особенность данной схемы усилителя для микрофона в том, что подача питания на схему предусилителя осуществляется по тому же проводнику (фантомное питание) по которому идет входной сигнал.

Данный микрофонный предусилитель предназначен для совместной работы с , например, МКЭ-3. Напряжение питания на микрофон идет через сопротивление R1. Аудио сигнал с выхода микрофона поступает на базу VT1 через конденсатор С1. , состоящим из сопротивлений R2, R3 создается необходимое смещение на базе VT1 (примерно 0,6 В). Усиленный сигнал с резистора R5, выступающий в роли нагрузки, идет на базу VT2 который является частью эмиттерного повторителя на VT2 и VT3.

Возле разъема на выходе, установлены дополнительно два элемента: нагрузочное сопротивление R6, через которое идет питание, и разделительный конденсатор СЗ, отделяющий выходной аудио сигнал от напряжения питания.

Предварительный микрофонный усилитель на микросхеме 4558

Операционный усилитель 4558 выпускается фирмой ROHM. Он характеризуется как маломощный и малошумящий усилитель. Применяется данная микросхема в усилителе микрофона, звуковых усилителях, активных фильтрах, генераторах управляемых напряжением. Микросхема 4558 имеет внутреннюю фазовую компенсацию, увеличенный порог входного напряжения, большой коэффициент усиления и малый уровень шума. Также у данного операционного усилителя имеется защита от короткого замыкания.

(140,5 Kb, скачано: 290)

предусилитель микрофона на 4558

Это хороший вариант для постройки микрофонного предусилителя на микросхеме. Схема предусилителя для микрофона отличается высоким качеством усиления, простотой и не требует большой обвязки. Этот микрофонный усилитель для динамического микрофона также хорошо работает и с электретными микрофонами.

При безошибочной сборке, схема не требует настройки и начинает работать сразу. Наибольший ток потребления – 9 мА, а в состоянии покоя потребляемый ток в районе 3 мА.

Часть 1 . Блоки УКВ аппаратов. Статья 2 . Блоки усилителей НЧ.

Усилители мощности ЗЧ.
Любительские конструкции различнейших вариантов усилителей мощности НЧ можно найти в любом радиолюбительском справочнике и журналах, таких как «Радио», «Радиомир. KB и УКВ», «Радиолюбитель», «Радиоконструктор» и многих других. Так что у радиолюбителя имеется, огромный выбор УНЧ, на любой вкус. , В этой статье я приведу описания тех конструкций, которые сам опробовал и использовал на практике.

Выбирая схему усилителя следует помнить, что для любительских радиостанций совсем не нужны высококачественные УНЧ с огромной полосой пропускания звуковых частот. Для связного приемника необходимая полоса пропускания сигналов НЧ лежит в пределах 300 … 3000 Герц. Этой полосы вполне достаточно и для качественного приема сигналов человеческими органами слуха и для работы аппаратов цифровой связи.

Все частоты, находящиеся выше или ниже указанного диапазона принесут только вред. Поэтому на входе усилителя непременно должен быть установлен фильтр нижних частот. Кроме того, погасить усиление высоких частот можно подбором корректирующих конденсаторов и резисторов. Можно значительно увеличить чувствительность УНЧ увеличением сопротивления R2 до 120 Ом.

УНЧ на м/сх К174УН7
Микросхемы серии К174 предоставляют радиолюбителю большой выбор различных радиоконструкций. К174УН7 представляет собой усилитель НЧ со следующими параметрами:

Напряжение питания 15 В;

Номинальная выходная мощность 4,5 Вт;

Коэффициент гармоник для выходной мощности 0,05 Вт — 2%, для 4,5 Вт — 10%;

Полоса частот от 40 до 20000 Гц;

Входное сопротивление 50 кОм;

Сопротивление нагрузки 4 Ома;

Коэффициент усиления 40 дБ;

Максимальное амплитудное значение тока в нагрузке 1,75 А;

Максимальное амплитудное значение выходного напряжения 2 В;

Допустимое постоянное напряжение на выводе 7 составляет 15 В;

Допустимое постоянное напряжение на выводе 8 от минус 0,3 до 2 В;

Недопустимо подавать внешнее постоянное напряжение на выводы 5, 6, 12.
Микросхему необходимо ставить на теплоотвод — охладитель.

