Электрификация

Справочник домашнего мастера

Регулятор оборотов для вентилятора

Автоматический регулятор оборотов кулера


Вентиляторы охлаждения сейчас стоят во многих бытовых приборах, будь то компьютеры, музыкальные центры, домашние кинотеатры. Они хорошо, справляются со своей задачей, охлаждают нагревающиеся элементы, однако издают при этом истошный, и весьма раздражающий шум. Особенно это критично в музыкальных центрах и домашних кинотеатрах, ведь шум вентилятора может помешать наслаждаться любимой музыкой. Производители часто экономят и подключают охлаждающие вентиляторы напрямую к питанию, от чего они вращаются всегда с максимальными оборотами, независимо от того, требуется охлаждение в данный момент, или нет. Решить эту проблему можно достаточно просто – встроить свой собственный автоматический регулятор оборотов кулера. Он будет следить за температурой радиатора и только при необходимости включать охлаждение, а если температура продолжит повышаться, регулятор увеличит обороты кулера вплоть до максимума. Кроме уменьшения шума такое устройство значительно увеличит срок службы самого вентилятора. Использовать его также можно, например, при создании самодельных мощных усилителей, блоков питания или других электронных устройств.

Схема


Схема крайне проста, содержит всего два транзистора, пару резисторов и термистор, но, тем не менее, замечательно работает. М1 на схеме – вентилятор, обороты которого будут регулироваться. Схема предназначена на использование стандартных кулеров на напряжение 12 вольт. VT1 – маломощный n-p-n транзистор, например, КТ3102Б, BC547B, КТ315Б. Здесь желательно использовать транзисторы с коэффициентом усиления 300 и больше. VT2 – мощный n-p-n транзистор, именно он коммутирует вентилятор. Можно применить недорогие отечественные КТ819, КТ829, опять же желательно выбрать транзистор с большим коэффициентом усиления. R1 – терморезистор (также его называют термистором), ключевое звено схемы. Он меняет своё сопротивление в зависимости от температуры. Сюда подойдёт любой NTС-терморезистор сопротивлением 10-200 кОм, например, отечественный ММТ-4. Номинал подстроечного резистора R2 зависит от выбора термистора, он должен быть в 1,5 – 2 раза больше. Этим резистором задаётся порог срабатывания включения вентилятора.

Изготовление регулятора

Схему можно без труда собрать навесным монтажом, а можно изготовить печатную плату, как я и сделал. Для подключения проводов питания и самого вентилятора на плате предусмотрены клеммники, а терморезистор выводится на паре проводков и крепится к радиатору. Для большей теплопроводности прикрепить его нужно, используя термопасту. Плата выполняется методом ЛУТ, ниже представлены несколько фотографий процесса.



Скачать плату:
shema.zip (cкачиваний: 895)
После изготовления платы в неё, как обычно запаиваются детали, сначала мелкие, затем крупные. Стоит обратить внимание на цоколёвку транзисторов, чтобы впаять их правильно. После завершения сборки плату нужно отмыть от остатков флюса, прозвонить дорожки, убедиться в правильности монтажа.

Настройка

Теперь можно подключать к плате вентилятор и осторожно подавать питание, установив подстроечный резистор в минимальное положение (база VT1 подтянута к земле). Вентилятор при этом вращаться не должен. Затем, плавно поворачивая R2, нужно найти такой момент, когда вентилятор начнёт слегка вращаться на минимальных оборотах и повернуть подстроечник совсем чуть-чуть обратно, чтобы он перестал вращаться. Теперь можно проверять работу регулятора – достаточно приложить палец к терморезистору и вентилятор уже снова начнёт вращаться. Таким образом, когда температура радиатора равно комнатной, вентилятор не крутится, но стоит ей подняться хоть чуть-чуть, он сразу же начнёт охлаждать.

Система автоматического управления вентилятором своими руками.

Часто в радиолюбительской практике возникает необходимость охлаждать методом обдува какие-либо мощные активные элементы: регулирующие транзисторы в блоках питания, в выходных каскадах мощных УНЧ, радиолампы в выходных каскадах передатчиков и т.д.

Конечно, проще всего включить вентилятор на полные обороты. Но это не самый лучший выход-шум вентилятора будет напрягать и мешать.

Система автоматического управления вентилятором-вот что может быть выходом из ситуации.

Такая система автоматического управления вентилятором, будет управлять включением/выключением и оборотами вентилятора в зависимости от температуры.

В данной статье предложен простой, бюджетный выход из ситуации…

Итак, некоторое время тому назад знакомый товарищ попросил изготовить ему систему автоматического регулирования оборотов вентилятора охлаждения для зарядного устройства. Поскольку готового решения у меня не было-пришлось поискать что-либо подходящее в интернете.

Всегда руководствуюсь принципом –»делать жизнь как можно проще», поэтому подыскивал схемы попроще, без всяких там микроконтроллеров, которые сейчас суют где надо, и где не надо. Попалась на глаза статья :http://dl2kq.de/pa/1-11.htm. Решено было испытать описанные в ней автоматы управления вентилятором…

Система автоматического управления вентилятором №1.

Принципиальная схема устройства показана ниже:

В данном случае применен вентилятор с рабочим напряжением 12 В.

Схема питается напряжением 15…18 В. Интегральный стабилизатор типа 7805 задает начальное напряжение на вентиляторе. Транзистор VT1 управляет работой интегрального стабилизатора. В качестве датчиков температуры использованы кремниевые транзисторы (VT2 и VT3) в диодном включении.

Схема работает следующим образом: в холодном состоянии датчиков температуры напряжение на них максимально. Транзистор VT1 полностью открыт, напряжение на его коллекторе ( а значит и на выводе 2 интегрального стабилизатора) составляет десятые доли вольта. Напряжение, подаваемое на вентилятор почти равно паспортному выходному напряжению микросхемы LM7805, и вентилятор вращается на небольших оборотах.

По мере прогрева датчиков температуры ( одного любого из них, или обеих) напряжение на базе VT1 начинает уменьшаться. Транзистор VT1 начинает закрываться, напряжение на его коллекторе увеличивается, а соответственно, увеличивается и напряжение на выходе микросхемы LM7805.

Обороты вентилятора также увеличиваются и плавно достигают максимальных. По мере остывания датчиков температуры происходит обратный процесс и обороты вентилятора уменьшаются.

Количество датчиков может быть от одного до нескольких ( мною опробовано три параллельно включенных датчика). Датчики могут быть установлены как рядом друг с другом ( для повышения надежности срабатывания), так и размещены в разных местах.

Изначально данная схема разрабатывалась для применения в мощном ламповом усилителе мощности КВ диапазона, отсюда большое количество блокировочных конденсаторов. При применении данной системы автоматического управления режимом работы вентилятора, скажем, в блоках питания, или в мощных усилителях НЧ блокировочные конденсаторы можно не устанавливать.

