Электрификация

Справочник домашнего мастера

Расчет ветрогенератора на неодимовых магнитах

Содержание

Расчёт генератора, основные параметры и изготовление

Основной показатель генератора это напряжение, а зная напряжение можно высчитать все другие параметры, такие как ток зарядки аккумулятора, и мощность генератора в целом. Генератор обычно строится для зарядки аккумуляторов имеенно для этого мы и попробуем рассчитать генератор. Напряжение катушек генератора зависит от числа витков в катушках, от магнитной индукции магнитов, и от скорости, с которой меняется магнитное поле. Проще говоря чем быстрее движутся магниты мимо катушек тем выше напряжение.

Для расчёта напряжения генератора воспользуемся простой формулой, она очень простая и не должна вызвать проблем. Подробнее с примером можно почитать здесь — Расчёт ЭДС генератора. Про фазы и соединения катушек будет ниже, а пока разберемся с напряжением генератора.

С буквой Е — это напряжение генератора, которое нам нужно вычислить, а далее буква В — которая не известна, так-как мы не знаем какая магнитная индукция магнитов. Но если помучить поисковик и почитать форумы, то можно узнать что магнитная индукция неодимовых магнитов около 1,25Тл, конечно она разная для разных марок магнитов, но это среднее значение. Так-же известно что чем дальше от магнита — тем меньше и магнитная индукция. В общем если в случае изготовления дискового генератора расстояние между магнитами на противоположных дисках будет равно толщине магнитов, то магнитная индукция будет примерно 1.0Тл, если расстояние больше, то естественно магнитное поле будет слабее. Если к примеру у вас магниты толщиной 10мм, и вы делаете расстояние между магнитами 10мм, то индукция будет где то 1.0Тл, а статор в этом случае получится не более 8мм толщиной, и по 1мм на зазоры. Если расстояние будет скажем 12-14мм, то магнитная индукция упадет до 0.8-0.7Тл и ниже.

Для генераторов с железом принцип такой-же, но толщина магнитов может быть разная, некоторые ставят магниты толщиной 10-15мм, хотя для магнитной индукции в 1.0Тл достаточно толщины магнитов 3-4мм. Ещё важна толщина — магнито-пропускаемость статора, на зубы которого наматываются катушки. Если переборщить с толщиной магнитов то статор не сможет замкнуть всё магнитное поле и оно выйдет наружу, и к статору снаружи будет магнитися железо. То-есть это потери магнитного поля и нет смысла использовать слишком мощные магниты так-как часть магнитного поля не будет использоваться. Все конечно зависит от конкретных условий, но если не известна магнитная индукция, то лучше её брать как 0.8-1Тл.

Вернемся к формуле, V — это скорость движения магнитов, рассчитать её очень просто. К примеру если диаметр ротора с магнитами у нас 20см, то 20*3.14=62.8см. То-есть получается что за один оборот магниты проходят расстояние 62.8см или 0.62метра. Если диаметр ротора 8см, то аналогично 8*3.14=25.12см или 0.25м.

L — это активная длина проводника, то-есть это та длинна медного провода, которая попадает под магниты, ведь именно только тот участок провода вырабатывает электричество, который попадает под магнитное поле магнитов. Для дисковых аксиальных генераторов длинна активного проводника равна длинне магнитов. К примеру если у вас круглые магниты размером 30*10мм, то L=30мм, ну а если прямоугольные размером 50*30*10мм, то L=50мм. Для генераторов с железным статором активная длинна проводника равна ширине статора.

Активная длинна проводника

Активная длинна проводника, расчёт катушек генератора

Теперь попробуем высчитать напряжение генератора, но сначало разберемся с катушками генератора

Генераторы бывают как однофазные, так и трёхфазные. Как правило новички делают однофазные генераторы считая их более простыми, но однофазные гудят при работе, так-как число магнитов и катушек у таких генераторов одинаковое. И получатся так что когда магниты набегают на катушки, то катушки сопротивляются этому и отталкивают магниты. В итоге происходит как-бы пик сопротивления и спад, от этого гудение и вибрации. Трёхфазные устроены иначе, там смещение катушек относительно магнитов 2/3, и за счёт этого нагрузка равномерно распределена, от этого вибрация значительно ниже. Так-же и характеристики по мощности несколько лучше, а схема не намного сложна.

Ниже схема соединения однофазного генератора

Соединение катушек

соединение катушек однофазного генератора Катушки однофазного генератора соединяются так , начало первой на выход (диодный мост), а конец соединяется с концом второй катушки, начало второй с началом третьей, конец третьей с концом четвёртой, начало четвёртой с началом пятой катушки, и так далее до последней катушки.

