Электрификация

Справочник домашнего мастера

Стабилизатор на 3 вольта

Радиосхемы
Схемы электрические принципиальные

Схемы блоков питания

материалы в категории

Блок питания на 3 Вольта

Ниже приведены сразу две схемы 3-х Вольтовых блоков питания.
Они собраны на разных элементах, а конкретную вы сможете выбрать сами, познакомившись с их особенностями и исходя из своих потребностей м возможностей.
На первом рисунке приведена простая схема блока питания на 3 В (ток в нагрузкеке 200 мА) с электронной защитой от перегрузки (Iз = 250 мА). Уровень пульсации выходного напряжения не превышает 8 мВ.

Для нормальной работы стабилизатора напряжение после выпрямителя (на диодах VD1…VD4) может быть от 4,5 до 10 В, но лучше, если оно будет 5…6 В, ≈ меньшая мощность источника теряется на тепловыделение транзистором VT1 при работе стабилизатора. В схеме в качестве источника опорного напряжения используется светодиод HL1 и диоды VD5, VD6. Светодиод является одновременно и индикатором работы блока питания.

Транзистор VT1 крепится на теплорассеивающей пластине. Как рассчитать размер теплоотводящего радиатора можно более подробно посмотреть .
Трансформатор Т1 можно приобрести из унифицированной серии ТН любой, но лучше использовать самые малогабаритные ТИ1-127/220-50 или ТН2-127/220-50. Подойдут также и многие другие типы трансформаторов со вторичной обмоткой на 5…6 В. Конденсаторы С1…СЗ типа К50-35.

Вторая схема использует интегральный стабилизатор DA1, но в отличие от транзисторного стабилизатора, приведенного на первом рисунке, для нормальной работы микросхемы необходимо, чтобы входное напряжение превышало выходное не менее чем на 3,5 В. Это снижает КПД стабилизатора за счет тепловыделения на микросхеме.

При низком выходном напряжении мощность, теряемая в блоке питания, будет превышать отдаваемую в нагрузку. Необходимое выходное напряжение устанавливается подстроечным резистором R2. Микросхема устанавливается на радиатор. Интегральный стабилизатор обеспечивает меньший уровень пульсации выходного напряжения (1 мВ), а также позволяет использовать емкости меньшего номинала.

Обсудить на форуме

ЛУЧШИЙ САМОДЕЛЬНЫЙ БЛОК ПИТАНИЯ

Доброго времени суток форумчане и гости сайта Радиосхемы! Желая собрать приличный, но не слишком дорогой и крутой блок питания, так чтоб в нём всё было и ничего это по деньгам не стоило, перебрал десятки вариантов. В итоге выбрал лучшую, на мой взгляд, схему с регулировкой тока и напряжения, которая состоит всего из пяти транзисторов не считая пары десятков резисторов и конденсаторов. Тем не менее работает она надёжно и имеет высокую повторяемость. Эта схема уже рассматривалась на сайте, но с помощью коллег удалось несколько улучшить её.

Я собрал эту схему в первоначальном виде и столкнулся с одним неприятным моментом. При регулировке тока не могу выставить 0.1 А — минимум 1.5 А при R6 0.22 Ом. Когда увеличил сопротивление R6 до 1.2 Ом — ток при коротком замыкании получился минимум 0.5 А. Но теперь R6 стал быстро и сильно нагреваться. Тогда задействовал небольшую доработку и получил регулировку тока намного более шире. Примерно от 16 мА до максимума. Также можно сделать от 120 мА если конец резистора R8 перекинуть в базу Т4. Суть в том, что до падения напряжения резистора добавляется падения перехода Б-Э и это дополнительное напряжение позволяет раньше открыть Т5, и как следствие — раньше ограничить ток.

Рекомендуем такой вариант схемы с мультисима. Добавлен резистор (R9 100 Ом) в базу Т5 (Q5) для ограничения тока при крайнем левом положении резистора R8 (470 Ом). Регулирует от 10 мА до максимума.

На базе этого предложения провёл успешные испытания и в итоге получил простой лабораторный БП. Выкладываю фото моего лабораторного блока питания с тремя выходами, где:

  • 1-выход 0-22в
  • 2-выход 0-22в
  • 3-выход +/- 16в

Также помимо платы регулировки выходного напряжения устройство было дополнено платой фильтра питания с блоком предохранителей. Что получилось в итоге — смотрите далее:

Отдельная благодарность за улучшение схемы — Rentern. Сборка, корпус, испытания — aledim.