Данная схема интересна еще и тем, что датчики температуры могут быть как закреплены на радиаторах мощных транзисторов, диодов и иметь непосредственный тепловой контакт с ними,так и установлены на весу, в потоке теплого воздуха.

В качестве транзисторов VT1…VT3 можно применить любые кремниевые транзисторы в пластиковом корпусе и структуры n-p-n. Мною успешно испытаны транзисторы КТ503, КТ315, КТ3102, S9013, 2N3904. Подстроечный резистор R2 служит для установки минимальных оборотов вентилятора.

При настройке данной системы автоматического управления режимом работы вентилятора подстроечным резистором R2 устанавливают минимальные обороты вентилятора. Затем, нагревая датчик, или датчики, каким-либо источником тепла убеждаются в работоспособности системы и возможность срабатывания её от разных датчиков независимо.

Данная схема достаточно чувствительна-можно настроить её на срабатывание даже от нагевания датчика температуры рукой. Важное замечание. Схема измеряет не абсолютную температуру, а разность температур между переходами транзистора VT1 и датчиков VT2 и VT3. Поэтому плата устройства должна быть размещена в месте, исключающем дополнительный нагрев. Интегральный стабилизатор должен быть снабжен небольшим радиатором.

Система автоматического управления вентилятором №2.

Здесь описано аналогичное устройство, но имеющее некоторые особенности.

Дело вот в чем. Часто бывают случаи, когда система автоматического управления режимом работы вентилятора установлена в изделии, где имеется всего лишь одно питающее напряжение -12В, но и вентилятор рассчитан на работу от напряжения 12 В.

Для достижения максимальных оборотов вентилятора необходимо подать на него полное напряжение,или, другими словами, регулирующий элемент системы автоматического управления режимом работы вентилятора должен иметь практически близкое к нулю падение напряжения на нем. И в этом смысле схема, описание которой изложено выше, не подходит.

В этом случае применимо другое устройство, схема которого представлена ниже:

Регулирующим элементом служит полевой транзистор с очень низким сопротивлением канала в открытом состоянии. Мною использован транзистор типа PHD55N03.

Он имеет следующие характеристики: максимальное напряжение сток-исток -25 В, максимальный ток стока- 55 А, сопротивлением канала в открытом состоянии -0,14 мОм.

Подобные транзисторы применяются на материнских платах и платах видеокарт. Я добыл этот транзистор на старой материнской плате:

Цоколевка этого транзистора:

Именно очень низкое сопротивление канала в открытом состоянии и позволяет приложить к вентилятору практически полное напряжение питания.

В этой схеме датчиком температуры служит терморезистор R1 номиналом 10 кОм. Терморезистор должен быть с отрицательным температурным коэффициентом сопротивления ( типа NTC).

Номинал терморезистора R1 может быть от 10 до 100 кОм, соответственно нужно изменить и номинал подстроечного резистора R2. Так, для терморезистора номиналом 100 кОм, сопротивление подстроечного резистора R2 должно быть 51 или 68 кОм. Подстроечным резистором R2 в данной схеме устанавливается порог срабатывания схемы.

Данная схема работает по принципу термоуправляемого реле: вентилятор включен/выключен в зависимости от температуры датчика.

Конструктивно, терморезистор R1 размещается на радиаторе транзисторов, которые обдувает вентилятор. Подстроечным резистором R2 при настройке схемы добиваются старта вентилятора при пороговой (начальной) температуре.

В качестве VT1 подойдет любой полевой транзистор с напряжением стока выше 20 В и сопротивлением канала в открытом состоянии менее 0,5 Ома.

Если напряжение питания не стабилизировано, то порог срабатывания схемы будет плавать, со всеми вытекающими последствиями. В этом случае полезно будет запитать терморезистор от стабильного источника питания, например -78L09.

Ниже приведен модернизированный вариант этой схемы. В данной схеме предусмотрена возможность независимой регулировки как минимальных оборотов при нормальной температуре, так и температуру, с которой обороты вентилятора начинают увеличиваться.

Здесь цепь R5, R6,VD2 позволяет установить минимальные обороты вентилятора при нормальной ( начальной) температуре при помощи подстроечного резистора R5. А резистором R7 устанавливают температуру, с которой вентилятор переходит на повышенные обороты.

Как и в предыдущих схемах, блокировочные конденсаторы необходимы при эксплуатации устройства в условиях воздействия мощных высокочастотных наводок-например ламповый усилитель мощности КВ диапазона. В других случаях в их установке нет необходимости.

Терморезисторов-датчиков температуры может быть несколько и установленных в разных местах. Вентиляторов тоже может быть несколько. В этом случае возможно ( но необязательно) будет необходимым предусмотреть небольшой радиатор для регулирующего транзистора.

Вид собранной платы системы автоматического управления обдувом, управляющий транзистор установлен со стороны печатных проводников:

Печатная плата, вид со стороны проводящих дорожек:

Все три схемы, приведенные в этой статье мною опробованы и продемонстрировали надежную и стабильную работу.

Обновление от 13.01.2020

Изготовил еще два варианта подобных регуляторов. Без использования терморезисторов.

Управляем кулером (термоконтроль вентиляторов на практике)

Тем, кто использует компьютер каждый день (и особенно каждую ночь), очень близка идея Silent PC. Этой теме посвящено много публикаций, однако на сегодняшний день проблема шума, производимого компьютером, далека от решения. Одним из главных источников шума в компьютере является процессорный кулер.

При использовании программных средств охлаждения, таких как CpuIdle, Waterfall и прочих, или же при работе в операционных системах Windows NT/2000/XP и Windows 98SE средняя температура процессора в Idle-режиме значительно понижается. Однако вентилятор кулера этого не знает и продолжает трудиться в полную силу с максимальным уровнем шума. Конечно, существуют специальные утилиты (SpeedFan, например), которые умеют управлять оборотами вентиляторов. Однако работают такие программы далеко не на всех материнских платах. Но даже если и работают, то, можно сказать, не очень разумно. Так, на этапе загрузки компьютера даже при относительно холодном процессоре вентилятор работает на своих максимальных оборотах.

Выход из положения на самом деле прост: для управления оборотами крыльчатки вентилятора можно соорудить аналоговый регулятор с отдельным термодатчиком, закрепленным на радиаторе кулера. Вообще говоря, существует бесчисленное множество схемотехнических решений для таких терморегуляторов. Но нашего внимания заслуживают две наиболее простых схемы термоконтроля, с которыми мы сейчас и разберемся.

Описание

Если кулер не имеет выхода таходатчика (или же этот выход просто не используется), можно построить самую простую схему, которая содержит минимальное количество деталей (рис. 1).