На рис. 2.1 приведена принципиальная схема УНЧ, выполненного на микросхеме К174УН7.

Этот усилитель имеет широкую полосу пропускания звуковых частот. Поэтому на выходе усилителя непременно должен быть установлен фильтр нижних частот. Кроме того, погасить усиление высоких частот модно подбором корректирующих конденсаторов и резисторов. Можно значительно повысить чувствительность УНЧ увеличением сопротивления R2 до 120 Ом.

Усилитель практически не требует никакой наладки. Впоследствии, после полного изготовления всего радиоприемника с этим УНЧ, можно будет попробовать изменить выходную частотную характеристику подбором величин корректирующих конденсаторов и резисторов (если это будет необходимо!).

В серии К174 есть и другие микросхемы усилителей НЧ, пригодные для связной техники.

УНЧ на транзисторах — вариант 1.
Для любителей работать с транзисторами старых марок привожу испытанную схему простого УНЧ на транзисторах, изображенную на рис. 2.2.

Чувствительность усилителя по входу составляет примерно 0,25В, так что для его нормальной работы в составе радиоприемника требуется между детектором и этим усилителем установить еще один усилитель НЧ, так называемый «предварительный УНЧ», который должен усиливать сигналы, полученные от детектора, до величины 0,25В.
Выходная мощность усилителя примерно 2 Вт, коэффициент гармоник не более 3%, на выходе должен быть громкоговоритель с сопротивлением катушки 5 … 8 Ом.

Стабилизация режима выходного каскада осуществляется с помощью диода VD1. Диод следует подбирать по критерию получения как можно меньших искажений при малом сигнале на входе. Можно пробовать диоды Д18, Д310 и другие, при этом следует помнить непременное требование: замену диода можно проводить только при выключенном питании.

Усилитель может работать и при более низком напряжении питания. При напряжении питания 9В и сопротивлении громкоговорителя 8 Ом выходная мощность составит примерно 1 Вт, а при напряжении питания 6В — примерно 0.5 Вт

Настройка осуществляется подбором резисторов R1 и R9 таким образом, чтобы величина напряжения на положительном электроде конденсатора С4 была равна половине напряжения питания. При этом величина тока в режиме молчания через транзисторы VT4 и VT5 должна быть в пределах 2…3 мА.

По аналогичной схеме можно сделать УНЧ и на современных транзисторах.

УНЧ на транзисторах — вариант 2.
На рис. 2.3 приведена принципиальная схема еще одного варианта транзисторного УНЧ. Эта схема аналогична схеме УНЧ в разработанной Я. С. Лаповком конструкции базового приемника KB радиостанции. В данной схеме, по сравнению с аналогом, применены другие транзисторы.

Настройка УНЧ заключается в подборе сопротивления R1 до такой величины, чтобы на положительном электроде конденсатора С4 (в общей точке для транзисторов VT3 и VT4) величина напряжения составляла половину от напряжения питания. Также, как и предыдущий УНЧ, этот усилитель нуждается в дополнительном (предварительном) усилителе.

Предварительные усилители НЧ. Предварительный усилитель на транзисторах.

В бытовых радиоприемниках предварительные НЧ усилители обычно дополняют функциями коррекции звуковых частот. В радиоприемниках для связи необходимости в такой коррекции нет, т.к. диапазон воспроизводимых УНЧ связного приемника не должен выходить за пределы диапазона 300 … 3000 Гц. Поэтому схемы предварительных усилителей могут быть очень простыми. На рис. 2.4 изображена схема простого, но достаточно эффективного в работе транзисторного предварительного усилителя НЧ. Схема представлена в двух исполнениях, которые различаются только структурой примененных транзисторов.