Форум по БП

Обсудить статью ЛУЧШИЙ САМОДЕЛЬНЫЙ БЛОК ПИТАНИЯ

Стабилизаторы напряжения или как получить 3,3 вольта

Исходные данные: мотор-редуктор рабочее напряжение у которого 5 Вольт при токе 1 А и микроконтроллер ESP-8266 с чувствительным на изменение рабочим напряжением питания 3,3 Вольт и с пиковым током до 600 миллиампер. Все это необходимо учесть и запитать от одной аккумуляторной литий-ионной батареи 18650 напряжением 2,8 -4,2 Вольт.

Собираем схему приведенную ниже: аккумулятор литий-ионный 18650 напряжением 2К,8 -4,2 Вольт без внутренней схемы зарядного устройства -> присоединяем модуль на микросхеме TP4056 предназначенный для зарядки литий-ионных аккумуляторов с функцией ограничения разряда аккумулятора до 2,8 Вольт и защитой от короткого замыкания (не забываем что этот модуль запускается при включенном аккумуляторе и кратковременной подачи питания 5 Вольт на вход модуля от USB зарядного устройства, это позволяет не использовать выключатель питания, ток разряда в ждущем режиме не очень большой и при долгом не использования всего устройства оно само выключиться при падении напряжения на аккумуляторе ниже 2,8 Вольт)

К модулю TP4056 подключаем модуль на микросхеме MT3608 — повышающий DC-DC (постоянного в постоянный ток) стабилизатор и преобразователь напряжения с 2,8 -4,2 Вольт аккумулятора до стабильных 5 Вольт 2 Ампера — питания мотор-редуктора.

Параллельно к выходу модуля MT3608 подключаем понижающий DC-DC стабилизатор-преобразователь на микросхеме MP1584 EN предназначенный для стабильного питания 3,3 Вольта 1 Ампер микропроцессора ESP8266.

Стабильная работа ESP8266 очень зависит от стабильности напряжения питания. Перед подключением последовательно модулей DC-DC стабилизаторов-преобразователей не забудьте настроить переменными сопротивлениями нужное напряжение, поставьте конденсатор параллельно клеммам мотор-редуктора что бы тот не создавал высокочастотных помех работе микропроцессору ESP8266.

Как видим из показаний мультиметра при присоединении мотор-редуктора напряжение питания микроконтроллера ESP8266 НЕ ИЗМЕНИЛОСЬ!

Зачем нужен СТАБИЛИЗАТОР НАПРЯЖЕНИЯ. Как использовать стабилизаторы напряжения

Знакомство со стабилитронами, расчет параметрического стабилизатора; использование интегральных стабилизаторов; конструкция простого тестера стабилитронов и другое.

AMS1117 Технический паспорт

Наименование AMS1117
Kexin Промышленные
Описание Линейный регулятор напряжения DC-DC с малым внутренним падением напряжения, выход 800мА, 3.3В, SOT-223

С управляемым или фиксированным режимом регулирования

AMS1117 Технический паспорт PDF (datasheet) :

Характеристики:
— максимальная стабилизация при полной нагрузке по току;
— быстрая переходная характеристика;
— защита по выходу при превышении тока нагрузки;
— встроенная тепловая защита;
— низкий уровень шума
— регулируемое или фиксированное напряжение 1.5 Вольт, 1.8 Вольт, 2.5 Вольт, 1.9 Вольт, 3.3 Вольт, 5 Вольт.

RT9013 Технический паспорт

Наименование RT9013 Richtek технологии
Описание Стабилизатор-преобразователь на нагрузку с током потребления 500мА, с малым падением напряжения, низким уровенем собственных шумов, сверхбыстродействующий, с защитой выхода по току и от короткого замыкания, CMOS LDO.
RT9013 PDF Технический паспорт (datasheet) :

Общее описание
RT9013 представляет собой высокопроизводительный, 500mA LDO регулятор напряжения, с высоким PSRR и ультра-малым падением напряжения. Идеально подходит для портативных RF и беспроводных устройств с высокими требованиями к производительности и пространству размещения.Особенности:
Широкий диапазон входного рабочего напряжения: 2.2 Вольт — 5.5 Вольт с
малым падением напряжения: 250 мВ при нагрузке 500 мА.
Низкий уровень собственных шумов для применения RF.
Сверхбыстрая реакция на переходные процессы в нагрузке.
Термическое отключение и защита по току.
Необходим на выходе конденсатор 1 мкФ.