Рис. 1. Принципиальная схема первого варианта терморегулятора

Ещё со времен «четверок» использовался регулятор, собранный по такой схеме. Построен он на основе микросхемы компаратора LM311 (отечественный аналог — КР554СА3). Несмотря на то, что применен компаратор, регулятор обеспечивает линейное, а не ключевое регулирование. Может возникнуть резонный вопрос: «Как так получилось, что для линейного регулирования применяется компаратор, а не операционный усилитель?». Ну, причин этому есть несколько. Во-первых, данный компаратор имеет относительно мощный выход с открытым коллектором, что позволяет подключать к нему вентилятор без дополнительных транзисторов. Во-вторых, благодаря тому, что входной каскад построен на p-n-p транзисторах, которые включены по схеме с общим коллектором, даже при однополярном питании можно работать с низкими входными напряжениями, находящимися практически на потенциале земли. Так, при использовании диода в качестве термодатчика нужно работать при потенциалах входов всего 0.7 В, что не позволяют большинство операционных усилителей. В-третьих, любой компаратор можно охватить отрицательной обратной связью, тогда он будет работать так, как работают операционные усилители (кстати, именно такое включение и использовано).

В качестве датчика температуры очень часто применяют диоды. У кремниевого диода p-n переход имеет температурный коэффициент напряжения примерно -2.3 мВ/°C, а прямое падение напряжения — порядка 0.7 В. Большинство диодов имеют корпус, совсем неподходящий для их закрепления на радиаторе. В то же время некоторые транзисторы специально приспособлены для этого. Одними из таких являются отечественные транзисторы КТ814 и КТ815. Если подобный транзистор привинтить к радиатору, коллектор транзистора окажется с ним электрически соединенным. Чтобы избежать неприятностей, в схеме, где этот транзистор используется, коллектор должен быть заземлен. Исходя из этого, для нашего термодатчика нужен p-n-p транзистор, например, КТ814.

Можно, конечно, просто использовать один из переходов транзистора как диод. Но здесь мы можем проявить смекалку и поступить более хитро 🙂 Дело в том, что температурный коэффициент у диода относительно низкий, а измерять маленькие изменения напряжения достаточно тяжело. Тут вмешиваются и шумы, и помехи, и нестабильность питающего напряжения. Поэтому часто, для того чтобы повысить температурный коэффициент датчика температуры, используют цепочку последовательно включенных диодов. У такой цепочки температурный коэффициент и прямое падение напряжения увеличиваются пропорционально количеству включенных диодов. Но ведь у нас не диод, а целый транзистор! Действительно, добавив всего два резистора, можно соорудить на транзисторе двухполюсник, поведение которого будет эквивалентно поведению цепочки диодов. Что и сделано в описываемом терморегуляторе.

Температурный коэффициент такого датчика определяется отношением резисторов R2 и R3 и равен Tcvd*(R3/R2+1), где Tcvd — температурный коэффициент одного p-n перехода. Повышать отношение резисторов до бесконечности нельзя, так как вместе с температурным коэффициентом растет и прямое падение напряжения, которое запросто может достигнуть напряжения питания, и тогда схема работать уже не будет. В описываемом регуляторе температурный коэффициент выбран равным примерно -20 мВ/°C, при этом прямое падение напряжения составляет около 6 В.

Датчик температуры VT1R2R3 включен в измерительный мост, который образован резисторами R1, R4, R5, R6. Питается мост от параметрического стабилизатора напряжения VD1R7. Необходимость применения стабилизатора вызвана тем, что напряжение питания +12 В внутри компьютера довольно нестабильное (в импульсном источнике питания осуществляется лишь групповая стабилизация выходных уровней +5 В и +12 В).

Напряжение разбаланса измерительного моста прикладывается к входам компаратора, который используется в линейном режиме благодаря действию отрицательной обратной связи. Подстроечный резистор R5 позволяет смещать регулировочную характеристику, а изменение номинала резистора обратной связи R8 позволяет менять ее наклон. Емкости C1 и C2 обеспечивают устойчивость регулятора.

Смонтирован регулятор на макетной плате, которая представляет собой кусочек одностороннего фольгированного стеклотекстолита (рис.2).

Рис. 2. Монтажная схема первого варианта терморегулятора

Для уменьшения габаритов платы желательно использовать SMD-элементы. Хотя, в принципе, можно обойтись и обычными элементами. Плата закрепляется на радиаторе кулера с помощью винта крепления транзистора VT1. Для этого в радиаторе следует проделать отверстие, в котором желательно нарезать резьбу М3. В крайнем случае, можно использовать винт и гайку. При выборе места на радиаторе для закрепления платы нужно позаботиться о доступности подстроечного резистора, когда радиатор будет находиться внутри компьютера. Таким способом можно прикрепить плату только к радиаторам «классической» конструкции, а вот крепление ее к радиаторам цилиндрической формы (например, как у Orb-ов) может вызвать проблемы. Хороший тепловой контакт с радиатором должен иметь только транзистор термодатчика. Поэтому если вся плата целиком не умещается на радиаторе, можно ограничится установкой на нем одного транзистора, который в этом случае подключают к плате с помощью проводов. Саму плату можно расположить в любом удобном месте. Закрепить транзистор на радиаторе несложно, можно даже просто вставить его между ребер, обеспечив тепловой контакт с помощью теплопроводящей пасты. Еще одним способом крепления является применение клея с хорошей теплопроводностью.

При установке транзистора термодатчика на радиатор, последний оказывается соединенным с землей. Но на практике это не вызывает особых затруднений, по крайней мере, в системах с процессорами Celeron и PentiumIII (часть их кристалла, соприкасающаяся с радиатором, не имеет электрической проводимости).

Электрически плата включается в разрыв проводов вентилятора. При желании можно даже установить разъемы, чтобы не разрезать провода. Правильно собранная схема практически не требует настройки: нужно лишь подстроечным резистором R5 установить требуемую частоту вращения крыльчатки вентилятора, соответствующую текущей температуре. На практике у каждого конкретного вентилятора существует минимальное напряжение питания, при котором начинает вращаться крыльчатка. Настраивая регулятор, можно добиться вращения вентилятора на минимально возможных оборотах при температуре радиатора, скажем, близкой к окружающей. Тем не менее, учитывая то, что тепловое сопротивление разных радиаторов сильно отличается, может потребоваться корректировка наклона характеристики регулирования. Наклон характеристики задается номиналом резистора R8. Номинал резистора может лежать в пределах от 100 К до 1 М. Чем больше этот номинал, тем при более низкой температуре радиатора вентилятор будет достигать максимальных оборотов. На практике очень часто загрузка процессора составляет считанные проценты. Это наблюдается, например, при работе в текстовых редакторах. При использовании программного кулера в такие моменты вентилятор может работать на значительно сниженных оборотах. Именно это и должен обеспечивать регулятор. Однако при увеличении загрузки процессора его температура поднимается, и регулятор должен постепенно поднять напряжение питания вентилятора до максимального, не допустив перегрева процессора. Температура радиатора, когда достигаются полные обороты вентилятора, не должна быть очень высокой. Конкретные рекомендации дать сложно, но, по крайней мере, эта температура должна «отставать» на 5 — 10 градусов от критической, когда уже нарушается стабильность системы.