Настройка УНЧ заключается в подборе сопротивления R2 до величины, при которой в режиме молчания величина падения напряжения на резисторе R4 составит ровно половину от величины напряжения питания. Иными словами, напряжение на коллекторе транзистора VT2 должно быть равно половине напряжения питания.

Предварительные УНЧ на микросхемах.
Как правило, разработчик нового радиоприемника стремится так распределить суммарное усиление между его каскадами, чтобы наибольшая доля усиления приходилась на усилители ПЧ и УНЧ. Поэтому понятно стремление радиоконструктора создать УНЧ с максимально возможным усилением. Решить подобную задачу можно с помощью предусилителей НЧ, выполненных на операционных усилителях. На рис. 2.5 изображена одна из возможных схем предусилителя НЧ на операционном усилителе типа К140УД6. Можно использовать также К140УД7, К140УД12 и другие.

Коэффициент усиления изображенного на рис. 2.5 усилителя равен отношению суммы величин (R5+R6) к величине сопротивления резистора R1. Например, если суммарная величина сопротивлений R5 и R6 будет составлять 50 Ом, а величина сопротивления резистора R1 будет равна 10 Ом, то коэффициент усиления будет равен 10.

Настройка усилителя заключается в подборе наиболее удобной величины сопротивления переменного резистора R5. Собственно говоря, переменный резистор здесь не нужен. Подбор можно осуществлять различными постоянными резисторами.

На рис. 2.6 изображена схема предварительного усилителя на микросхеме К548УН1. Эта микросхема представляет собой два одинаковых малошумящих УНЧ.

Параметры усилителя зависят от глубины ООС, которая определяется соотношением сопротивлений резисторов R1 и R3. При значениях сопротивлений, указанных на схеме, усилитель характеризуется следующими параметрами:

Коэффициент усиления напряжения 100 (равен отношению сопротивлений R1/R3),

Входное сопротивление равно 300 кОм,

Выходное — не более 1 Ом,

Высшая рабочая частота не менее 100 кГц.,

Коэффициент гармоник на частоте 1 кГц при сопротивлении нагрузки 10 кОм не более 0,05 %,

Коэффициент шума (измеренный в полосе частот до 23 кГц при сопротивлении источника сигнала 10 кОм) не более 2.

Если повысить коэффициент усиления напряжения до 1000, наивысшая рабочая частота уменьшается примерно до 20 кГц. а коэффициент гармоник повышается до 0,1 %. Корректирующий конденсатор С, включают, если необходимо ограничить диапазон рабочих частот. Показанные в скобках выводы микросхемы относятся ко второму усилителю, расположенному в этом же корпусе.

Вариант комбинированного УНЧ
На рис. 2.7 изображена принципиальная электрическая схема усилителя НЧ, который включает в себя предварительный усилитель на операционном усилителе К140УД6 и усилитель мощности на 5 транзисторах. Особенностью транзисторного усилителя мощности является то, что этот усилитель предназначен для работы в режиме класса АВ, который характеризуется малыми линейными искажениями.

При указанных на схеме величинах радиодеталей. УНЧ обеспечивает выходную мощность порядка 1 Вт и имеет к.п.д. около 60%. Входное сопротивление — около 300 Ом, выходное — 10…20 Ом. Настройка транзисторного усилителя мощности осуществляется подбором сопротивления R8 до такой величины, при которой напряжение в точке соединения коллекторов транзисторов VT4 и VT5 станет равным (в режиме молчания) ровно половине напряжения питания.
Каскад на операционном усилителе особенностей не имеет.

Фильтры НЧ
Как уже было сказано при рассмотрении блок-схемы приемника, после детектирования нужно очистить полученный сигнал от присутствующих в нем побочных частот, т.е. необходима фильтрация сигнала. После детектирования в сигнале непременно будут как высокие (выше 3000 Гц), так и низкие (ниже 300 Гц) побочные результаты детектирования и различные наводки, например, с частотой 50 Гц от источника питания. Кстати, от источника питания при плохой фильтрации могут наводиться частоты и 100 Гц и 200 Гц — это более высокие гармоники от частоты электрической сети 50 Гц.

