Электрификация

Справочник домашнего мастера

Схемы на микросхеме к561ла7


Сигнализация предназначена для работы с одним или несколькими включенными параллельно замыкающими датчиками. Такие датчики установлены в дверные проемы автомобиля, на капот, багажник. Они представляют собой механические размыкающие кнопки, которые, в нормальном состоянии, нажаты закрытыми дверями (капотом, багажником).
При открывании кнопки отжимаются и замыкают контакт на свой металлический корпус. Эти контактные датчики можно использовать не только на автомобиле. Автор установил датчик от капота автомобиля ВАЗ-2108 на входную дверь помещения. Для- этого пришлось в дверном проеме просверлить одно отверстие диаметром 10 мм, в которое и был установлен датчик (закреплен шурупами).
Когда дверь закрыта она держит кнопку датчика нажатой, при открывании кнопка отжимается и включает сигнализацию. Всего было сделано два устройства, — одно установлено на автомобиль, а второе на дверь комнаты в общежитии. Разница только в том. что первое устройство питается от автомобильного аккумулятора, а второе от понижающего трансформатора с выпрямителем.
Работает охранная сигнализация так. Включается подачей питания при помощи замаскированного внутри объекта охраны выключателя. После включения следует выдержка в несколько секунд, в течение которой основная сигнализация не включается, а сирена издает лишь короткие звуки при включении и каждом срабатывании датчика.
После окончания выдержки времени сигнализация переходит в режим охраны. Если теперь будет замкнут датчик, — сначала сирена издаст короткий звук, а потом, спустя несколько секунд, данных на отключение его изнутри объекта, включится основная сигнализация, которая будет звучать около минуты. Все временные установки заданы RC-цепями на резисторах и электролитических конденсаторах.
Принципиальная схема. В основе схемы лежит трех входовый триггер на элементах D1.1 и D1.2 микросхемы К561ЛА9. Триггер имеет приоритет по входам элемента D1.1. В момент включения питания триггер устанавливается в единичное состояние конденсатором С1, заряжающимся через R2.
Пока на конденсаторе напряжение, воспринимаемое микросхемой как логический ноль, триггер принудительно удерживается в единичном состоянии. На выходе D1.3 ноль и ключ на VT1 закрыт. Но, при каждом замыкании датчика этот ключ открывается на время зарядки С5 через R5 и сирена издает короткий предупредительный звук.
После зарядки С1 система переходит в режим охраны. Теперь на С1 напряжение на уровне логической единицы и оно не блокирует больше триггер.

Описание элементной базы

Микросхема К561ЛА7

Выполняет логическую функцию 2И-НЕ. Содержит четыре логических элемента. Цоколевка микросхемы и её условное обозначение приведены на рисунке 16.

Рисунок 16 — Микросхема К561ЛА7

Микросхема К561ЛА8

Выполняет логическую операцию 4И-НЕ. Содержит два логических элемента. Цоколевка микросхемы и ее условное обозначение приведены на рисунке 17.

Рисунок 17 — Микросхема К561ЛА8

Микросхема К561ЛЕ5

Выполняет логическую операцию 2ИЛИ-НЕ. Содержит четыре логических элемента. Цоколевка микросхемы и ее условное обозначение приведены на рисунке 19.

Рисунок 19 — Микросхема К561ЛЕ5

Микросхема К561ЛЕ10

Выполняет логическую функцию 3ИЛИ-НЕ. Содержит три интегральных элемента. Цоколевка микросхемы и ее условное обозначение приведены на рисунке 20.

Рисунок 20 — Микросхема К561ЛЕ10

Микросхема К561ЛИ1

Микросхема реализует функцию 9И, имеется также инвертор. Цоколевка микросхемы и ее условное обозначение приведены на рисунке 21.

Рисунок 21 — Микросхема К561ЛИ1

Микросхема К561ИЕ8

Микросхема представляет собой счетчик по модулю 10 с дешифратором. Она выполнена на основе пятикаскадного высокоскоростного счетчика Джонсона и дешифратора, преобразующего двоичный код в сигнал на одном из десяти выводов.

Если на входе разрешения счета V присутствует низкий уровень, счетчик осуществляет счет синхронно с положительным фронтом на тактовом входе С. При высоком уровне на входе V действие входа С запрещается и счет останавливается. Сброс счетчика осуществляется подачей высокого уровня на вход R. Счетчик имеет выход переноса Р. Положительный фронт выходного сигнала переноса появляется через 10 импульсов на входе С и используется как входной сигнал для счетчика следующей декады. Структурная схема счетчика К561ИЕ8 и его условное обозначение приведены на рисунке 22.

Рисунок 22 — Микросхема К561ИЕ8

Микросхема К561ИЕ10

Микросхема содержит два независимых четырехразрядных двоичных счетчика с параллельным выходом. Для повышения быстродействия в ИС применен параллельный перенос во все разряды. Подача счетных импульсов может производиться либо в положительной полярности (высоким уровнем) на вход С, либо в отрицательной полярности (низким уровнем) на вход V. В первом случае разрешение счета устанавливается высоким уровнем на входе V, а во втором случае — низким уровнем на входе С.

Структурная схема и условное обозначение счетчиков типа ИЕ10 приведены на рисунке 22.

При построении многоразрядных счетчиков с числом разрядов более четырех соединение между собой ИС ИЕ10 может производиться с последовательным или параллельным формированием переноса. В первом случае на входе (вывод 1 или 9) следующего каскада счетчика подается высокий уровень с выхода Q4 (выводы 6 или 14) предыдущего каскада.

Рисунок 22 — Микросхема К561ИЕ10

Микросхема К561ИЕ16

Микросхема содержат четырнадцатиразрядный асинхронный счетчик с последовательным переносом. Сброс счетчика в нуль осуществляется импульсом положительной полярности длительностью не менее 550 нс. по входу R. Содержимое счетчика увеличивается по отрицательному перепаду (срезу) импульса по входу С. Максимальная частота входных импульсов при Uн.п.=10 В достигает 4 МГц. Устройство имеет выходы от 1,4…14 разрядов. Условное обозначение ИС приведено на рисунке 23.

Рисунок 23 — Микросхема К561ИЕ16

Микросхема К561ИР9

Микросхема содержит четырехразрядный последовательно-параллельные регистры сдвига. Условное обозначение и цоколевка — приведены на рисунке 24. Регистр сдвига типа ИР9 содержит два последовательных входа J и К. Если их соединить вместе, то получим простой D-вход. Высокий уровень на входе P/S (переключатель «параллельный режим ввода — последовательный режим ввода») определяет режим параллельного ввода информации с входов D0…D3. Параллельная запись осуществляется асинхронно.

Если на входе P/S установлен низкий уровень, то установлен режим последовательного ввода с входов J и К и сдвига информации по фронту (положительному перепаду) синхроимпульсов на входе С. Установка всех триггеров регистра в нулевое состояние осуществляется асинхронно высоким уровнем на входе R. С помощью входа Т/С можно устанавливать на выходах Q0…Q3 прямой код (высокий уровень на входе Т/С) или дополнительный код (низкий уровень на входе Т/С).