MP1584EN Технический паспорт

Наименование MP1584EN Монолитные Power Systems
Описание 3А, 1.5MHz, 28В Step-Down конвертер
MP1584EN Технический паспорт PDF (datasheet) :
Image Info: MP1584 MP1584 представляет собой высокочастотный 1.5 мГц понижающий стабилизатор-преобразователь DC-DC (постоянный в постоянный ) напряжения с интегрированным выходным МОП-транзистором. Он обеспечивает выходной ток 3A с текущим контролем стабильности, быстрым реагированием и легкой компенсацией напряжения.

Диапазон входного напряжения от 4.5 Вольт до 28 Вольт охватывает большинство понижающих приложений, в том числе в автомобильной сфере. 100 мкА оперативный ток покоя позволяет использовать модуль в спящем режиме от батарейного питания. Эффективность преобразования в широком диапазоне нагрузки достигается путем уменьшения частоты переключения при малой нагрузке, чтобы уменьшить потери при коммутации затвора выходного транзистора.

DC-DC преобразователь MP1584 (Видео)

*Описание MP1584EN

**Приобрести можно в магазине Your Cee

MP2307 Технический паспорт

Наименование MP2307 Монолитные Power Systems
Описание 3A, от 4.75 Вольт до 23 Вольт, 340KHz, понижающий преобразователь
MP2307 Спецификация PDF (datasheet) :
Image Info: MP2307

MP2307 представляет собой монолитный синхронный понижающий стабилизатор-преобразователь DC-DC (постоянный в постоянный ) . Устройство объединяет 100 миллионов МОП-транзисторов, которые обеспечивают 3A постоянного тока нагрузки в широком рабочем входном напряжении от 4.75 Вольт до 23 Вольт. Регулируемый плавный пуск предотвращает броски тока при включении/отключении, ток питания ниже 1 мкА. Это устройство, доступный в SOIC корпусе с 8 выводами, обеспечивает очень компактное решение системы с минимальной зависимостью от внешних компонентов.

1. Термостойкий 8-контактный SOIC корпус.

2. 3A — непрерывный выходной ток 4A — пиковый выходной ток.

3. Широкий диапазон рабочего входного напряжении от 4.75 Вольт до 23 Вольт.

*Приобрести можно в магазине Your Cee

LM2596 Технический паспорт

Наименование LM2596 Во-первых компонентов Международной
Описание Простой понижающий стабилизатор-преобразователь питания 3A с внутренней частотой 150 кГц
LM2596 Технический паспорт PDF (datasheet) :
ОБЩЕЕ ОПИСАНИЕ
Серия LM2596 регуляторов напряжения является монолитными интегральными микросхемами , которые обеспечивают все активные функции понижающего импульсного стабилизатора-преобразователя электропитания, способный управлять нагрузкой до 3A с отличной линейной регулировкой напряжения на нагрузке. Эти устройства доступны с фиксированными выходными стабилизированными напряжениями 3.3 Вольт, 5 Вольт, 12 Вольт, и с регулируемым выходным стабилизированным напряжением от 1.2 Вольт до 37 Вольт. Термическое отключение и защита по току.Внутренняя схема микросхемы:Типичное подключение:

DC–DC преобразователь LM2596

MC34063A Технический паспорт

Наименование MC34063A Крыло Шинг International Group
Описание DC-DC управляемый преобразователь
MC34063A Технический паспорт PDF (datasheet) :
ОПИСАНИЕ
MC34063A представляет собой монолитную схему управления , содержащую основные функции , необходимые для преобразователей постоянного тока в постоянный ток.
ОСОБЕННОСТИ
Работа от 0.3 Вольт до 40Вольт.
Низкое потребление в режиме ожидания.
Выходная защита по току до 1.5A.
Регулируемая рабочая частота до 42kHz.
Точность 2% от заданного значения.Применение: DC-DC преобразователь