Соединение катушек трехфазного генератора

соединение катушек трёхфазного генератора, на рисунке статор состоящий из 15-ти катушек Катушки трехфазного генератора соединяются так: Начало первой катушки с концом четвёртой, а начало четвёртой с концом седьмой, начало седьмой с концом десятой, начало десятой с концом тринадцатой, а начало тринадцатой на выход вместе с концом первой. Остальные две фазы аналогично начиная со второй катушки, и третья фаза с третьей. В на рисунке статор состоит из 15 катушек, а на дисках должно быть по 10 магнитов. Если статор состоит из 9 катушек, то три катушки на фазу, и на дисках может быть или шесть пар магнитов, или 12 пар.

Вернёмся к формуле E=B·V·L. К примеру планируется намотать 18 катушек проводом 1.0 мм, и в катушку помещается по 80 витков, значит всего у нас витков 18*80=1440 витков. Если генератор однофазный то так и считаем по всем катушкам, а если трёхфазный то будем брать катушки одной фазы, в данном случае шесть катушек в фазе, а потом вычислим данные при соединении звездой или треугольником. Я буду считать трёхфазный, по этому беру шесть катушек 80*6=480витков.

Магниты у нас к примеру 30*10мм (по 12шт на диске), значит активная длинна проводника 0.03м, если статор железный, то берётся ширина статора. Диски с магнитами у нас к примеру диаметром 20см, но надо брать диаметр по центру магнитов, значит минус 1,5см по кругу и того 20-3см=17*3.14=53.38см или 0.53м. Хочу напомнить что толщина железных дисков должна быть не менее толщины магнитов, иначе магнитное поле выйдет за железо и не будет участвовать в выработке электричества и магнитная индукция будет ниже, а если у вас к примеру ротор асинхронного двигателя, то после проточки желательно одеть металлическую гильзу и на неё клеить магниты, или вытачивать цельно-металлический ротор, так магниты будут использоваться эффективнее и можно или получить больше мощности или сэкономить на толщине магнитов.

И так теперь у нас есть необходимые данные для расчёта напряжения генератора к примеру при 60об/м. Магнитную индукцию возьмём равной 1Тл. Скорость движения магнитов у нас за оборот 0.53м, значит при 60об/м будет 1об/с, то-есть 0.53м/с — скорость движения магнитов. Активная длинна проводника нам тоже известна и равна 0.03м. Тогда 0.03м нужно умножить на количество витков в катушке (80) и на количество катушек (6), и получится 0.03*480=14.4м.

Теперь представляем значения в формулу E=B(1Тл)*V(0.53м)*L(14.4м), получается E=7.632V. В общем при 60об/м получается напряжение фазы 7.6 вольт. Напряжение генератора растёт линейно в зависимости от оборотов, значит при 120об/м будет 15.2 вольта, а при 240об/м будет 30.4 вольт. А при 300об/м будет 38.0 вольт. Зарядка начнётся при 120об/м если соединить фазы генератора треугольником. При соединении звездой напряжение генератора будет выше в 1,7 раза, значит зарядка начнётся ещё раньше, при 90об/м.

Но если нарисовать виртуальный статор с катушками и магнитами, то можно увидеть что магнит не перекрывает собой полностью катушку и 30% активной зоны не перекрывается как бы не стоял магнит, а это значит что 30% не участвует в выработке напряжения и это надо учитывать. Часто получается так что магнит перекрывает только половину катушки, и это значит что только половина витков участвует в выработке электричества. Значит в нашем случае напряжение будет ниже на 30% чем получилось, то-есть не E=7.632V, а E=5V.

Теперь поговорим про ток генератора, его сопротивление и соединение звездой и треугольником

Напряжение мы теперь можем определить и подогнать начало зарядки под винт ветрогенератора, чтобы и винт мог раскрутится и зарядка начиналась на слабом ветру. Но зарядка осуществляется током в амперах, а сила тока зависит от сопротивления катушек и нагрузки в целом (провода и аккумулятор).

Чем меньше сопротивление — тем выше сила тока зарядки и меньше потерь на нагрев, по-этому сопротивление обмотки генератора нужно делать как можно меньше. В нашем генераторе состоящем из 18 катушек всего 18*80=1440 витков, это по 480 витков в фазе. Чтобы узнать сопротивление фазы нужно узнать длинну провода в фазе и его сечение. Длина одного витка в среднем примерно 0.08м, значит 0.08*480=38.4м. Сопротивление одного метра медного провода сечением 1мм равно 0.0224Ом. Далее 38.4*0.0224=0.86Ом.