Рисунок 24 — Микросхема К561ИР9

Операционные усилители К140УД14А, К140УД14Б, К140УД14В

Прецизионные операционные усилители с малыми входными токами и малой потребляемой мощностью с защитой выхода при коротком замыкании на корпус или на источник питания. Коррекция АЧХ осуществляется внешними цепями коррекции, подключаемыми к выводам 1 и 8. Микросхемы конструктивно оформлены в корпусе типа 301.8-2.

Рисунок 25 — Операционный усилитель типа К140УД14

Основные параметры при температуре 25±5°С операционных усилителей приведены в таблице 2

Таблица 2 — Основные параметры операционных усилителей

Немного почитав радиолюбительские форумы по изготовлению металлоискателей, обнаружил, что большинство людей собирающих металлоискатели, на мой взгляд, незаслуженно списывают со счетов металлоискатели на биениях — так называемые BFO металлоискатели. Якобы это технология прошлого века и «детские игрушки». — Да, это простой и непрофессиональный прибор, требующий определенных навыков и опыта в обращении. Он не имеет четкой селективности металлов и требует подстройки в процессе эксплуатации. Однако и с ним можно производить удачный поиск при определенных обстоятельствах. Как вариант — пляжный поиск — идеальный вариант для металлоискателя на биениях.

Место для поиска с металлоискателем.

С металлоискателем нужно ходить там, где люди что-то теряют. Мне повезло, у меня есть такое место. Неподалеку от моего дома расположен заброшенный речной песчаный карьер, на котором летом постоянно отдыхают люди бухая и купаясь в реке. Понятное дело, они постоянно что то теряют. На мой взгляд, лучшего места для поиска с металлоискателем BFO придумать нельзя. Потерянные вещи моментально самозакапываются на небольшую глубину в сухой песок и отыскать их вручную уже практически невозможно. Мистика какая то. Помню, в детстве уронил там в песок ключи от квартиры. Вот стою я, вот сюда упали ключи, но, сколько я не перекапывал тот участок — все безрезультатно. Они буквально провалились «сквозь землю». Просто заколдованное место. В то же время на этом «золотом» пляже я постоянно находил в песке чужие ключи, зажигалки, монеты, украшения и телефоны. А при последнем походе с металлоискателем – женское тонкое золотое кольцо. Оно было почти у поверхности чуть присыпано песком. Возможно, просто везение. Собственно именно под этот пляж я и делал свой металлоискатель.

Достоинства металлоискателя на биениях.

Почему именно BFO? — Во первых, это самый простой вариант металлоискателя. Во вторых он обладает хоть какой то динамикой сигнала в зависимости от свойств предмета. Не то что импульсный металлоискатель – «пикающий» на все одинаково. Я не в коем случае не хочу принизить достоинства импульсного металлоискателя. Это тоже замечательный прибор, но для пляжа заваленного пробками и фольгой он не подходит. Многие скажут, что и металлоискатель на биениях не различает свойств предмета, воет и гудит на все одинаково. Однако это не так. Попрактиковавшись на пляже пару дней, я научился весьма неплохо определять фольгу как резкое и глубокое изменение частоты. Крышки же от пивных бутылок вызывают строго определенное изменение частоты, которое нужно запомнить. А вот монеты издают слабый, «точечный» сигнал — еле уловимое изменение частоты. Все это приходит с опытом при наличии терпения и неплохого слуха. Металлоискатель на биениях — это все-таки «слуховой» металлоискатель. Анализатором и обработчиком сигналов здесь является человек. По этому вести поиск нужно обязательно на наушники, а не на динамик. Причем лучший вариант – большие наушники, а не «затычки».

Конструкция металлоискателя.

Конструктивно я решил делать металлоискатель складным и компактным. Чтобы он влезал в обычный пакет, дабы не привлекать внимание «нормальных» людей. Иначе, добираясь до места поиска, выглядешь как «инопланетянен», или собиратель металлолома. Для этой цели я купил в магазине самое маленькое (двухметровое пятиколенное) телескопическое удилище. Оставил три колена. Получилась довольно компактное складное основание, на котором я и собрал свой металлоискатель.

Весь электронный блок был собран в уже полюбившимся мною пластиковом коробе для проводки 60х40. Из его пластмассы так же была сделана торцевая заглушка, перегородка отсека питания и крышка отсека питания .Части склеивались суперклеем и садились на болты М3. Крепление электронного блока металлоискателя к удилищу выполнено в виде металлической скобы, которая вставляется на место рыболовной катушки с леской и фиксируется штатной гайкой удилища. Получилась отличная легкая и прочная конструкция. Наружу блока выведена кнопка питания, гнездо подключения катушки (пятиконтактное гнездо от «дедушкиного» магнитофона), регулятор частоты и гнездо под джек для наушников.

Печатная плата металлоискателя изготавливалась по месту разводкой дорожек водостойким маркером. По этому, к сожалению, печатку предоставить не могу. Монтаж поверхностный навесной — без отверстий – «ленивый» — мой любимый . Так же важно после сборки платы покрыть её любым лаком для защиты от влаги и мусора. При полевых условиях это очень важно. Я, к примеру, потерял один день из за того, что во внутрь под микросхему попал какой-то мусор. Металлоискатель просто перестал работать. И мне пришлось возвращаться домой, разбирать его, продувать и вскрывать плату лаком.

Схема металлоискателя на биениях.

Сама же схема (см. ниже ) была переработана и оптимизирована мной из двух схем металлоискателей. Это «Металлоискатель на микросхеме» — журнал «Радио», 1987г, №01, стр 4, 49 и «Металлоискатель повышенной чувствительности» — журнал «Радио», 1994г, №10, стр 26.

В результате получилась простая и функциональная схема, обеспечивающая стабильные низкочастотные результирующие биения – то, что нужно для определения на слух малейших изменений частоты.

Стабильность и чувствительность металлоискателя обеспечивают следующие схемные решения:

1)

Генераторы эталонный и измерительный разнесены — выполнены в отдельных корпусах микросхем – DD1 и DD2. На первый взгляд это расточительство – используется всего один логический элемент корпуса микросхемы из четырех. То есть, да, эталонный генератор собран только на одном логическом элементе микросхемы. Остальные три логические элемента микросхемы не задействованы вовсе. Точно так же построен и измерительный генератор. Казалось бы — бессмысленно не задействовать свободные логические элементы корпуса микросхем. Однако именно в этом и есть большой смысл. И состоит он в том, что если, допустим, все же собрать в одном корпусе микросхемы два генератора – они будут синхронизировать друг друга на близких частотах. Не удастся получать малейшие изменения результирующей частоты. На практике это будет выглядеть как резкое изменение частоты лишь при близком воздействии массивного металлического предмета на измерительную катушку. Иными словами резко снижается чувствительность. Металлоискатель не реагирует на мелкие предметы. Результирующая частота как бы «залипает» на нуле – до определенного момента вовсе нет биений. Еще говорят – «тупой металлоискатель», «тупая чувствительность». Кстати «Металлоискатель на микросхеме» — журнал «Радио», 1987г, №01, стр 4, 49 построен как раз на одной микросхеме вовсе. Там очень заметен этот эффект синхронизации частот. Ним совершенно невозможно искать монеты и мелкие предметы.