Фильтровать сигнал по ходу его преобразования в приемнике приходится несколько раз, но здесь рассматриваются схемы низкочастотных каскадов и рассмотрению подлежат именно конструкции полосовых НЧ фильтров.
Основная фильтрация сигнала после детектирования должна осуществляться фильтрами нижних частот (ФНЧ). Международный стандарт устанавливает верхнюю граничную частоту телефонного канала 3400 Гц, что обеспечивает хорошую разборчивость речи. Улучшая помехоустойчивость и селективность приемников, любители довольствуются более узкой полосой с верхней граничной частотой 2700…3000 Гц.

Простейший ФНЧ, устанавливаемый на выходе детектора или последнего (телеграфного) смесителя приемника или трансивера, целесообразно выполнить на LC элементах по так называемой П-образной схеме рис. 2.8.

По моему мнению, это самый эффективный из подобных фильтров и может с успехом применяться даже в приемниках прямого преобразования. Его потери пренебрежимо малы, селективность составляет 23 дБ на удвоенной частоте сигнала среза, и 32 дБ на утроенной частоте этого сигнала. Для больших расстроек она равна 60 дБ на декаду (десятикратное увеличение частоты). Соотношения между элементами фильтра определяются формулами: С1 = С2 = 1/(2*π*fc*R), L1 = R/(π*fc), где fc — частота среза, п-число пи=3,14. Сопротивлением R1 обычно служит входное сопротивление УНЧ. Значения L и С достаточно выдержать с точностью 10%, поэтому настройки фильтр не требует.

В.Т.Поляков, автор книги «Радиовещательные ЧМ приемники с фазовой автоподстройкой», рекомендует создавать небольшой подъем в области верхних частот звукового спектра. Он считает, что такой подъем полезен для улучшения разборчивости, поэтому целесообразно рассчитывать фильтр на сопротивление в 1,5…2 раза меньше реального нагрузочного. Типовые значения элементов для fc = 3 кГц таковы: С1 = С2 = 0,05 мкФ, L1= 0,1 Гн, R = 1 …2 кОм.

Катушка наматывается на кольцевом магнитопроводе К16x8x4 из феррита 2000НМ и содержит 260 витков любого подходящего изолированного провода. Тороидальные катушки хороши тем, что мало подвержены посторонним магнитным наводкам и чаще всего не требуют экранировки.

Выполнить расчет любых элементов колебательного контура поможет вам программа INDUKTIW, которую можете взять в Интернете на сайте по адресу: http://r3xb-tga.narod.ru/ или http://r3xb.by.ru .

Индуктивностью фильтра может служить и одна из обмоток миниатюрного трансформатора от портативных преемников, лучше всего подходит первичная обмотка выходного трансформатора.
Фильтровать частоты ниже 300…400 Гц обычно нет необходимости — эту роль выполняют разделительные конденсаторы в УНЧ, емкость которых выбирается из условия С = 1/(2*п*fн*R), где fн — нижняя частота звукового спектра, R — входное сопротивление следующего за разделительным конденсатором каскада.

Если у вас в данный момент нет подходящей катушки индуктивности, можно сделать RC-фильтр, заменив катушку резистором на 300 … 800 Ом. Фильтрация будет несколько хуже, но работоспособность приемника сохранится. В некоторых случаях величину этого резистора можно увеличить до 3 кОм.

Вместо заключения.
В радиолюбительской практике применяется огромное количество самых разнообразных схем. Каждый из нас использует те схемы, которые для него более удобны по имеющемуся набору деталей, или по каким-то иным, только ему понятным причинам. В этом цикле статей я буду приводить те схемы, которые использую в своей практике. Кому-то они понравятся, кому-то нет. Мне совсем не думается, что выбранные мною схемы являются лучшими. Наверняка есть и более удобные схемы на современных радиокомпонентах. Ищите то, что вам будет по душе.

Статья о том, как можно своими руками собрать усилитель, который имеет звучание на уровне заводских, среднего ценового диапазона. Нижее будет описана сборка полного УНЧ, в состав которого входят предусилитель, усилитель мощности звука, индикатор, защита, два блока питания. Всё это собрано в корпусе от Радиотехники. Для увеличения электросхемы — клик.