Да, еще один момент. Первое включение схемы желательно производить от какого-либо внешнего источника питания. Иначе, в случае наличия в схеме короткого замыкания, подключение схемы к разъему материнской платы может вызвать ее повреждение.

Теперь второй вариант схемы. Если вентилятор оборудован таходатчиком, то уже нельзя включать регулирующий транзистор в «земляной» провод вентилятора. Поэтому внутренний транзистор компаратора здесь не подходит. В этом случае требуется дополнительный транзистор, который будет производить регулирование по цепи +12 В вентилятора. В принципе, можно было просто немного доработать схему на компараторе, но для разнообразия была сделана схема, собранная на транзисторах, которая оказалась по объему даже меньше (рис. 3).

Рис. 3. Принципиальная схема второго варианта терморегулятора

Поскольку размещенная на радиаторе плата нагревается вся целиком, то предсказать поведение транзисторной схемы довольно сложно. Поэтому понадобилось предварительное моделирование схемы с помощью пакета PSpice. Результат моделирования показан на рис. 4.


Рис. 4. Результат моделирования схемы в пакете PSpice

Как видно из рисунка, напряжение питания вентилятора линейно повышается от 4 В при 25°C до 12 В при 58°C. Такое поведение регулятора, в общем, соответствует нашим требованиям, и на этом этап моделирования был завершен.

Принципиальные схемы этих двух вариантов терморегулятора имеют много общего. В частности, датчик температуры и измерительный мост совершенно идентичны. Разница заключается лишь в усилителе напряжения разбаланса моста. Во втором варианте это напряжение поступает на каскад на транзисторе VT2. База транзистора является инвертирующим входом усилителя, а эмиттер — неинвертирующим. Далее сигнал поступает на второй усилительный каскад на транзисторе VT3, затем на выходной каскад на транзисторе VT4. Назначение емкостей такое же, как и в первом варианте. Ну, а монтажная схема регулятора показана на рис. 5.

Рис. 5. Монтажная схема второго варианта терморегулятора

Конструкция аналогична первому варианту, за исключением того, что плата имеет немного меньшие размеры. В схеме можно применить обычные (не SMD) элементы, а транзисторы — любые маломощные, так как ток, потребляемый вентиляторами, обычно не превышает 100 мА. Замечу, что эту схему можно использовать и для управления вентиляторами с большим значением потребляемого тока, но в этом случае транзистор VT4 необходимо заменить на более мощный. Что же касается вывода тахометра, то сигнал тахогенератора TG напрямую проходит через плату регулятора и поступает на разъем материнской платы. Методика настройки второго варианта регулятора ничем не отличается от методики, приведенной для первого варианта. Только в этом варианте настройку производят подстроечным резистором R7, а наклон характеристики задается номиналом резистора R12.

Выводы

Практическое использование терморегулятора (совместно с программными средствами охлаждения) показало его высокую эффективность в плане снижения шума, производимого кулером. Однако и сам кулер должен быть достаточно эффективным. Например, в системе с процессором Celeron566, работающем на частоте 850 МГц, боксовый кулер уже не обеспечивал достаточной эффективности охлаждения, поэтому даже при средней загрузке процессора регулятор поднимал напряжение питания кулера до максимального значения. Ситуация исправилась после замены вентилятора на более производительный, с увеличенным диаметром лопастей. Сейчас полные обороты вентилятор набирает только при длительной работе процессора с практически 100% загрузкой.

Нередко в домашнем хозяйстве требуется установка регулятора скорости вращения вентилятора. Сразу следует отметить, что обычный диммер для регулировки яркости освещения не подойдет для вентилятора. Современному электродвигателю, особенно асинхронному, важно иметь на входе правильной формы синусоиду, но обычные диммеры для освещения искажают ее довольно сильно. Для эффективной и правильной организации регулировки скорости вентиляторов необходимо:

  1. Использовать специальные регуляторы, предназначенные для вентиляторов.
  2. Учитывайте, что эффективно и безопасно регулировке поддаются только специальные модели асинхронных электромоторов, поэтому перед покупкой узнавайте из технических характеристик о возможности регулировки числа оборотов методом понижения напряжения.

Способы регулировки скорости вращения бытовых вентиляторов

Существует достаточно много различных способов регулировки частоты вращения вентилятора, но практически применяются в домашних условиях только два из них. В любом случае Вы сможете только понизить число оборотов вращения двигателя только ниже максимально возможной по паспорту к устройству.

Разогнать электродвигатель возможно только с использованием частотного регулятора, но он не применяется в быту, потому что у него высокая как собственная стоимость, так и цена на услугу по его установке и наладке. Все это делают использование частотного регулятора не рациональным в домашних условиях.

К одному регулятору допускается подключение нескольких вентиляторов, если только их суммарная мощность не будет превышать величину номинального тока регулятора. Учитывайте при выборе регулятора, что пусковой ток электродвигателя в несколько раз выше рабочего.

Способы регулировки вентиляторов в быту:

  1. С использованием симисторного регулятора скорости вентилятора- это самый распространенный способ, позволяющий постепенно увеличивать или уменьшать скорость вращения в пределах от 0 до 100 %.
  2. Если электродвигатель вентилятора на 220 Вольт оборудован термозащитой (защитой от перегрева), тогда для управления оборотами применяется тиристорный регулятор.
  3. Наиболее эффективным методом регулировки скорости вращения электродвигателя является применение моторов с несколькими выводами обмоток. Но многоскоростные электродвигатели в бытовых вентиляторах Я пока не встречал. Но В интернете можно найти схемы подключения для них.

Очень часто электродвигатель гудит на низких оборотах при использовании первых двух методов регулировки- старайтесь не эксплуатировать долго вентилятор в таком режиме. Если снять крышку, то при помощи находящегося под ней специального регулятора, Вы сможете, его вращая, установить нижний предел частоты вращения мотора.

Схема подключения симисторного или тиристорного регулятора скорости вентилятора

Практически во всех регуляторах стоят внутри плавкие ставки, защищающие их от токов перегрузки или короткого замыкания, при возникновении которых она перегорает. Для восстановления работоспособности необходимо будет заменить или отремонтировать плавкую ставку.