XL6009 Технический паспорт

Наименование XL6009 XLSEMI
Описание 4A, 400kHz, входное напряжение 5~32V / выходное напряжение 5~35V, коммутируемый повышающий преобразователь DC / DC
XL6009 Технический паспорт PDF (datasheet) :

Готовый модуль повышающего преобразователя напряжения XL6009

Общее описание
XL6009 является повышающим преобразователем постоянного в постоянный ток с широким диапазоном входного напряжением, который способен генерировать положительное или отрицательное выходное напряжение. Повышающий DC / DC конвертер XL6009 служит для поднятия напряжения. Используется при подаче питания к ESP8266, Arduino и других микроконтроллеров от аккумулятора или блока питания с низким напряжением. А также для питания подключенных сенсорных и исполнительных модулей к ESP8266, Arduino и другим микроконтроллерам работающих от напряжения выше 3.3 Вольт прямо от источника питания самого контроллера.Характеристики:

  • Входное напряжение 5~32V
  • Выходное напряжение 5~35V
  • Входной ток 4А (макс), 18мА без нагрузки
  • Конверсионная эфективность более 94%
  • Частота 400кГц
  • Габариты 43x14x21мм

Таблица характеристик при различных напряжениях:

Входное, V Выходное, V сила тока, A мощность,Вт
5 12 0,8 9,6
7,4 12 1,5 18
12 15 2 30
12 16 2 32
12 18 1,6 28,8
12 19 1,5 28,5
12 24 1 24
3 12 0,4 4,8

Повышающий преобразователь напряжения XL6009 (Видео)

Переключаемый стабилизатор на 1,5/3 вольта на микросхеме  LM317LZ

Схема устройства

Схема, изображенная на рисунке 1, представляет собой регулируемый стабилизатор напряжения и позволяет получить выходное напряжение в пределах 1.25 — 30 вольт. Это позволяет использовать данный стабилизатор для питания пейджеров с 1.5 вольтовым питанием (например Ultra Page UP-10 и т.п.), так и для питания 3-х вольтовых устройств. В моем случае она используется для питания пейджера «Moongose PS-3050», то есть выходное напряжение установлено в 3 вольта.

Стабилизатор на 3 вольта на микросхеме SD1083

Работа схемы

При помощи переменного резистора R2 можно установить необходимое выходное напряжение. Выходное напряжение можно рассчитать по формуле Uвых=1.25(1 + R2/R1).
В качестве регулятора напряжения используется микросхема SD 1083/1084. Без всяких изменений можно использовать российские аналоги этих микросхем 142 КРЕН22А/142 КРЕН22. Они различаются только выходным током и в нашем случае это несущественно. На микросхему необходимо установить небольшой радиатор, так как при низком выходном напряжении регулятор работает в токовом режиме и существенно нагревается даже на «холостом» ходу.

Монтаж устройства

Устройство собрано на печатной плате размером 20х40мм. Так как схема очень простая рисунок печатной платы не привожу. Можно собрать и без платы с помощью навесного монтажа.
Собранная плата помещается а отдельную коробочку или монтируется непосредственно в корпусе блока питания. Я разместил свою в корпусе AC-DC адаптера на 12 вольт для радиотелефонов.

Примечание.

Необходимо сначала установить рабочее напряжение на выходе стабилизатора (при помощи резистора R2) и лишь, затем подключать нагрузку.

Другие схемы стабилизаторов.

Это одна из самых простых схем, которую можно собрать на доступной микросхеме LM317LZ. Путем подключения/отключения резистора в цепи обратной связи мы получаем на выходе два разных напряжения. При этом, ток нагрузки может достигать 100 мА.

Только обратите внимание на распиновку микросхемы LM317LZ. Она немного отличается от привычных стабилизаторов.

Простой стабилизатор на микросхеме AMS1117

Простой стабилизатор на различные фиксированные напряжения (от 1,5 до 5 вольт) и ток до 1А. можно собрать на микросхеме AMS1117 -X.X (CX1117-X.X) (где X.X — выходное напряжение). Есть экземпляры микросхем на следующие напряжения: 1.5, 1.8, 2.5, 2.85, 3.3, 5.0 вольт. Также есть микросхемы с регулируемым выходом с обозначением ADJ. Этих микросхем очень много на старых компьютерных платах. Одним из достоинств этого стабилизатора является низкое падение напряжения — всего 1,2 вольта и небольшой размер стабилизатора адаптированный под СМД-монтаж.