Из множества различных схем те, что по моему личному мнению, являются оптимальными по соотношению цена/качество. Никаких изменений кроме описанных в оригинальные схемы не вносил, всё сделано так, как оно есть. Для питания усилителя мощности взял тороидальный трансформатор с двумя одинаковыми вторичными обмотками по 20 В мощностью около 100 Вт и прикрутил его болтом к металлической подложке на дне корпуса усилителя, предварительно просверлив в ней отверстие нужного диаметра. Рядом с этим трансом располагаем выпрямитель усилителя мощности. Собираем блок из 6 конденсаторов по 4700 мкФ х 50В, по 3 в плечо и шунтируем двумя плёночными конденсаторами по 1 мкФ. Предусилитель, индикатор, защита и коммутация будут работать от родного трансформатора.

Предусилитель на трёх ОУ NE5532 – звук отличный! Есть режим линейности АЧХ, коэффициента гормоник на данные опреционники в даташите я почему то не нашёл, но есть данные что 0,007 %. Плохо, что нет тонкомпенсации и её реализация возможна опять же со специальным резистором. Как раз этот темброблок и пойдёт в состав моего полного усилителя. Плату не нашёл, пришлось разрабатывать самому. Можно .

Усилитель мощности при напряжении +/- 27 Вольт и при подаче синусоиды частотой 1 кГц при 4-х омной нагрузке выдал 104 Ватта. Конечно, существует множество других схем усилителей мощности, но я выбрал эту, потому что она простая, дешёвая и качество звучания несравнимо лучше чем у .

Общий провод блока питания усилителя мощности с рамой корпуса непосредственно как предусилитель не соединять! Появляется низкочастотный гул, как раз поэтому проблема с питанием защиты так и осталась нерешённой, т.к. при присоединении общего провода защиты с общим проводом усилителя мощности также появляется небольшой гул. Поэтому схема защиты на данный момент функционирует только как схема задержки включения включения, в таком режиме никаких лишних шумов нет. В качестве катушки в усилителе мощности прекрасно подошла катушка от Холтона — родного мощника Радиотехники.

Испытания. Отличная детализация звука, хорошая стереопанорама. Что касается баса – тут тоже всё в порядке, он чёткий, но не жёсткий. Радиаторы предвыходных транзисторов тёплые, выходных – холодные, так и должно быть. Мощность 100 Ватт на 4 Ома, замерить коэффициент искажений возможности нет, однако думаю он небольшой.

Добрый день.

Хочу продолжить рассказ о ламповом предусилителе для гибридного усилителя.

Полная схема предусилителя:

Схема очень простая. Ничего выдумывать мы не стали. В основе, выбранный в прошлый раз, резистивный каскад. В нем нет ничего необычного.

В схему добавили активные фильтры на транзисторах VT1 и VT2. Они обеспечивают дополнительную очистку питания. Так как основная фильтрация будет выполняться внешним источником, то схемы фильтров упростили — сделали их одноступенчатыми.

Питать накал планируем от внешнего стабилизированного источника. Использование мощной фильтрации всех напряжений обеспечит отсутствие фона.

Пора собирать

С платой прототипа все как обычно: рисуем, печатаем, переводим, травим, сверлим и мелкой шкуркой зачищаем… После этого респиратор на лицо, баллончик с черной термостойкой краской в руки… красим плату в черный цвет. Так ее не будет видно в корпусе собранного усилителя.

Откладываем плату в сторону: пусть сохнет. Пора перетрясти коробки и подобрать детали. Часть компонентов новые, другие — выпаиваем из ранних прототипов (ну не пропадать же хорошим, практически новым компонентам?!).

Все готово к сборке, пора включать паяльник.