Подключается регулятор довольно просто, как обычный выключатель. На первый контакт (с изображением стрелки) подключается фаза от электропроводки квартиры. На второй (с изображением стрелки в обратном направлении) при необходимости подключается прямой вывод фазы без регулировки. Он используется для включения, например дополнительно освещения при включении вентилятора. На пятый контакт (с изображением наклонной стрелки и синусоиды) подключается фаза, отходящая на вентилятор. При использовании такой схемы необходимо использовать для подключения распределительную коробку, с которой Ноль и при необходимости Земля заводятся напрямую на вентилятор, минуя сам регулятор, для подключения которого понадобится всего-то 2 провода.

Но если распределительная коробка электропроводки находится далеко, а сам регулятор стоит рядом с вентилятором, тогда рекомендую использовать вторую схему. На регулятор приходит кабель электропитания, а затем с него уходит сразу на вентилятор. Фазные провода подключаются аналогично. А 2 нуля садятся на контакты № 3 и № 4 в любой последовательности.

Подключение регулятора скорости вращения вентилятора довольно просто сделать и своими руками, не вызывая специалистов. Обязательно изучите и всегда соблюдайте правила электробезопасности- работайте только на обесточенном участке электропроводки.

На просторах Интернета и страницах нашего журнала можно встретить много описаний усилителей мощности. Некоторые из них на одной или на двух микросхемах (включённых, например, по мостовой схеме) собраны из нескольких деталей и обеспечивают выходную мощность до 100 Вт и более. Принудительное охлаждение для таких конструкций применяют редко, если они предназначены только для домашнего оборудования. Но иногда возникает соблазн использовать эти усилители для озвучивания небольших репетиционных студий, дискотечных или даже концертных площадок.

Однако, работая в тех же репетиционных студиях, музыканты не всегда используют полную мощность усилителя. А если таких усилителей оказывается не один и не два, а существенно больше (часто по одному каналу на инструмент), то все работающие вентиляторы создают только лишний шум. В этих обстоятельствах автоматическое управление скоростью работы вентиляторов принудительного обдува оказывается чрезвычайно привлекательным.
Схема такого управляющего устройства для вентилятора, питающегося постоянным напряжением, приведена на рис. l. Функцию датчика температуры здесь выполняет транзистор VT’l . Когда температура его эмиттерного перехода повышается до некоторого порогового значения, при котором напряжение с выхода делителя R1-R3 оказывается достаточным для открывания этого транзистора, тогда открываются транзисторы VT2, VT3, последний из них управляет нагрузкой — электродвигателем М1 вентилятора. Регулировкой сопротивления подстроечного резистора R2 можно изменять пороговое значение температуры в довольно широких пределах – до 100 °С и выше.

Узел управления питается от источника (диод VD2 и конденсатор С2), подключённого к маломощной обмотке сетевого трансформатора. Стабилитрон VD1 и резистор R7 образуют параметрический стабилизатор, устраняющий зависимость порогового значения температуры от скачков сетевого напряжения. Напряжение питания самого вентилятора здесь не стабилизировано: транзистор VT3 с обмоткой электродвигателя подключены параллельно конденсатору С2, сглаживающему пульсации, поэтому небольшое влияние изменения напряжения питания остаётся.

Налаживание устройства заключается в следующем. Нагрев термодатчик до необходимой температуры, соответствующей порогу срабатывания, включают питание устройства. Если лопасти вентилятора пришли в движение, следует плавно увеличивать сопротивление резистора R2 до тех пор, пока не снизятся обороты. Если после включения вентилятор не начал вращаться, сопротивление R2 следует уменьшать, пока вентилятор не запустится. При большем нагреве термодатчика скорость вращения вентилятора должна возрастать, а при остывании вентилятор должен выключаться. Следует помнить, что датчик обладает некоторой инерционностью: он не сразу нагревается и не сразу остывает.

Все используемые резисторы в регуляторе — МЛТ, ВС или аналогичные. Подстроечный резистор — многооборотный из серии СП5-2 или импортный аналог. Транзисторы можно использовать с любым буквенным индексом и заменять аналогами. Конденсаторы —любые оксидные. Стабилитрон можно заменить другим, например, Д814Г, Д811 или импортным с напряжением стабилизации 9…11 В. Диод VD2 — любой с током выпрямления, достаточным для обеспечения питания вентилятора с запасом не менее 100 мА.

Выпрямитель подключается к вторичной обмотке сетевого трансформатора, питающего усилитель. Мощность этой обмотки должна с запасом превышать мощность электродвигателя. В радиолюбительской практике сетевые трансформаторы, удовлетворяющие этим требованиям, встречаются достаточно часто: подойдут ТС-80-7, ТС-100-10 или более мощные ТТП120, ТТП150 и др.
Следует заметить, что напряжение на электродвигателе зависит от температуры не только термодатчика, но и от остальных транзисторов. Если сильно нагреть транзистор VT2 или VT3, может оказаться, что пороговая температура включения снизилась. Поэтому монтаж устройства лучше выполнить на отдельной плате и устанавливать её на обдуваемый теплоотвод вместе с транзистором-термодатчиком, но не со стороны воздушного потока, идущего от вентилятора (или к нему). Причём транзистор VT3 нужно также установить на этот теплоотвод.


Чертёж предлагаемого автором варианта печатной платы изображён на рис. 2, а на фото рис. 3 показано готовое устройство. Монтаж выполнен на плате из фольгированного стеклотекстолита размерами 56×23 мм. Плату следует закрепить на теплоотводе для мощных транзисторов или микросхем УМЗЧ, это можно сделать посредством впаянного в плату транзистора VT3 без использования дополнительного крепления. Транзистор VT1 следует плотно прижать к теплоотводу. Для лучшего теплового контакта обоих транзисторов рекомендуется использовать термопасту. Следует также учесть, что в зависимости от особенностей конструкции УМЗЧ, возможно, потребуется изолировать транзистор VT3 от теплоотвода.

Можно расположить устройство и на другой плате (к примеру, блока питания), но тогда нужно позаботиться об охлаждении транзистора VT3; при работе вентилятора он будет нагреваться.
Напряжение питания устройства можно увеличить, если вентилятору нужно большее напряжение. В этом случае сопротивление резистора R7 (и, возможно, его мощность), а также номинальные значения напряжений всех оксидных конденсаторов следует соответственно увеличить. Автором было сконструировано несколько вариантов устройства, одно из которых работает с вентилятором на напряжение 24 В, которое получается после выпрямления переменного напряжения, подводимого от обмотки трансформатора напряжением 18…20 В, и единственное отличие от описываемого в том, что сопротивление резистора R7 увеличено вдвое. Кроме того, питать устройство можно и от источника постоянного напряжения, в том числе стабилизированного. Тогда следует удалить диод VD2 и конденсатор С2. В случае наличия стабилизатора его ток должен быть достаточным для питания двигателя.
На страницах журнала можно встретить описания и других устройств, решающих подобную задачу . Первое из них управляется выходным сигналом УМЗЧ, а не температурой, и в обозначенных выше условиях оказывается неприменимым: инструментальные усилители в репетиционных студиях и на концертных площадках работают от одного инструмента (или небольшого их числа) с интервалами, что в данном случае связано с ритмическим рисунком исполняемых музыкантами партий и пауз. В сравнении со вторым упомянутым устройством представленный здесь вариант использует более распространённую элементную базу, обычно имеющуюся в радиолюбительской лаборатории.