Так же оба генератора должны быть экранированы отдельными небольшими экранами из жести. Это на порядок повышает стабильность и чувствительность металлоискателя в целом. Достаточно, просто припаять на минус между микросхемами генераторов небольшие перегородки из жести, чтобы убедится в улучшении параметров металлоискателя. Чем лучше экран — тем лучше чувствительность (ослабляется влияние генераторов друг на друга и плюс защита от внешнего воздействия на частоту).

2)

Электронная настройка.

Во всех классических схемах BFO (схемах BFO прошлого века) для настройки нулевых биений используется конденсатор переменной емкости КПЕ. Этот паршивый элемент изначально перечеркивает все возможности металлоискателя на биениях. Никогда не используйте КПЕ в BFO! Даже если он не будет иметь люфтов, все равно он будет источником паразитного изменения частоты в следствии температурных и емкостных влияний окружающей среды. Производить поиск в реальных походных условиях с конденсаторным металлоискателем на биениях сплошное мучение.

Только электронная настройка! Она реализована на стабилитроне D1, включенном в схему как варикап. Такая схема обеспечивает хорошую перестройку частоты при отсутствии паразитных явлений. Вместо КС147 можно использовать к примеру КС133, КС156 и многие другие. Так же многие диоды обладают свойством варикапа. Естественно, возможно придется подобрать резисторы R1, R3. Возможно R3 нужно будет вообще закоротить при другом стабилитроне или диоде.

3)

Компаратор на DD3.2 – DD3.4.

Этот элемент схемы преобразует синусоидальный сигнал с выхода смесителя DD3.1 в прямоугольные импульсы удвоенной частоты.

Во первых, прямоугольные импульсы отчетливо слышны на герцовых частотах как четкие щелчки. В то время как синусоидальный сигнал герцовых частот уже с трудом различим на слух.

Во вторых, удвоение частоты позволяет более близко подойти регулировкой к нулевым биениям. В результате, регулировкой можно добиться «цоканья» в наушниках, изменение частоты которого уже можно уловить при поднесении маленькой монеты к катушке на расстоянии 30 см.

4)

Стабилизатор питания генераторов.

Естественно, в данной схеме напряжение питания заметно влияет на частоту генераторов DD1.1 и DD2.1 металлоискателя. Причем на каждый из генераторов влияет по разному. В результате чего, с разрядом батареи немного «плывет» и частота биений металлоискателя. Для предотвращения этого в схему был введен пятивольтовый стабилизатор DA1 для питания генераторов DD1.1 и DD2.1. В результате чего частота перестала «плыть». Однако, следует сказать, что с другой стороны, из за пятивольтового питания генераторов несколько снизилась чувствительность металлоискателя в целом. По этому, эту опцию следует считать необязательной и при желании можно питать генераторы DD1.1 и DD2.1 от кроны без стабилизатора DA1. Только придется чаще подстраивать частоту вручную, регулятором.

Конструкция катушки металлоискателя.

(См. схему ниже).

Так как это не импульсный металлоискатель, а BFO, то поисковая катушка (L2) не боится металлических предметов в своей конструкции. Нам не понадобятся пластмассовый болт. То есть мы можем без опаски применять для её изготовления металлический (но только незамкнутый!) каркас и обычный металлический болт для шарнира. В последствии, при наладке схемы, все влияния металла в конструкции выведутся в ноль подстроечным сердечником катушки L1. Сама катушка L2 содержит 32 витка провода ПЭВ или ПЭЛ диаметром 0,2 – 0,3 мм. Диаметр катушки должен быть около 200 мм. Намотку удобно производить на небольшое пластмассовое коническое ведро. Полученные витки полностью обматываются изолентой и увязываются ниткой. Далее вся эта конструкция обматывается фольгой (кулинарная фольга для запекания). Сверху фольги наматывается луженая проволока несколькими витками по всему периметру катушки. Эта проволока будет выводом фольгяного экрана катушки. Еще раз все вместе обматывается изолентой. Сама катушка готова.

Каркас на котором будет располагаться катушка и которым она будет крепится к удилищу изготавливается из стальной пружинящей (не мягкой) проволоки 3-4 мм. Он состоит собственно из трех частей (смотри рисунок)– двух витых проволочных петель шарнира, которые будут соединены болтом между собой и проволочного кольца, продетого в трубку от капельницы (кольцо не должно быть замкнутым витком).

Вся эта конструкция вместе с готовой проволочной катушкой так же увязывается вместе нитками и изолентой.

Сам шарнир с катушкой крепится к удилищу увязыванием капроновыми нитками и проклейкой эбоксидной смолой.

Катушку желательно не мочить в процессе поиска и тем более не использовать для подводного поиска. Она не герметична. Попавшая во внутрь влага со временем может разрушить её.

Катушка L1 (смотри схему) мотается на каркасе от малогабаритного радиоприемника с металлическим экраном и подстроечным сердечником. Катушка содержит 65 витков провода ПЭВ диаметром 0.06мм

Цифровые микросхемы — начинающим (занятие 5) — К561ЛЕ5

К561ЛЕ5 — ВСЕ ТОЖЕ, НО НАОБОРОТ, (занятие №5)

На предыдущих занятиях мы исследовали микросхему К561ЛА7 (К176ЛА7), которая содержит четыре элемента «2И- НЕ». Есть еще одна интересная микросхема — К561ЛЕ5 (К176ЛЕ5), которая содержит четыре элемента «2ИЛИ-НЕ». Вспомним чем отличаются эти элементы : если на, хотя бы один вход элемента И-НЕ поступает логический ноль, то на его выходе будет единица независимо от того что происходит на его остальных входах. То есть решающую роль играет ноль на входе. Элемент ИЛИ-НЕ отличается тем, что для него решающую роль играет единица на входе, то есть если, хотя бы на одни вход поступает единица, то на выходе будет ноль независимо от того какие уровни на его других входах. Таким образом элементы И-НЕ и ИЛИ- НЕ работают по сходному принципу, но имеют противоположные функции.

Рассмотрим это явление на примере простого реле времени из прошлых занятий. Наше реле времени было выполнено на двух элементах 2И-НЕ микросхемы К561ЛА7. Это был мультивибратор, который вырабатывал импульсы только тогда, когда на вывод 2 элемента D1.1 поступает высокий (единичный) логический уровень. Цепь из конденсатора С2 и двух резисторов R3 и R4 превращает этот мультивибратор в реле времени, поскольку единица на С2 появляется только после того как С2 зарядится через эти резисторы, а на это уходит время, прямо- пропорциональное суммарному сопротивлению резисторов.