Паяльник нагрелся — паяем:

Примечание: паять удобнее, начиная с самых низкопрофильных компонентов и переходить к более высоким. Т.е. первыми паяем диоды, стабилитроны, потом резисторы, панельку под лампу, конденсаторы и т.д… Мы, конечно, нарушили эту последовательность и паяли так как придется:)

Установили конденсаторы. В данном проекте использованы отечественные К73-16. Хорошие конденсаторы. Мы проводили для них серию измерений спектров их нелинейности в разных режимах. Результаты порадовали. Об этом мы обязательно когда-нибудь напишем.

Запаиваем резисторы и прочую мелочь

Ставим панельку и электролитические конденсаторы.

Примечание: При пайке ламповой панельки в нее обязательно надо вставить лампу. Если этого не сделать, то после сборки могут возникнуть проблемы с установкой лампы. В некоторых (самых «тяжелых» случаях) можно даже цоколь лампы повредить.

Все детали на своих местах. Предусилитель готов.

Проверяем

Схема простая, и вероятность ошибки минимальна. Но проверить надо. Подключаем усилитель к источнику питания и включаем:

10 секунд — полет нормальный… 20… 30… все нормально: ничего не взорвалось и не задымилось. Накал спокойно светится, защиты тестового источника питания не срабатывают. Можно облегченно выдохнуть и проверить режимы: все отклонения в допустимых пределах для непрогретой лампы.

После 10-минутного прогрева все параметры установились и вышли к расчетным значениям. Рабочая точка выставлена.

Раз все хорошо, то можно продолжить. На вход подключаем источник тестового сигнала. На выход — резистор имитирующий входное сопротивление усилителя мощности. Включаем и промеряем все основные параметры каскада.

Все в пределах нормы. Искажения и коэффициент усиления совпали с тем, что было получено в предыдущей статье. Фона нет.

Вот и готов наш ламповый предусилитель. Пора переходить к созданию для него мощного выходного буфера на транзисторах. С тем же успехом его можно использовать и в чисто ламповой конструкции. Для этого понадобится сделать для него мощный ламповый выход.

Возможно имеет смысл сделать универсальный ламповый предусилитель (может быть в виде конструктора), для использования в ламповых и гибридных конструкциях?

С уважением, Константин М.

Предварительный усилитель (часть I)

В статье “Предварительный усилитель с претензией на Hi-End!” мы представили конструкцию Дугласа Селфа, которая обладала очень высокими характеристиками и богатым функционалом.

Но, судя по отзывам наших читателей, балансные входы и выходы, столь популярные в профессиональной аппаратуре, у радиолюбителей востребованы меньше. Да и регулятор тембра у аудиофилов не в почёте. Кроме того, Дуглас Селф пытался получить ультра низкие показатели шумов и искажений, используя доступную и дешёвую элементную базу. Из-за этого конструкция получилась относительно сложной.

Сегодня микросхемы нового поколения, которые обладают гораздо лучшими характеристиками, стали вполне доступны для радиолюбителей, что позволяет существенно упростить схему без ухудшения её параметров.

Представляем вам предварительный усилитель конструкции Питера Смита.

Дискретный или интегральный.

Изначально была идея сделать усилитель работающий в классе “А” на дискретных элементах, полагая что это лучший способ получить минимальные значения искажений и шумов. Однако, такая конструкция из-за большого количества элементов может оказаться сложной для повторения, да и по размерам она будет существенно больше, чем конструкции с применением операционных усилителей, а значит, будет более чувствительная к внешним шумам и помехам.

Типовые и популярные до сих пор операционные усилители NE5534 и LM833 тоже не подошли, так как на сегодняшний день их параметры не достаточно высокие.

Более современные, не дорогие и доступные ОУ серии Burr-Brown (Texas Instruments) OPA134 позволяют получить уровень искажений 0,00008% на частоте 1 кГц! Это более чем на порядок (в 25 раз) лучше параметров операционных усилителей упомянутых выше. Кстати, выходные каскады этих ОУ не работают в режиме класса А, несмотря на их отличную линейность. Документация от производителя не раскрывает секрет, как удалось достичь этих впечатляющих результатов.

Эти микросхемы и решено было использовать в конструкции.