Один из вариантов предлагаемого устройства используется для охлаждения бас-гитарного усилителя, выполненного на двух микросхемах TDA7294. Его мощность, измеренная в процессе тестирования, составляет чуть более 100 Вт на нагрузке сопротивлением 8 Ом. Устройство управления кулером питается от маломощной вторичной обмотки напряжением -13 В сетевого трансформатора. Используемый вентилятор рассчитан на 12В и установлен вблизи теплоотвода на выдув. Другой вариант сконструирован для охлаждения двухканального УМЗЧ на микросхемах TDA7293. Микросхемы обоих каналов в нём установлены на общий теплоотвод, который охлаждается вентилятором (на 24 В). Эффективность и работоспособность устройства подтверждена в процессе длительной эксплуатации усилителей на репетиционной студии при различных температурных условиях и уровнях громкости.

Некоторые вентиляторы импортного производства (кулеры), которые встречаются в магазинах электроники, обладают одной особенностью: при напряжении питания, несколько меньшем напряжения включения, они издают характерный негромкий звук, похожий на писк. Высота этого писка зависит от поданного напряжения. Решить эту проблему можно, например, включив такой вентилятор через реле с замыкающими контактами. Конечно, в этом случае плавной регулировки скорости вращения не будет.
Понятно, что в качестве нагрузки можно использовать не только вентилятор. Реле — простейший альтернативный пример. Можно аналогичным образом организовать индикацию перегрева, ограничение громкости или отключение усилителя и т. д. И вообще, такое устройство — элемент контроля системы охлаждения.

М. Карпушин, г. Новосибирск
«Радио» №8 2012г.

Простой регулятор скорости вентилятора (12В)

Основной проблемой вентиляторов, которые охлаждают ту или иную часть компьютера, является повышенный уровень шума. Основы электроники и имеющиеся материалы помогут нам решить эту проблему своими силами. В этой статье предоставлена схема подключения для регулировки оборотов вентилятора и фотографии как выглядит самодельный регулятор скорости вращения.

Нужно отметить, что количество оборотов в первую очередь зависит от уровня подаваемого на него напряжения. Уменьшая уровень подаваемого напряжения, уменьшается как шум, так и число оборотов.

Схема подключения:

Вот какие детали нам пригодятся: один транзистор и два резистора.

Что касается транзистора, то берите КТ815 или КТ817, также можно использовать мощнее КТ819.

Выбор транзистора зависит от мощности вентилятора. В основном используются простые вентиляторы постоянного тока с напряжением 12 Вольт.

Резисторы нужно брать с такими параметрами: первый постоянный (1кОм), а второй переменный (от 1кОм до 5кОм) для регулировки скорости оборотов вентилятора.

Имея входное напряжение (12 Вольт), выходное напряжение можно регулировать, вращая движковую часть резистора R2. Как правило, при напряжении 5 Вольт или ниже, вентилятор перестает шуметь.

3 лучшие схемы регуляторов скорости вентиляторов

Рассмотрим ТОП-3 рабочих схемы регулятора скорости вращения вентилятора. Каждая схема не только проверена, но и отлично подойдёт для воплощения начинающими радиолюбителями. К каждой схеме прилагается список необходимых компонентов для монтажа своими руками и пошаговые рекомендации.

Регулятор скорости вентилятора — простая схема

Предлагаемая ниже схема обеспечивает простую регулировку оборотов вентилятора без контроля оборотов. В устройстве использованы отечественные транзисторы КТ361 и КТ814. Конструктивно плата размещается непосредственно в блоке питания, на одном из радиаторов. Она имеет дополнительные посадочные места для подключения второго датчика (внешнего) и возможность добавить стабилитрон, ограничивающий минимальное напряжение, подаваемое на вентилятор.

  • Схема симисторного регулятора

Список необходимых радиоэлементов:

  • 2 биполярных транзистора — КТ361А и КТ814А.
  • Стабилитрон — 1N4736A (6.8В).
  • Диод.
  • Электролитический конденсатор — 10 мкФ.
  • 8 резисторов — 1х300 Ом, 1х1 кОм, 1х560 Ом, 2х68 кОм, 1х2 кОм, 1х1 кОм, 1х1 МОм.
  • Терморезистор — 10 кОм
  • Вентилятор.

Плата регулятора скорости вентилятора:
Фото готового регулятора скорости вентилятора:

Регулятор вентилятора с датчиком температуры

Как известно, вентилятор в блоках питания компьютеров формата AT вращается с неизменной частотой независимо от температуры корпусов высоковольтных транзисторов. Однако блок питания не всегда отдает в нагрузку максимальную мощность. Пик потребляемой мощности приходится на момент включения компьютера, а следующие максимумы — на время интенсивного дискового обмена.