Теперь сделаем точно такое же реле времени на микросхеме К561ЛЕ5 (К176ЛЕ5) как показано на рисунке 1.

Здесь тоже управляемый мультивибратор, но разница в том, что поскольку И-НЕ и ИЛИ-НЕ имеют противоположные функции, то мультивибратор будет вырабатывать импульсы только тогда, когда на вывод 2 элемента D1.1 будет поступать нуль (в варианте на К561ЛА7 нужно чтобы там была единица). Поэтому конденсатор С2 перемещается наверх — к плюсовой шине питания, а резисторы R4 и R3 опускаются вниз — к минусовой цепи питания. Времязадающая RC-цепь, как бы переворачивается. Теперь конденсатор будет заряжаться не до единицы, а наооборот до нуля. Смотрите, пока он разряжен (или замкнуты контакты S1) напряжение на нем не велико, и составляет небольшую долю от напряжения питания, при этом основная большая доля напряжения питания падает на резисторах R3 и R4. И в точке соединения этих резисторов с С2 напряжение по уровню соответствует уровню логической единицы. Конденсатор С2 заряжается, постепенно, через резисторы R3 и R4 и доля напряжения на нем растет, а доля напряжения на резисторах падает. И в какой-то момент напряжение на С2 будет значительно больше чем на R3 и R4, на столько, что напряжение на резисторах будет соответствовать логическому нулю. В этот момент мультивибратор запустится и из динамика раздастся звук.

Теперь вспомним предыдущее занятие №4 (из журнала «РК» 04-2000). Там мы изучали одновибратор и RS-триггер на К561ЛА7. Теперь выполним те же самые вещи, но на К561ЛЕ5 (К176ЛЕ5). Начнем с одновибратора. На рисунке 1 (ж. «РК»04-2000 стр.42) прошлого занятия изображена схема одновибратора на двух элементах 2И-НЕ. На вход одновибратора при помощи кнопки S1 мы подавали произвольный короткий импульс, а на выходе (вывод 4 D1.2) получался тоже отрицательный импульс, но его длительность строго фиксированная, и зависит от номиналов С1 и R2.

Посмотрите на схему точно такого же одновибратора на микросхеме К561ЛЕ5 (К176ЛЕ5) — рисунок 2. Обратите внимание, схема как бы перевернулась. S1 переместилась вверх, a R1 вниз. Изменилась полярность С1 и подключение R2. Теперь на вход одновибратора нужно подавать не отрицательный а положительный импульс, и на выходе тоже будет положительный импульс, но его длительность, так же как и одновибраторе на К561ЛА7, будет зависеть от С1 и R2.

Посмотрим что происходит когда мы кратковременно нажмем на S1. В этот момент на выводе 2 D1.1 появится короткий положительный импульс (диаграмма 2D1). В этот момент, поскольку на выводе 4 D1.2 нуль, на выходе D1.1 уровень изменится на нулевой (диаграмма 3D1) и конденсатор С1 начнет заряжаться через R2, но пока он еще не заряжен напряжение на входах D1.2 будет близким к нулю (диаграмма 5,6D1). В этот момент на выходе D1.2 будет единица, которая поступит на вход 1 D1.1 и будет удерживать его в состоянии с нулем на выходе пока С1 не зарядится через R2. Как только С1 зарядится до уровня единицы элемент D1.2 перейдет в исходное состояние (на его выходе будет ноль). А поскольку S1 мы не нажимаем то и на обеих входах D1.1 будет нули, а на его входе — единица. С1 станет разряжаться через R2 и схема вернется в исходное состояние.

Если сравнить диаграммы одновибратора на ИЛИ-НЕ (сегодняшние) с диаграммами на И-НЕ (прошлое занятие) то видно что они как бы перевернуты относительно друг друга. Так и есть, ведь функции И и ИЛИ противоположны.

Теперь сделаем RS-триггер на элементах 2ИЛИ-НЕ микросхемы К561ЛЕ5 (К176ЛЕ5). Вспомним схему триггера на К561ЛА7 (предидущее занятие в РК 04-2000 стр. 44 рисунок 3). У RS-триггера были два входа, на которые при помощи кнопок S1 и S2 подавались отрицательные импульсы. То есть, пока на входы ничего не поступает на них через резисторы R1 и R2 подаются единичные уровни, а когда нужно переключить триггер в противоположное состояние на один из его входов подается логический нуль при помощи одной из кнопок. Так кратковременно нажимая кнопки S1 и S2 можно было переключать светодиоды подключенные на выходах триггера. Значит для управления RS-триггером на элементах И-НЕ требуются подача на его входы нулевых логических уровней.

Возможно вы уже догадались, — триггер построенный на элементах ИЛИ-НЕ будет реагировать не на нулевые, а на единичные сигналы, поступающие на его входы. Схема RS-триггера на микросхеме К561ЛЕ5 (К176ЛЕ5) показана на рисунке 4.

Предположим в исходном состоянии на выходе элемента D1.1 единица и это подтверждает горение светодиода VD1. Если нажать на кнопку S1 на вывод 1 D1.1 через контакты кнопки поступит единица, и независимо от того, что в данный момент на втором входе этого элемента, на его выходе установится ноль. Светодиод VD1 погаснет. Ноль с выхода D1.1 поступит на один из входов D1.2 (вывод 5). А на второй вход этого элемента ноль уже поступает через R2 (ведь кнопка S2 не нажата). Так как на обеих входах D1.2 будут нуль, то на его выходе будет единица, которая зажжет светодиод VD2. Эта же единица поступит на вывод 2 D1.1 и зафиксирует этот элемент в состоянии с нулем на выходе. Теперь и после отпускания S1 триггер будет оставаться в таком положении (горит VD2) до тех пор пока не нажать на кнопку S2. При нажатии на S2 единица через контакты S2 поступит на вход D1.2 и на выходе этого элемента будет ноль. VD2 погаснет. Затем этот ноль поступит на вывод 2 D1.1 и поскольку на его вывод 1 уже поступает ноль через R1 на его выходе будет единица. Это приведет к зажиганию VD1 и фиксации элемента D1.2 (с выхода D1.1 единица поступает на его вход — вывод 5).

Большинство микросхем, содержащих RS- триггеры имеют в своем составе именно триггеры построенные на элементах ИЛИ-НЕ, и поэтому для них нормой являются единичные управляющие входные сигналы, а не нулевые, как у триггера построенного на элементах И- НЕ.