Для его работы требуется всего пара конденсаторов. Для эффективного отвода тепла при значительных нагрузках необходимо предусмотреть теплоотводную площадку в районе вывода Vout. Этот стабилизатор также доступен в корпусе TO-252.

Простой стабилизатор на 3 вольта — работа схемы

В настоящее время множество домашних устройств требуют подключения напряжения стабильной величины на 3 вольта, и нагрузочный ток 0,5 ампер. К ним могут относиться:

  • Плееры.
  • Фотоаппараты.
  • Телефоны.
  • Видеорегистраторы.
  • Навигаторы.

Эти устройства объединены видом источника питания в виде аккумулятора или батареек на 3 вольта.

Как создать питание от бытовой сети дома, не тратя деньги на аккумуляторы или батарейки? Для этих целей не нужно проектировать многоэлементный блок питания, так как в продаже имеются специальные микросхемы в виде стабилизаторов на низкие напряжения.

Схема стабилизатора на 3 вольта

Изображенная схема выполнена в виде регулируемого стабилизатора, и дает возможность создания напряжения на выходе от 1 до 30В. Следовательно, можно применять этот прибор для питания различных устройств для питания 1,5 В, а также для подключения устройств на 3 вольта. В нашем случае устройство применяется для плеера, напряжение на выходе настроено на 3 В.

С помощью изменяемого сопротивления устанавливается необходимое напряжение на выходе, которое рассчитывается по формуле: U вых=1.25*(1 + R2 / R1). Вместо регулятора напряжение применяется микросхема SD1083 / 1084. Без изменений применяются отечественные подобные микросхемы 142КРЕН 22А / 142КРЕН 22, которые различаются током выхода, что является незначительным фактором.

Для нормального режима микросхемы необходимо смонтировать для нее маленький радиатор. В противном случае при малом напряжении выхода регулятор функционирует в токовом режиме, и значительно нагревается даже без нагрузки.

Монтаж стабилизатора

Прибор собирается на монтажной плате с габаритами 20 на 40 мм. Схема довольно простая. Есть возможность собрать стабилизатор без использования платы, путем навесного монтажа.

Выполненная готовая плата может разместиться в отдельной коробочке, либо прямо в корпусе самого блока. Необходимо в первую очередь настроить рабочее напряжение стабилизатора на его выходе, с помощью регулятора в виде резистора, а потом подсоединять нагрузку потребителя.

Переключаемый стабилизатор на микросхеме

Такая схема является наиболее легкой и простой. Ее можно смонтировать самостоятельно на обычной микросхеме LM 317 LZ. С помощью отключения и включения сопротивления в цепи обратной связи образуется два различных напряжения на выходе. в этом случае нагрузочный ток может возрасти до 100 миллиампер.

Нельзя забывать про цоколевку микросхемы, так как она имеет отличие от обычных стабилизаторов.

Стабилизатор на микросхеме AMS 1117

Это элементарный стабилизатор с множественными фиксированными положениями регулировки напряжения 1,5-5 В, током до 1 ампера. Его можно монтировать самостоятельно на сериях микросхем AMS 1117 — X.X (CX 1117 — X.X) (где XX — напряжение на выходе).

Есть образцы микросхем на 1,5 – 5 В, с регулируемым выходом. Они применялись раньше на старых компьютерах. Их преимуществом является малое падение напряжения и небольшие габариты. Для выполнения монтажа необходимы две емкости. Чтобы хорошо отводилось тепло, устанавливают радиатор возле выхода.

  • Цена: $0.99
  • Здравствуйте. И снова обзор мелкой платки, точнее даже двух модулей, одинаковых по размеру(1х1 см) и оба умеют поддерживать напряжение на выходе в районе 3.3 Вольта. Разница лишь в диапазонах входного напряжения — один повышающий(на входе 0.8-3.3В), второй понижающий(на входе 4.2-10В). Ну и у того, что удостоился быть в заголовке есть индикатор работы.

    Постараюсь и экономить траффик и не халтурить с тестами )

    Первый был куплен за $1.67 с учетом поинтов

    Второй вдвое дешевле

    Распаковка и внешний вид.

    Я не сохранил транспортировочную упаковку, поэтому вот сразу два модуля в пакетиках

    Понижайка малость выше и вверху видно мелкий светодиод

    Первый собран на стабилизаторе AMS1117, второй на ME2108

    Функционал.