  • Как сделать управляемую плату регулятора на 1,2–35 В

Если же учесть ещё и тот факт, что мощность блока питания обычно выбирается с запасом даже для максимума энергопотребления, нетрудно прийти к выводу, что большую часть времени он недогружен и принудительное охлаждение теплоотвода высоковольтных транзисторов чрезмерно. Иными словами, вентилятор впустую перекачивает кубометры воздуха, создавая при этом довольно сильный шум и засасывая пыль внутрь корпуса.
Уменьшить износ вентилятора и снизить общий уровень шума, создаваемого компьютером можно, применив автоматический регулятор частоты вращения вентилятора, схема которого показана на рисунке. Датчиком температуры служат германиевые диоды VD1–VD4, включенные в обратном направлении в цепь базы составного транзистора VT1VT2. Выбор в качестве датчика диодов обусловлен тем, что зависимость обратного тока от температуры имеет более выраженный характер, чем аналогичная зависимость сопротивления терморезисторов. Кроме того, стеклянный корпус указанных диодов позволяет обойтись без каких-либо диэлектрических прокладок при установке на теплоотводе транзисторов блока питания.
Необходимые радиодетали:
Резистор R1 исключает возможность выхода из строя транзисторов VT1, VT2 в случае теплового пробоя диодов (например, при заклинивании электродвигателя вентилятора). Его сопротивление выбирают, исходя из предельно допустимого значения тока базы VT1. Резистор R2 определяет порог срабатывания регулятора.
Следует отметить, что число диодов датчика температуры зависит от статического коэффициента передачи тока составного транзистора VT1, VT2. Если при указанном на схеме сопротивлении резистора R2, комнатной температуре и включенном питании крыльчатка вентилятора неподвижна, число диодов следует увеличить.
Необходимо добиться того, чтобы после подачи напряжения питания она уверенно начинала вращаться с небольшой частотой. Естественно, если при четырех диодах датчика частота вращения окажется значительно больше требуемой, число диодов следует уменьшить.
Устройство монтируют в корпусе блока питания. Одноименные выводы диодов VD1-VD4 спаивают вместе, расположив их корпусы в одной плоскости вплотную друг к другу. Полученный блок приклеивают клеем БФ-2 (или любым другим термостойким, например, эпоксидным) к теплоотводу высоковольтных транзисторов с обратной стороны. Транзистор VT2 с припаянными к его выводам резисторами R1, R2 и транзистором VT1 устанавливают выводом эмиттера в отверстие «-cooler» платы блока питания.
Налаживание устройства сводится к подбору резистора R2. Временно заменив его переменным (100–150 кОм), подбирают такое сопротивление введенной части, чтобы при номинальной нагрузке (теплоотводы транзисторов блока питания теплые наощупь) вентилятор вращался с небольшой частотой. Во избежание поражения электрическим током (теплоотводы находятся под высоким напряжением!) «измерять» температуру наощупь можно, только выключив компьютер. При правильно отлаженном устройстве вентилятор должен запускаться не сразу после включения компьютера, а спустя 2–3 мин после прогрева транзисторов блока питания.

Схема регулятора скорости вентилятора для уменьшения шума

В отличии от схемы, которая замедляет обороты вентилятора после старта (для уверенного запуска вентилятора), данная схема позволит увеличить эффективность работы вентилятора путем увеличения оборотов при повышении температуры датчика. Схема также позволяет уменьшить шум вентилятора и продлить его срок службы.
Необходимые для сборки детали:
Настройка производится до закрепления термодатчика на радиаторе. Вращая R1, добиваемся, чтобы вентилятор остановился. Затем, вращая в обратную сторону, заставляем его гарантированно запускаться при зажимании терморезистора между пальцами (36 градусов).
Если ваш вентилятор иногда не запускается даже при сильном нагреве (паяльник поднести), то нужно добавить цепочку С1, R2. Тогда R1 выставляем так, чтобы вентилятор гарантированно запускался при подаче напряжения на холодный блок питания. Через несколько секунд после заpяда конденсатора, обороты падали, но полностью вентилятор не останавливался. Теперь закрепляем датчик и проверяем, как все это будет крутится пpи реальной работе.
Rt — любой терморезистор с отрицательным ТКЕ, например, ММТ1 номиналом 10–30 кОм. Терморезистор крепится (приклеивается) через тонкую изолирующую прокладку (лучше слюдяную) к радиатору высоковольтных транзисторов (или к одному из них).
Видео о сборке регулятора оборотов вентилятора:

Здравствуйте!

Согласно ваших данных для получения 0,5А вам понадобится подключить в цепь двигателя сопротивление примерно в 24 Ом. Если обмотки самого двигателя имеют именно такую величину сопротивления, то по ним протекает 0,5А и электрическая машина работает в номинальном режиме. Это значит что ничего не сгорит и не выйдет со строя так как это его нормальная скорость вращения.

Если регулировка скорости вам все таки нужна, приобретите в интернете регулятор на 12В и предел рабочих токов от 0 до 1 или 2А с хорошей рабочей шкалой, приблизительная стоимость подобных устройств составляет от 3 до 20 долларов. В качестве аналога реостату вы можете использовать регулируемый выключатель.

Если вы хотите снизить скорость вращения при помощи подручных средств, то вам совершенно необязательно включать именно реостат, вы можете установить какой-либо стационарный резистор, в достаточной мере снижающий скорость вращения до комфортной. С помощью нескольких резисторов и переключателя на определенное число положений можно реализовать конкретное количество скоростных режимов.

Как выбрать регулятор скорости вращения вентиляторов

Зачем нужен регулятор скорости вращения вентиляторов (реобас)?

Не секрет, что высокопроизводительные микропроцессорные устройства греются при работе: чем больше нагрузка – тем сильнее. Для многих элементов современного компьютера установки на «чип» обычного радиатора уже недостаточно – требуется активный отвод тепла. Проще всего это реализовать с помощью вентилятора (кулера): уже никого не удивляют системные блоки с суммарным числом кулеров в 8-10 шт. Иногда на материнской плате не хватает разъемов для подключения дополнительных вентиляторов, и подключение производится через разветвитель питания или реобас.

Одиночный кулер шумит несильно и электроэнергии потребляет мало. Но если в корпусе их с десяток, шум становится уже некомфортным, да и потребление электроэнергии возрастает до вполне заметных значений.

Чаще всего необходимость изменения скорости вращения вентиляторов связана как раз с избыточной шумностью системного блока. Если эффективность охлаждения системного блока достаточно высока и перегрева каких-либо элементов компьютера не возникает даже при самых высоких нагрузках, можно попробовать снизить скорость вращения некоторых вентиляторов.

Одним из способов такого снижения является использование реобаса – многоканального регулятора скорости вращения вентиляторов.

Но этот способ – не единственный. Большинство современных материнских плат способно регулировать скорость вращения подключенных вентиляторов. Во многих случаях даже не понадобится установки какого-либо программного обеспечения – необходимая функция встроена в BIOS.

В этой модели вход в БИОС выполняется стандартно — кнопкой Del

Для входа в BIOS необходимо при загрузке компьютера нажать определенную клавишу (или сочетание клавиш), чаще всего – Delete. Если по нажатию Delete при загрузке компьютера ничего не происходит, следует посмотреть на нижние строчки экрана при загрузке – там при начале загрузки обычно выводится подсказка, какие именно клавиши следует нажимать для входа в BIOS.

Примеры страниц BIOS с настройками работы вентиляторов

В BIOS следует найти страницу с настройками работы вентиляторов (Fan Speed, Fan Control, Fan Profile и т.п.) Настройки CPU Fan относятся к кулеру процессора, Chassis Fan – к кулеру (или кулерам) корпуса. Настройки кулера процессора следует менять только если вы точно знаете, что делаете и уверены в правильности своих действий – перегрев процессора может привести к выходу его из строя. Настройки кулера корпуса не столь критичны, но бездумно их менять тоже не стоит; будет нелишним перед изменением записать все старые значения.