Теперь посмотрим на схемы охранного устройства и устройства, контролирующего влажность (занятие №3 «РК»03-2000 стр.40 рисунки 3 и 4). Оба устройства сделаны на микросхемах К561ЛА7, содержащих четыре элемента 2И-НЕ. Представьте что произойдет, если в этих схемах вместо микросхем К561ЛА7 использовать К561ЛЕ5. Схема охранного устройства будет работать точно наоборот : звуковой сигнал будет слышен когда петля охранного шлейфа будет цела, а при её обрыве звук будет прекращаться. В схеме, контролирующей влажность тоже самое, все наоборот. Звук будет слышен тогда когда резервуар с водой наполнен, а когда он будет пустым звуковой сигнал будет выключаться.

Как восстановить работу схем ? В охранном устройстве нужно поменять местами подключение резистора R1 и охранного шлейфа, а вывод резистора R4, который подключен к выходу элемента D1.4 нужно от него отключить и подключить к выходу элемента D1.3. В устройстве контроля за влажностью нужно поменять местами подключение резистора R1 и датчиков влажности. Вместо резистора R1 подключить контакты датчиков, а вместо контактов датчика — резистор.

ЕЩЕ ОДИН ЭЛЕМЕНТ.

Кроме уже изученных логических элементов есть еще один интересный элемент, именуемый как «ИСКЛЮЧАЮЩЕЕ ИЛИ». Его графическое изображение показано на рисунке 5.

В квадратике написано «=1». Это значит, что если на обеих входах этого элемента одинаковые уровни (все равно какие, важно только что одинаковые), то на его выходе будет единица. А если уровни разные — ноль. Микросхема, содержащая четыре таких элемента — К561ЛП2 (К176ЛП2).

Если оба тумблера S1 и S2 будут выключены на оба входа элемента через резисторы R1 и R2 поступят логические нули. На обеих входах будут нули, значит на обеих входах одинаковые уровни — нулевые, и на выходе будет единица (стрелка вольтметра покажет напряжение единичного уровня). Тоже самое будет если оба тумблера включить. На оба входа через тумблеры поступят единицы, уровни на входах опять будут равными, и на выходе останется единица. Но если один из тумблеров включить, а другой выключить — на выходе будет ноль, поскольку логические уровни на входах не будут равны.

Вот и вся логика работы элемента «ИСКЛЮЧАЮЩЕЕ ИЛИ».

Генераторы импульсов

Генераторы импульсов используют во многих радиотехнических устройствах (электронных счетчиках, реле времени), применяют при настройке цифровой техники. Диапазон частот таких генераторов может быть от единиц герц до многих мегагерц. Здесь приводятся простые схемы генераторов, в том числе на элементах цифровой «логики», которые широко используются в более сложных схемах как частотозадающие узлы, переключатели, источники образцовых сигналов и звуков.

На рис. 1 приведена схема генератора, который формирует одиночные импульсы прямоугольной формы при нажатии кнопки S1 (то есть он не является автогенератором, схемы которых приводятся далее). На логических элементах DD1.1 и DD1.2 собран RS-триггер, предотвращающий проникновение импульсов дребезга контактов кнопки на пересчетное устройство. В положении контактов кнопки S1, показанном на схеме, на выходе 1 будет напряжение высокого уровня, на выходе 2 — напряжение низкого уровня; при нажатой кнопке — наоборот. Этот генератор удобно использовать при проверке работоспособности различных счетчиков.

На рис. 2 показана схема простейшего генератора импульсов на электромагнитном реле. При подаче питания конденсатор С1 заряжается через резистор R1 и реле срабатывает, отключая источник питания контактами К 1.1. Но реле отпускает не сразу, поскольку некоторое время через его обмотку будет протекать ток за счет энергии, накопленной конденсатором С1. Когда контакты К 1.1 опять замкнутся, снова начнет заряжаться конденсатор — цикл повторяется.

Частота переключении электромагнитного реле зависит от его параметров, а также номиналов конденсатора С1 и резистора R1. При использовании реле РЭС-15 (паспорт РС4.591.004) переключение происходит примерно один раз в секунду. Такой генератор можно использовать, например, для коммутации гирлянд на новогодней елке, для получения других световых эффектов. Его недостаток — необходимость использования конденсатора значительной емкости.

На рис. 3 приведена схема еще одного генератора на электромагнитном реле, принцип работы которого аналогичен предыдущему генератору, но обеспечивает частоту импульсов 1 Гц при емкости конденсатора в 10 раз меньшей. При подаче питания конденсатор С1 заряжается через резистор R1. Спустя некоторое время откроется стабилитрон VD1 и сработает реле К1. Конденсатор начнет разряжаться через резистор R2 и входное сопротивление составного транзистора VT1VT2. Вскоре реле отпустит и начнется новый цикл работы генератора. Включение транзисторов VT1 и VT2 по схеме составного транзистора повышает входное сопротивление каскада. Реле К 1 может быть таким же, как и в предыдущем устройстве. Но можно использовать РЭС-9 (паспорт РС4.524.201) или любое другое реле, срабатывающее при напряжении 15…17 В и токе 20…50 мА.

В генераторе импульсов, схема которого приведена на рис. 4, использованы логические элементы микросхемы DD1 и полевой транзистор VT1. При изменении номиналов конденсатора С1 и резисторов R2 и R3 генерируются импульсы частотой от 0,1 Гц до 1 МГц. Такой широкий диапазон получен благодаря использованию полевого транзистора, что позволило применить резисторы R2 и R3 сопротивлением в несколько мегаом. С помощью этих резисторов можно изменять скважность импульсов: резистор R2 задает длительность напряжения высокого уровня на выходе генератора, а резистор R3 — длительность напряжения низкого уровня. Максимальная емкость конденсатора С1 зависит от его собственного тока утечки. В данном случае она составляет 1…2 мкФ. Сопротивления резисторов R2, R3 — 10…15 МОм. Транзистор VT1 может быть любым из серий КП302, КП303. Микросхема — К155ЛА3, ее питание составляет 5В стабилизированного напряжения. Можно использовать КМОП микросхемы серий К561, К564, К176, питание которых лежит в пределах 3 … 12 В, цоколевка таких микросхем другая и показана в конце статьи.

При наличии микросхемы КМОП (серия К176, К561) можно собрать широкодиапазонный генератор импульсов без применения полевого транзистора. Схема приведена на рис. 5. Для удобства установки частоты емкость конденсатора времязадающей цепи изменяют переключателем S1. Диапазон частот, формируемых генератором, составляет 1…10 000 Гц. Микросхема — К561ЛН2.

Если нужна высокая стабильность генерируемой частоты, то такой генератор можно сделать «кварцованным» — включить кварцевый резонатор на нужную частоту. Ниже показан пример кварцованного генератора на частоту 4,3 МГц:

На рис. 6 представлена схема генератора импульсов с регулируемой скважностью.

Скважность – отношение периода следования импульсов (Т) к их длительности (t):

Скважность импульсов высокого уровня на выходе логического элемента DD1.3, резистором R1 может изменяться от 1 до нескольких тысяч. При этом частота импульсов также незначительно изменяется. Транзистор VT1, работающий в ключевом режиме, усиливает импульсы по мощности.