Технические характеристики предварительного усилителя:

Внимание! Заявленные характеристики можно получить только при соблюдении всех рекомендаций авторов по выбору элементов, монтажу и конструктивных особенностей усилителя.

Можете сравнить характеристики этого предварительного усилителя с вариантом Дугласа Селфа.

Функционал.

Первая проблема при проектировании предварительного усилителя связана с коммутатором входов. Считается, что меньше искажений получается при использовании галетного переключателя. Но, если расположить переключатель на лицевой панели, то от входных разъёмов, установленных на задней панели усилителя, к переключателю будут идти длинные проводники, что ухудшит уровень шумов. Если переключатель расположить ближе к задней стенке усилителя, то потребуется механический удлинитель для переключения. Это усложнит конструкцию и сделает невозможным использование дистанционного управления.

Поэтому было решено в коммутаторе входов использовать качественные электро-механические реле. Если для каждого входа использовать отдельное реле, это даст минимальные перекрёстные искажения и шумы.

Мы также решили снабдить предварительный усилитель модулем усилителя для наушников. Обычно для прослушивания через наушники используют (основной) усилитель мощности. Но зачем задействовать мощный аппарат, если требуется всего несколько миллиВатт?

В нашей конструкции усилитель для наушников выполнен в виде отдельного модуля (устанавливается по желанию), а выход предварительного усилителя переключается на него с помощью реле.

Предусилитель состоит из двух идентичных каналов. На всех схемах будет представлен левый канал. Кроме того схема разделена на две секции: коммутатор входов и непосредственно сам усилитель.

Принципиальная схема коммутатора входов:

Увеличение по клику

В конструкции предусмотрено 5 входов RCA для подключения различных устройств. Они обозначены «CD», «DVD» и «TAPE» (разумеется можете обозвать их по-своему).
Шестой разъём (CON13) служит для прямой трансляции сигнала с выбранного входа. Эта функция подсмотрена в промышленных аппаратах и была актуальна в эпоху магнитной записи. Может кому-то и сегодня пригодится.

Реле коммутатора управляются транзисторами и запитаны от источника с напряжением +5В. Общий провод (земля) этого источника не связан с общим проводом источника питания самого предварительно усилителя (на схеме они имеют разные обозначения). Это сделано для снижения помех при коммутации.

Реле срабатывают при подключении базы управляющего транзистора к общему проводу. В самом простом случае для управления можно использовать галетный переключатель.

Увеличение по клику

На схеме также показаны реле RLY6 и RLY7 и их цепи управления. Они служат для коммутации выходного сигнала усилителя, но об этом мы расскажем позже.

Усилительная часть

Основное усиление в схеме обеспечивается двумя сдвоенными операционными усилителями от Burr-Brown OPA2134 (IC1 и IC2).

Увеличение по клику

Аудиосигнал от выбранного источника поступает на вход первого операционного усилителя (IC1a). Простой фильтр нижних частот, сформированный резистором 1,2 кОм и конденсатором 56 пФ, ослабляет радиочастоты на входе ОУ. Здесь можно использовать относительно большое значение резистора, благодаря чрезвычайно высокому (10 ТераОм) входному сопротивлению OPA2134 (входная цепь реализована на полевых транзисторах).

Усиление напряжения этого каскада составляет около 3,3 (10,5 дБ) и определяется номиналами резисторов в цепи обратной связи (4,7 кОм и 2 кОм).

Резистор 4,7 кОм совместно с конденсатором 220 пФ образуют цепь частотной коррекции для повышения устойчивости усилителя во всём диапазоне частот.

Сигнал с выхода IC1a (вывод ОУ 1) поступает через неполярный конденсатор ёмкостью 22 мкФ на регулятор громкости. Им служит переменный резистор номиналом 10 кОм.

С выхода (движка) регулятора громкости сигнал, также через неполярный конденсатор, поступает на вход второго каскада (IC1b). Благодаря применению конденсаторов устраняются неприятные шорохи и трески при регулировании громкости.

Второй операционный усилитель используется в качестве буфера с единичным усилением, что позволяет усилителю стабильно работать с любой низкоомной нагрузкой, независимо от уровня громкости.