Для регулировки скорости вращения в первую очередь следует убедиться, что эта функция включена: параметр Q-Fan Control (или Fan Speed Control) должен иметь значение Enabled. При этом становятся доступны параметры тонкой настройки вентилятора – в некоторых BIOS их много, в других меньше. Чаще всего самым простым способом снижения шума (или, наоборот, улучшения охлаждения) является смена профиля (Q-Fan Profile). Для снижения шума следует установить его в Silent, для увеличения охлаждения – в Performance или Turbo.

После сохранения настроек и перезапуска системы следует убедиться, что настроенный кулер крутится и что не происходит перегрева системы, в обратном случае следует вернуть старые настройки BIOS.

Speed Fan — самая популярная программа управления кулерами

Если нужные настройки в BIOS не нашлись, не стоит расстраиваться – чаще всего подключенными к материнской плате вентиляторами можно управлять и с помощью специализированного ПО. Самая популярная из таких программ (и при этом абсолютно бесплатная) – это speed fan. При запуске программы в первой же вкладке будут отображены все найденные вентиляторы, их скорости вращения и температуры элементов компьютера – на них следует ориентироваться при настройке кулеров. Рекомендации по настройке те же – следует с осторожностью оперировать настройками CPU Fan (кулер процессора) и GPU Fan (кулер видеокарты). При изменении скоростей (от 0 до 100%) следует отслеживать воздействие этих изменений на температуру. В программе также можно задать критические температуры для всех элементов и, указав, какой кулер за какую температуру отвечает, запустить режим автоматического регулирования скорости вентиляторов.

Если же ни speed fan, ни другие аналогичные программы «не увидели» вентиляторов, или если вентиляторы вообще подключены не к материнской плате – тогда для настройки их скорости вращения потребуется реобас.

Перед рассмотрением характеристик реобасов следует упомянуть об еще одной, очень частой причине повышенной шумности вентиляторов – забивание кулеров пылью и/или загустевание в них смазки. Если вам кажется, что раньше компьютер шумел меньше, возможно, никаких программ и устройств для снижения шума не потребуется – достаточно будет почистить кулер от пыли и (при необходимости) обновить смазку.

Характеристики регуляторов скорости вращения вентиляторов.

Тип реобаса.

Основная задача разветвителя питания – обеспечить питанием дополнительные вентиляторы, для которых не нашлось разъемов на материнской плате. Разветвитель может и вообще не иметь функции управления скоростью вращения вентиляторов. Если такая функция и есть, то реализована она будет программно.

Регулятор оборотов (реобас) – обладает большей, по сравнению с разветвителем, функциональностью. Кроме подключения дополнительных вентиляторов, реобас предоставляет и некоторые дополнительные возможности, среди которых могут быть:

— контроль и отображение скорости вращения каждого подключенного вентилятора;

— контроль температуры от собственного термодатчика (или нескольких термодатчиков);

— автоматическая или ручная регулировка скоростей вращения вентиляторов;

— контроль и отображение мощности, потребляемой подключенными вентиляторами

Тип управления скоростью вращения может быть ручным или автоматическим.

При ручном управлении скорость вращения задается оператором вручную – с помощью кнопок, ручки регулятора или на сенсорном экране. Несмотря на простоту такого способа управления, удобным он будет только в тех случаях, когда не требуется менять скорость вращения вентиляторов во время работы компьютера. Для подстройки скорости вращения корпусных вентиляторов такой способ еще сгодится, а для управления скоростью вращения кулера процессора – уже нет.

Автоматический тип управления, предусматривающий автоматическое изменение скорости вращения кулера в зависимости от показаний термодатчика, намного удобнее в эксплуатации и обеспечивает лучшие условия работы оборудования. Для управления кулерами элементов, сильно меняющих температуру в зависимости от нагрузки, следует использовать реобасы с автоматическим типом управления.

Количество подключаемых вентиляторов определяет, какое максимальное количество вентиляторов можно подключить к реобасу. Следует иметь в виду, что с ростом количества подключенных вентиляторов, растет и потребляемая устройством мощность; у блока питания компьютера должен быть достаточный запас мощности.

Наличие дисплея с возможностью вывода на него значений температур и скоростей вращения вентиляторов в некоторых случаях может оказаться нелишним. Дисплей может предупредить о приближающемся перегреве или неисправности вентилятора и предотвратить сбой или потерю данных. Для серверов (часто не имеющих своего монитора) такой дисплей будет особенно полезен.

Контроль температуры осуществляется по термодатчикам материнской платы либо по собственным термодатчикам реобаса. В последнем случае следует также выяснить количество каналов измерения температуры (проще говоря, количество термодатчиков). У многих реобасов контроль температуры производится по одному термодатчику. Если к такому реобасу предполагается подключение и кулеров процессора/видеокарты, это может привести к проблемам (если установить датчик у процессора, он может «не заметить» перегрева видеокарты и наоборот). Реобасы с несколькими термодатчиками стоят дороже, но в случаях, аналогичных вышеприведенному, на этом экономить не стоит.

Разъемы для подключения вентиляторов могут быть 2-pin 3-pin и 4-pin.

2-pin и 3-pin разъемы предполагают управление скоростью вращения вентилятора с помощью изменения его напряжения питания. Этот наиболее простой способ, поэтому реализующие его реобасы и вентиляторы недороги. Недостатками этого способа является невысокая точность задания частоты вращения и снижение крутящего момента со снижением напряжения. Вентиляторы с 3-pin разъемом вообще не могут крутиться медленнее некоторого порогового значения – крутящий момент становится настолько мал, что его не хватает для проворота крыльчатки. Для корпусных вентиляторов и вентиляторов жестких дисков такие вентиляторы подойдут, но на процессоры уже давно принято ставить вентиляторы, подключаемые 4-pin разъемом.

4-pin разъемы предполагают управление скоростью вращения вентилятора с помощью широтно-импульсной модуляции (ШИМ). При этом питание на вентилятор подается полное — 12 вольт – но не постоянно, а импульсами, меняя продолжительность которых, можно очень точно задавать частоту вращения вентилятора. Кроме того, при таком способе нет ограничения на минимальную скорость вращения – регулируемый таким способом вентилятор может вращаться даже со скоростью 1 об/мин. Единственный недостаток такого способа – он сложнее в реализации, а следовательно, дороже.

Разъем питания реобаса может быть 3-pin (в этом случае регулятор скорости подключается к одному из свободных 3-pin разъемов материнской платы) 4-pin Molex (питание берется с одного из разъемов блока питания) и SATA (питание берется с разъема SATA материнской платы).

Варианты выбора.

Если какой-то из вентиляторов системного блока крутится слишком сильно, обратите внимание на регуляторы скорости вращения одного вентилятора с ручным управлением. С его помощью можно будет легко подстроить скорость вращения вентилятора до требуемой и стоить он будет от 180 рублей.

admin

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Наверх