Генератор, схема которого приведена на рисунке ниже, вырабатывает импульсы как прямоугольной, так и пилообразной формы. Задающий генератор выполнен на логических элементах DD 1.1-DD1.3. На конденсаторе С2 и резисторе R2 собрана дифференцирующая цепь, благодаря которой на выходе логического элемента DD1.5 формируются короткие положительные импульсы (длительностью около 1 мкс). На полевом транзисторе VT2 и переменном резисторе R4 выполнен регулируемый стабилизатор тока. Этот ток заряжает конденсатор С3, и напряжение на нем линейно возрастает. В момент поступления на базу транзистора VT1 короткого положительного импульса транзистор VT1 открывается, разряжая конденсатор СЗ. На его обкладках таким образом формируется пилообразное напряжение. Резистором R4 регулируют ток зарядки конденсатора и, следовательно, крутизну нарастания пилообразного напряжения и его амплитуду. Конденсаторы С1 и СЗ подбирают исходя из требуемой частоты импульсов. Микросхема — К561ЛН2.

Цифровые микросхемы в генераторах взаимозаменяемы в большинстве случаев и можно использовать в одной и той же схеме как микросхемы с элементами «И-НЕ», так и «ИЛИ-НЕ», или же просто инверторы. Вариант таких замен показан на примере рисунка 5, где была использована микросхема с инверторами К561ЛН2. Точно такую схему с сохранением всех параметров можно собрать и на К561ЛА7, и на К561ЛЕ5 (или серий К176, К564, К164), как показано ниже. Нужно только соблюдать цоколевку микросхем, которая во многих случаях даже совпадает.

Если требуется повысить нагрузочную способность какого либо узла (чтобы, например, подключить динамик или другую нагрузку), можно применить на выходе усилитель на транзисторе, как в схеме на рис. 6, или же включить несколько элементов микросхемы параллельно, как показано на рисунке ниже:

Универсальная печатная макетная плата для двух микросхем. На таких платах удобно собирать несложные схемы с небольшим количеством деталей, как, например, приведенные в этой статье. Детали паяются к контактным площадкам и при необходимости соединятся перемычками. Размеры платы 100 х 55 мм.

На рисунке ниже приводится цоколевка некоторых широко применяемых цифровых логических микросхем КМОП — технологии с элементами «И-НЕ», «ИЛИ-НЕ» и инверторов. Микросхемы серий К564, К176 имеют аналогичную цоколевку, цоколевка же микросхем серии К155 отличается от указанной (но такие уже давно не применяются). Питание указанных микросхем, как уже говорилось выше, может быть от 3 до 15 В (кроме серии К176, которая более критична к напряжению питания и нормально работает при 9В).

Прикрепленные файлы:

3.3. Простой металлоискатель на микросхеме К561ЛЕ5

Помимо рассмотренных в предыдущих разделах данной главы металлодетекторов существуют и другие варианты устройств на микросхемах, работа которых основана на принципе биений. Одна из таких конструкций создана на базе металлоискателя, разработанного И. Нечаевым из г. Курска (С подробным описанием прибора И. Нечаева можно ознакомиться в журнале «Радио» №1 за 1987 год).

Принципиальная схема

Как уже упоминалось, рассматриваемый металлодетектор представляет собой один из многочисленных вариантов прибора типа BFO (Beat Frequency Oscillator), то есть является устройством, в основу которого положен принцип анализа биений двух частот. При этом в данной конструкции оценка изменения частоты осуществляется на слух.

Рис. 3.4.
Принципиальная схема металлоискателя на микросхеме К176ЛЕ5

Основу схемы этого прибора составляют измерительный и опорный генераторы, смеситель и схема акустической индикации (рис. 3.4). Опорный и измерительный генераторы выполнены на элементах микросхемы IC1.

Опорный генератор собран на элементе IC1.1. Отрицательная обратная связь по постоянному току между выходом (вывод 3) и входом (выводы 1, 2) данного элемента осуществляется через резистор R1 и катушку индуктивности L1. Параметры катушки L1 и резистора R1 выбраны так, что элемент работает на линейном участке передаточной характеристики. Таким образом создаются условия для возбуждения каскада на частоте примерно 100 кГц, которая определяется параметрами элементов контура L1C1С2C3. Элемент IC1.1 обладает высоким входным сопротивлением, поэтому добротность контура и стабильность частоты генератора сравнительно высоки. Резистор R3 ослабляет шунтирующее влияние выходного сопротивления элемента на контур. При необходимости частоту колебаний опорного генератора можно изменять в небольших пределах конденсатором переменной емкости С2.

Измерительный генератор выполнен по аналогичной схеме на элементе IC1.2. При этом рабочая частота данного генератора определяется параметрами элементов контура L2C4С5. Катушка L2 является поисковой. При приближении поисковой катушки L2 колебательного контура перестраиваемого генератора к металлическому предмету ее индуктивность изменяется, что вызывает изменение рабочей частоты генератора.

Колебания с опорного и измерительного генераторов поступают на входы элемента IC1.3, выполняющего функции смесителя сигналов. В результате на выходе элемента IC1.3 будут присутствовать не только сигналы основных частот генераторов, но и сигналы гармонических составляющих разностных и суммарных частот. Одним из самых мощных будет сигнал разностной частоты, который выделяется на резисторе R4. Остальные сигналы подавляются фильтром, в состав которого входят резистор R3 и конденсатор C6.

Выходной сигнал через регулятор громкости R4 подается непосредственно на головные телефоны BF1. Использовать дополнительный низкочастотный усилитель не требуется, поскольку амплитуда выходного сигнала элемента IC1.3 составляет несколько вольт.

Питание на микросхему IC1 подается от источника В1 напряжением 9 В.

Детали и конструкция

Для изготовления рассматриваемого металлоискателя можно использовать любую макетную плату. Поэтому к используемым деталям не предъявляются какие-либо ограничения, связанные с габаритными размерами.

В статье И. Нечаева рекомендуется расположить детали данного металлодетектора (за исключением поисковой катушки L2, резистора R4, разъема Х1 и выключателя S1) на печатной плате размерами 60х55 мм (рис. 3.5), изготовленной из одностороннего фольгированного гетинакса или текстолита.

a
б
Рис. 3.5.
Печатная плата (а) и расположение элементов (б) металлоискателя на микросхеме К561ЛЕ5

Неиспользуемые входные выводы четвертого элемента микросхемы IC1 необходимо соединить с общим проводом. В данном приборе можно использовать микросхемы серий К176, К561, К564, содержащие не менее трех логических элементов «или — не» или «и — не», например типа К561ЛЕ5, К561ЛА7, К561ЛА9 или К561ЛЕ10.

В качестве конденсатора С2 рекомендуется использовать любой конденсатор переменной емкости от малогабаритного радиоприемника. Максимальная емкость этого конденсатора должна быть не менее 150 пФ. Остальные конденсаторы могут быть любыми малогабаритными керамическими, например типа КЛС, КМ или КТ. Необходимо отметить, что для повышения термостабильности устройства конденсаторы С1, С3-С5 должны иметь ТКЕ не хуже М750 или М1500.