Выход ОУ подключён к выходным разъёмам через неполярный конденсатор, резистор номиналом 100 Ом и ферритовую “бусинку”. Это позволяет сделать выход усилителя нечувствительным к ёмкости межблочного кабеля, входному импедансу усилителя мощности и защищает от радиопомех, которые через цепи обратной связи могут проникнуть на вход усилителя.

Согласование импеданса

Как уже упоминалось, второй ОУ IC1b сконфигурирован для единичного усиления, поэтому его выход (вывод 7) должен быть подключен к его инвертирующему входу (вывод 6). Тем не менее в цепи ООС показан резистор R1. Для уменьшения искажений “видимое” сопротивление по инвертирующему и неинвертирующему входам должны быть равны. Однако, к одному входу подключен регулятор громкости, сопротивление которого меняется.

Если вместо R1 установить перемычку, то уровень искажения будет всё равно очень низкий, см. графики характеристик. Если есть желание предельно минимизировать искажения, замерьте сопротивление регулятора громкости в том положении, в котором вы слушаете музыку чаще всего и именно такого номинала установите резисторы R1 (R2).

Конечно, для этого сначала потребуется установить перемычки и провести несколько тестовых прослушиваний на вашем тракте и после этого… есть подозрение, что вы не захотите менять перемычки на сопротивления.

Коммутация выходных цепей

В конструкции предусмотрено переключение выхода предварительного усилителя между выходными разъёмами RCA на задней панели конструкции и клеммной колодкой (CON6), которая предназначена для подключения усилителя для наушников.

Два реле (RLY6 и RLY7) неиспользуемые выходы подключают к земле. Реле управляются с помощью контактов, расположенных внутри гнезда для наушников. Поэтому переключение происходит автоматически при подключении штекера головных телефонов.

Диод, конденсатор и резисторы включены в базовую цепь управляющего транзистора Q6 служат для задержки переключения реле, чтобы исключить неприятные щёлчки при коммутации.

Источник питания

Для получения высоких заявленных характеристик мы разработали малошумящий источник питания для предварительного усилителя.

Увеличение по клику

Он обеспечивает стабилизированные выходные напряжения ± 15 В и + 5 В для самого предварительного усилителя и дополнительных блоков. Плата блока подключена к трансформатору с выходным напряжением переменного тока ~15В (две обмотки). Диодный мост (D1-D4) и два конденсатора по 2200мкФ выпрямляют и фильтруют переменное напряжение и обеспечивают примерно ± 21 В постоянного напряжения. Регулируемые стабилизаторы LM317 и LM337 выдают на выходе ± 15 В благодаря резисторам 100 Ом и 1,1 кОм, подключенным к выводам «OUT» и «ADJ».

Мы использовали регулируемые стабилизаторы, потому что их управляющие выводы «ADJ» можно «оторвать» от земли, чтобы улучшить подавление пульсаций, что мы сделали с использованием конденсаторов 10 мкФ. Защитные диоды (D5 и D7) обеспечивают разрядный путь для конденсаторов, если выход случайно замыкается на землю.

Два диода (D6 и D8) в обратном включении защищают выход каждого плеча в случае неисправности другого.

Стабилизатор на фиксированное выходное напряжение 7805 (REG3) используется для получения напряжения + 5V. Резистор номиналом 100Ом служит для снижения рассеиваемой мощности на микросхеме стабилизатора. Этот резистор не так важен для модуля предварительного усилителя, но существенно облегчит тепловой режим стабилизатора при подключении дополнительных блоков.

Поскольку от источника питания +5В потребляется дополнительная мощность только положительной полярности, для балансировки плеч выпрямителя в отрицательное плечо включен резистор номиналом 330Ом, который обеспечивает одинаковую скорость разряда конденсаторов фильтра при выключении.

Продолжение следует…

Удачного творчества!

Стать подготовлена по материалам журнала «Практическая электроника каждый день»
Вольный перевод статьи — Главный редактор «РадиоГазеты».

admin

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Наверх