    Для начала рассмотрим повышающий модуль. Заявлено:

    Размер: 1 x 1 x 0.7 см’

    Расстояние между пинами: 2.54 мм

    Напряжение на входе: 0.8-3.3 В

    Напряжение на выходе: 3.3 В

    Максимальный ток на выходе: 500 мА

    Напряжение старта: 0.8В, Ток: 10мА

    Вход 1-1.5V, Выход 3.3В 50-110мА

    Вход 1.5-2V, Выход 3.3В 110-160мА

    Вход 2-3V, Выход 3.3В 160-400мА

    Вход выше 3В, Выход 5В 400-500мА

    Частота 150 кГц, КПД 85%

    Проверяем.

    У меня пока нет нормального блока, поэтому пришлось использовать преобразователь.

    Смотрим контрольные показатели. 2 Вольта 1 Ампер

    2 Вольта, 1.5 Ампера

    2.5 Вольта, 2 Ампера. Думаю за эти пределы не выйдем.

    Переходим к стабилизатору. Без нагрузки потребление платы около 30 мА

    0.81 Вольта. Нагружал пока напряжение не падало ниже эталонного, итого 40 мА.

    1 Вольт. Удалось докрутить до 70 мА

    2 Вольта — 230 мА

    2.5 Вольта — 400 мА

    3 Вольта — 610 мА

    Индикатора работы нет, но при «переборе» конвертер начинает довольно отчетливо пищать.

    Вывод: Я планировал использовать данный модуль как стабилизатор напряжения в измерительных инструментах, работающих на двух элементах АА/ААА, но не переносящих низковольтовый никель. Их потребление как правило не превышает 50 мА, так что платка вполне может использоваться по назначению. Из минусов — нужно будет следить за степенью разряда аккумуляторов, т.к. те же две никелевых банки будут выжиматься до 0.4 Вольта каждая.

    Далее понижающий стабилизатор. Заявлено:

    Размер: 8.6 x 12.33 см

    Напряжение входа: DC 4.2 — 10 Вольт

    Выход: 3.3 В, 800 мА

    В даташите написано, что рабочее напряжение входа — 5 Вольт, максимальное 18. И тут думаю стоит немного уточнить — нормальное напряжение при котором модуль будет вести себя адекватно — 4.2-5 Вольт, выше защита будет срабатывать в районе 250 мА.

    Тестируем номинальный диапазон. На рабочее напряжение выходит к 4.24 Вольтам

    Без нагрузки потребление около 10 мА, которые частично жрет светодиод и нагрузка на «холостом ходу».

    Показатель втрое ниже, чем у повышающего стабилизатора.

    Поднял вход до 4.3 Вольт, чтобы при большой нагрузке напряжение не опускалось ниже минимума.

    0.5 Ампера. Напряжение просело до 3.2 Вольта

    1 Ампер — 3 Вольта. Это при заявленном максимуме в 800 мА.

    1.4 Ампера — напряжение просело до 2.8 Вольта.

    Есть защита от перегрузки/перегрева. Индикатор гаснет, на выходе напряжение колеблется в районе 1.7 Вольта.

    Вывод: Данный модуль планировалось использовать для переделок питания под несколько банок(пакетов) лития там, где это возможно. Опять же, если потребитель будет «кушать» менее 200мА, можно использовать 2-4S сборки аккумуляторов. Ну и тут та же проблема контроля разряда при нижней границе входного напряжения в 4.2 Вольта. Один аккумулятор использовать не получится, а два будут разряжаться до 2.1 Вольта каждый, что скажется на сроке эксплуатации как и в случае с первым модулем. Решается внедрением костыля в виде миниатюрного индикатора уровня заряда или платы защиты.

    Итоги.

    По сути я уже расписал плюсы и минусы выше, но попробую обобщить.

    Есть другие универсальные модели стабилизаторов с выходом 3-12 Вольт и я жду еще несколько штук. Но обозреваемые платы самые мелкие из тех, что удалось найти и сложно будет их заменить там, где в корпусе минимум свободного пространства. Но за компактность приходится чем-то платить.