Постоянные резисторы могут быть любыми малогабаритными, например типа МЛТ-0,125. Переменный резистор R4 может иметь сопротивление от 10 до 68 кОм. При этом в качестве такого регулятора не рекомендуется использовать резисторы, механически соединенные с выключателем питания S1.

Катушка L1 контура опорного генератора может быть выполнена на каркасе от катушки контура ПЧ любого малогабаритного транзисторного приемника. Например, в металлодетек-торе И. Нечаева эта катушка намотана на трехсекционном каркасе контура ПЧ радиоприемника «Сокол-403». При этом катушка L1 помещена в броневой сердечник диаметром 8,6 мм из феррита 600НН с подстроечником диаметром 2,8 и длиной 12 мм из такого же феррита. Катушка L1 содержит 200 витков провода ПЭВ-2 диаметром 0,09 мм.

Для изготовления поисковой катушки L2 рекомендуется использовать отрезок медной или алюминиевой трубки с внутренним диаметром 6-8 мм и длиной около 950 мм. Внутри трубки следует протянуть жгут из 18 отрезков провода МГТФ диаметром 0,07 мм, предварительно протянутых в полихлорвиниловую трубку. Дюралюминиевую трубку с находящимися в ней проводами надо изогнуть по шаблону в кольцо диаметром около 300 мм. Конец провода, являющийся началом первого витка, следует припаять к соответствующему выводу конденсатора С4, начало второго витка — к концу первого витка и так далее. Конец последнего витка припаивается к соответствующему выводу конденсатора С5. В результате получится катушка, содержащая 18 витков и имеющая индуктивность примерно 350 мкГ.

При изготовлении катушки L2 нужно особенно следить за тем, чтобы не произошло замыкания концов экранирующей трубки, поскольку в этом случае образуется короткозамкнутый виток.

Вместо тонкостенной трубки для изготовления экрана можно использовать и обычную алюминиевую фольгу. В этом случае дополнительную жесткость конструкции катушки L2 можно придать, если расположить ее между двумя дисками из фанеры или гетинакса соответствующих размеров.

В качестве источника звуковых сигналов следует использовать высокоомные головные телефоны с возможно большим сопротивлением (около 2000 Ом). Подойдут, например, широко известные телефоны ТА-4 или ТОН-2. При использовании низкоомных телефонов металло-искатель следует дополнить каскадом на транзисторе КТ315Б, установив резистор R3 сопротивлением 10 кОм, а конденсатор С6 — емкостью 1000 пФ.

В качестве источника питания В1 можно использовать, например, батарейку «Крона» или две батарейки типа 3336Л, соединенные последовательно.

Печатная плата с расположенными на ней элементами и источник питания размещаются в любом подходящем металлическом корпусе. На крышке корпуса устанавливаются переменный резистор R4, разъем Х1 для подключения головных телефонов BF1, разъем Х2 для подключения поисковой катушки L2 и выключатель S1.

Налаживание

Как и при регулировке других металлоискателей, налаживание данного прибора следует проводить в условиях, когда металлические предметы удалены от поисковой катушки L2 на расстояние не менее одного метра.

Сначала необходимо настроить рабочую частоту опорного генератора. Для этого первоначально частота опорного генератора устанавливается равной рабочей частоте измерительного генератора с помощью регулировки положения подстроечного сердечника катушки L1 до полного пропадания звукового сигнала в головных телефонах, то есть до установки нулевых биений. Предварительно ротор конденсатора С2 следует установить примерно в среднее положение. В результате при незначительном повороте ручки конденсатора С2 в любую сторону в телефонах должен появляться звук низкого тона. При необходимости для настройки частоты опорного генератора можно воспользоваться частотомером или осциллографом.

Рекомендуемая разность частот опорного и измерительного генераторов должна составлять 400-500 Гц. При этом частота опорного генератора должна быть выше частоты измерительного генератора. Выбор столь высокого значения разностной частоты объясняется тем, что оба генератора, опорный и измерительный, выполнены на элементах одного общего кристалла микросхемы, и поэтому между ними неизбежно возникают паразитные связи, устранить которые практически невозможно. Этот факт и вынуждает использовать в данном металлоискателе биения частотой более 100-300 Гц, что неизбежно приводит к снижению его чувствительности.

Порядок работы

При безошибочном монтаже, исправных деталях и правильной регулировке рассматриваемый металлоискатель готов к работе сразу после окончания настройки.

Перед началом поисковых работ конденсатором С2 желательно установить возможно меньшую частоту биений. Это позволит повысить чувствительность прибора, поскольку обеспечит регистрацию даже небольших изменений частоты измерительного генератора. Однако очень низкую частоту биений выбрать не удастся, потому что на ней громкость звука в телефонах резко понизится.

Если в процессе работы частота сигнала в головных телефонах изменится, то это свидетельствует о наличии в зоне действия поисковой катушки L2 какого-либо металлического предмета. При приближении катушки к предметам из магнитных металлов (например из железа, феррита или никеля) частота сигнала биений будет увеличиваться, а при приближении к предметам из немагнитных металлов (например из алюминия, меди или латуни) — уменьшаться. По изменению тона сигнала биений, имея определенный опыт, можно легко определить, из какого металла, магнитного или немагнитного, изготовлен обнаруженный предмет.

Уровень громкости сигнала в головных телефонах регулируется резистором R4.

Радиосхемы
Схемы электрические принципиальные

Простые конструкции на логической микросхеме К561ЛА7 (К176ЛА7)

категория

Простые радиосхемы начинающим

материалы в категории

В этой статье мы рассмотрим несколько простых электронных устройств на основе логических микросхем К561ЛА7 и К176ЛА7. В принципе эти микросхемы практически одинаковые и имеют одинаковое предназначение. Несмотря на небольшую разницу в неокторых параметрах они практически взаимозаменяемы.

Коротко о микросхеме К561ЛА7

Микросхемы К561ЛА7 и К176ЛА7 представляют собою четыре элемента 2И-НЕ. Конструктивно выполнены они в пластмассовом корпусе черного цвета с 14-ю выводами. Первый вывод микросхемы обозначен в виде метки (так называемый ключ) на корпусе. Это может быть или точка или выемка. Внешний вид микросхем и цоколевка выводов показаны на рисунках.

Питание микросхем составляет 9 Вольт, питающее напряжение подается на выводы: 7 вывод- «общий», 14 вывод- «+».
При монтаже микросхем необходимо быть внимательным с цоколевкой- случайная установка микросхемы «наизнанку» выводит ее из строя. Пайку микросхем желательно производить паяльником мощностью не более 25 Ватт.

Напомним что эти микросхемы назвали «логическими» поэтому что они имеют всего лишь два состояния- или «логический ноль» или «логическая единица». Причем при уровне «единица» подразумевается напряжение близкое к напряжению питания. Следовательно- при уменьшении напряжения питания самой микросхемы и уровень «Логической единицы» будет меньше.
Давайте проведем небольшой эксперимент (рисунок 3)

Сначала превратим элемент микросхемы 2И-НЕ просто в НЕ, соединив для этого входы. На выход микросхемы подключим светодиод, а на вход будем подавать напряжение через переменный резистор, контролируя при этом напряжение. Для того чтобы светодиод загорелся необходимо на выходе микросхемы (это вывод 3) получить напряжение равное логической «1». Контролировать напряжение можно при помощи любого мультиметра включив его в режим измерений постоянного напряжения (на схеме это PA1).
А вот с питанием немного поиграем- сначала подключим одну батарейку 4,5 Вольта.Так как микросхема является инвертором, следовательно для того чтобы получить на выходе микросхемы «1» необходимо наоборот на вход микросхемы подать логический «0». Поэтому начнем наш эксперимент с логической «1»- то есть движок резистора должен быть в верхнем положении. Вращая движок переменного резистора дождемся момента когда загорится светодиод. Напряжение на движке переменного резистора, а следовательно и на входе микросхемы будет примерно около 2,5 Вольт.
Если подключить вторую батарейку, то мы получим уже 9 Вольт, и светодиод у нас в этом случае загорится при напряжении на входе примерно 4 Вольта.

Здесь, кстати, необходимо дать небольшое разъяснение: вполне возможно что в Вашем эксперименте могут быть другие результаты отличные от вышеуказанных. Ничего удивительного в этом нет: во первых двух совершенно одинаковых микросхем не бывает и параметры у них в любом случае будут отличаться, во-вторых логическая микросхема может любое понижение входного сигнала распознать как логический «0», а в нашем случае мы понизили входное напряжение в два раза, ну и в-третьих в данном эксперименте мы пытается заставить работать цифровую микросхему в аналоговом режиме (то есть управляющий сигнал у нас проходит плавно) а микросхема, в свою очередь работает как ей положено- при достижении определенного порога перебрасывает логическое состояние мгновенно. Но ведь и этот самый порог у различных микросхем может отличаться.
Впрочем цель нашего эксперимента была простая- нам необходимо было доказать что логические уровни напрямую зависят от питающего напряжения.
Еще один нюанс: такое возможно лишь с микросхемами серии КМОП которые не очень критичны к питающему напряжению. С микросхемами серии ТТЛ дела обстоят иначе- питание у них играет огромную роль и при эксплуатации допускается отклонение не более чем в 5%

Ну вот, краткое знакомство закончилось, переходим к практике…

Простое реле времени

Схема устройства показана на рисунке 4. Элемент микросхемы здесь включен так-же как и в эксперименте выше: входы замкнуты. Пока кнопка кнопка S1 разомкнута, конденсатор С1 находится в заряженном состоянии и ток через него не протекает. Однако вход микросхемы подключен и к «общему» проводу ( через резистор R1) и поэтому на входе микросхемы будет присутствовать логический «0». Так как элемент микросхемы является инвертором то значит на выходе микросхемы получится логическая «1» и светодиод будет гореть.
Замыкаем кнопку. На входе микросхемы появится логическая «1» и, следовательно, на выходе будет «0», светодиод погаснет. Но при замыкании кнопки и конденсатор С1 мгновенно разрядится. А это значит что после того как мы отпустили кнопку в конденсаторе начнется процесс заряда и пока он будет продолжаться через него будет протекать электрический ток поддерживая уровень логической «1» на входе микросхемы. То есть получится что светодиод не загорится до тем пор пока конденсатор С1 не зарядится. Время заряда конденсатора можно изменять подбором емкости конденсатора или изменением сопротивления резистора R1.

Схема вторая

На первый взгляд практически то же самое что и предыдущая, но кнопка с времязадающим конденсатором включена немного по-другому. И работать она будет тоже немного иначе- в ждущем режиме светодиод не горит, при замыкании кнопки светодиод загорится сразу, а погаснет уже с задержкой.

Простая мигалка

Если включить микросхему как показано на рисунке то мы получим генератор световых импульсов. По сути это самый простой мультивибратор, принцип работы которого был подробно описан на этой странице.
Частота импульсов регулируется резистором R1 (можно даже установить переменный) и конденсатором С1.

Управляемая мигалка

Давайте немного изменим схему мигалки (которая была выше на рисунке 6) введя в нее цепь из уже знакомого нам реле времени- кнопку S1 и конденсатор С2.

Что у нас получится: при замкнутой кнопке S1, на входе элемента D1.1 будет логический «0». Это элемент 2И-НЕ и поэтому не важно что у него творится на втором входе- на выходе в любом случае будет «1».
Эта самая «1» поступит на вход второго элемента (который D1.2 ) и значит на выходе этого элемента будет прочно сидеть логический «0». А раз так то светодиод загорится и будет гореть постоянно.
Как только мы отпустили кнопку S1, начинает заряд конденсатора С2. В течение времени заряда через него будет протекать ток удерживая уровень логического «0» на выводе 2 микросхемы. Как только конденсатор зарядится, ток через него прекратится, мультивибратор начнет работать в своем обычном режиме- светодиод будет мигать.
На следующей схеме также введена эта-же цепочка но включена она уже иначе: при нажатии на кнопку светодиод начнет мигать а по истечение некоторого времени станет гореть постоянно.

Простая пищалка

В этой схеме ничего особо необычного нет: все мы знаем что если к выходу мультивибратора подключить динамик или наушник то он начнет издавать прерывистые звуки. На малых частотах это будет просто «тикание» а на более высоких частотах это будет писк.
Для эксперимента больший интерес представляет схема показанные ниже:

Здесь опять же знакомое нам реле времени- замыкаем кнопку S1, размыкаем ее и через некоторое время устройство начинает пищать.

Радиоконструктор 2000 год, № 2, стр 32- 34.

Выключатель света с таймером

В этой схеме опять применяется все тоже реле времени. Устройство это предназначено для автоматического отключения освещения в тех помещениях где оно используется кратковременно- например в прихожей или кладовой.

При нажатии на кнопку S1 свет включится сразу, но отпустив ее свет будет продолжать гореть еще примерно 2 минуты пока на зарядится конденсатор С1. При необходимости время включения света можно увеличить- для этого можно увеличить емкость конденсатора С1.

Если применять лампу мощностью не более 60 Ватт, то тиристор VS1 можно применять без радиатора что значительно уменьшит размер изделия.
Как упоминалось выше- микросхемы КМОП имеют большое преимущество по сравнению с теми-же ТТЛ, а именно: некритичность к питанию и низкий ток потребления. Поэтому питание микросхемы здесь производится через простейший источник- гасящие резисторы R4, R5 и стабилитрон VD1.

Автор этой схемы- Онисенко Г.П. Публикация из журнала Радиоконструктор 2000 год, № 3, стр 22.

admin

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Наверх