    Оба стабилизатора соответствуют заявленным характеристикам и вполне могут использоваться там, где нужен постоянный источник на 3-3.3 Вольта. Из неудобств только пороги отсечки по разряду, которые будут портить используемые элементы питания если не следить за остатком заряда. Для «лития» есть куча миниатюрных платок защит от перезаряда/переразряда, а вот под «никель» я такого не встречал. С другой стороны, можно использовать только один элемент — разряд до 0.8 Вольта будет не критичен, но придется пожертвовать автономностью.

    В комментариях приветствуется конструктивная критика. Всем добра =)

  • Акустические компоненты
  • Блоки питания
  • Датчики
  • Диоды
    • Варикапы
    • Выпрямительные диоды и мосты
    • Диоды быстродействующие
    • Диоды быстродействующие переключающие
    • Диоды Шоттки
    • Защитные диоды (супрессоры)
    • Стабилитроны
  • Индуктивности
  • Кварцевые резонаторы
  • Коммутация и разъемы
    • D-SUB (DB-9, DB-25 и т.п.)
    • USB
    • Карты памяти, SIM
    • Клеммники
    • Кнопки, микропереключатели
    • Переключатели DIP и SMD
    • Разъемы BLS, BLD, IDC
    • Разъемы и выключатели 220В
    • Разъемы круглые
    • Разъемы штыревые
  • Конденсаторы
    • Class X,Y
    • SMD-конденсаторы
    • Керамические
    • Керамические высоковольтные
    • Переменные и подстроечные
    • Пленочные
    • Танталовые
    • Электролитические
  • Корпуса
  • Крепёж
  • Макетные платы
  • Микросхемы
    • Аналоговые прочие
      • Драйверы MOSFET и IGBT
      • Компараторы
      • Микросхемы для радиосвязи
      • Операционные усилители
      • Усилители мощности
    • Микросхемы для источников питания
      • Импульсные ИП с ключом (AC/DC)
      • Импульсные стабилизаторы (DC/DC)
      • Источники опорного напряжения
      • Контроллеры для импульсных ИП
      • Линейные стабилизаторы
    • Мультиплексоры, аналоговые ключи
    • Панельки
    • Силовые ключи, полумосты
    • ЦАП, АЦП, цифровые потенциометры
    • Цифровые
      • Интерфейсы
      • Логика
      • Микроконтроллеры
      • Память
      • ПЛИС (CPLD, FPGA)
  • Оптоэлектроника, цифровые изоляторы
  • Предохранители и защита
    • 5X15 мм керамика
    • 5X20 мм
    • 5X20 мм с выводами
    • Держатели для предохранителей
    • Самовосстанавливающиеся
    • Термисторы, варисторы
    • Термопредохранители
  • Радиаторы
  • Расходные материалы
    • Бандаж кабельный
    • Материалы для печатных плат
    • Припой
    • Провод обмоточный (эмальпровод)
    • Провода и кабели
    • Трубка силиконовая ТКСП
    • Трубка термоусадочная
  • Резисторы
    • Выводные
      • Выводные резисторы CF-1/2W
      • Выводные резисторы CF-1/4W
      • Выводные резисторы CF-1W
      • Выводные резисторы MOF-1W
      • Выводные резисторы MOF-2W
      • Резисторы мощные (5Вт и более)
    • Для поверхностного монтажа
      • SMD-резисторы 0402 и 0603
      • SMD-резисторы 0805
      • SMD-резисторы 1206
      • Прецизионные резисторы (до 1%)
    • Переменные
    • Подстроечные резисторы
  • Реле
  • Светодиоды и индикаторы
    • LCD индикаторы (ЖКИ)
    • SMD-светодиоды
    • Индикаторы светодиодные
    • Светодиоды выводные
    • Светодиоды мощные, платы
    • УФ, ИК светодиоды и фототранзисторы
  • Тиристоры
  • Транзисторы
    • IGBT транзисторы
    • Биполярные
    • Полевые транзисторы (JFET)
    • Полевые транзисторы (MOSFET)
      • Высоковольтные MOSFET (от 400В)
      • Низковольтные MOSFET (до 399В)
  • Ферриты
    • E (Ш-образные)
    • EFD (низкопрофильные)
    • ETD
    • RM (квадратные)
    • Гантели, стержни
    • Изоляционные материалы
    • Кольца
    • Трубки, бусины, трансфлюкторы
  • Шестерёнки

admin

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Наверх