Таблица сопротивления медного провода

Теперь мы знаем сопротивление фазы, которое равняется 0.86Ом. Если соединить генератор звездой, то общее сопротивление генератора возрастет на 1.7, и так-же напряжение, а если треугольником, то общее сопротивление останется равным одной фазы, и напряжение тоже будет равно фазному. При звезде сопротивление станет 0.86*1.7=1.46Ом.

Чтобы узнать какой будет ток зарядки аккумулятора нужно знать напряжение генератора и его сопротивление, что мы уже знаем. Чтобы вычислить нужно от напряжения холостого хода генератора отнять напряжение генератора, и полученную сумму разделить на сопротивление, и получится ток зарядки. К примеру у нас при соединении звездой при 120об/м напряжение в холостую равно 10V*1.7=17 вольт. Тогда от 17 вольт отнимем напряжение аккумулятора 17-13 вольт и получим разницу в 4 вольта, разделим на сопротивление 1,46Ом, и получим 4:1.46=2.7Ампер. И так можно вычислить силу тока на каждых оборотах генератора, а чтобы получить мощность зарядки нужно амперы умножить на вольты, в данном случае 2.7*13=35.1 ватт*ч. А уже при 240об/м напряжение в холостую будет в два раза больше, так-как растёт линейно, тогда уже 20V-13=7:1.46=4.7 Ампер.

Но здесь играет роль не только сопротивление самого генератора, но и сопротивление провода от генератора до аккумулятора, сопротивление диодного моста, на котором падает до 1вольт напряжения, и сопротивление самого аккумулятора. Все это высчитать можно, но довольно сложно. Так-же изменяется сопротивление генератора во время работы, по-этому сумма общих потерь может составлять до 50% от мощности, и в итоге ток зарядки может оказаться в два раза меньше расчетного. И так-как это трудно все учесть на потери в среднем можно скинуть 30%, значит реально а аккумулятор пойдёт ток не 4.7Ампер при 240об/м, а значительно ниже, около 3.5-4 Ампера.

Такой расчёт дает примерное представление о будущем генераторе, но все-же это лучше чем делать как получится ничего не считая, и потом удивляться тому что или напряжение слишком низкое или высокое, или сопротивление слишком большое и смешной ток зарядки. Просчитав свои генераторы я убедился в справедливости такого расчёта генератора.

При расчете генератора нужно учитывать что его будет крутить ветроколесо ветрогенератора, и у ветроколеса есть свои обороты, и генератор нужно хоть примерно делать под будущий винт. Если это будет вертикальный ветряк, то его ветроколесо вращается очень медленно по сравнению с горизонтальным винтом. И в связи с этим нужно чтобы зарядка начиналась на очень низких оборотах генератора. Чтобы зарядка начиналась рано нужно чтобы напряжение было выше напряжения аккумулятора, отсюда нужно в катушках иметь как можно больше витков. Но чем больше витков тем длиннее провод, а значит и сопротивление, а сопротивление определяет силу тока зарядки. В итоге чтобы генератор был мощный и рано начиналась зарядка, нужно его рассчитать так чтобы и мощность была, и ветроколесо не перегрузить — иначе оно не выйдет на свои обороты и не наберет мощности.

С горизонтальным винтом генератор нужен не такой большой и материалоемкий как для вертикального, у горизонтальных винтов обороты в среднем в 5 раз выше, от этого и генератор нужен в пять раз меньше и во столько же раз дешевле. Расчёты витроколёс есть в даругих статьях из раздела «Расчёты ветряков». Советую вам и с этим материалом ознакомится, так-как ветрогенератор это единый механизм и его узлы должны быть подходящими по параметрам друг для друга, иначе или винт слишком мощный и малооборотистый или генератор слишком мощный, и толку от такого ветряка будет мало.

Предварительный шаблон генератора

Выше я привёл различные рисунки, но при создании своего генератора желательно сначала увидеть его рисунок, и нарисовать или в компьютере, или на бумаге. Выше мы рассчитывали генератор с дисками под магниты диаметром 20см, и магниты у нас были 30*10м. Ниже рисунок это диск с магнитами и катушка статора.

Рисунок генератора

Предварительный рисунок генератора, чтобы узнать каких размеров будут катушки Так-как у нас по 12 магнитов на дисках, то 360:12=30, получается что секторы под магниты делятся по 30 градусов. Катушек у нас 18, по-этому 360:18=20, то-есть по 20 градусов сектор катушки. В 20 градусов секторе должна поместится катушка, ширина намотки получилась 10мм, а толщина статора у нас 8мм, значит провода диаметром 1мм поместится 10*8:1=80 витков. Если наматывать проводом 1,5мм, то поместится 10*8:1.5=53 витка. А если 2мм диаметр провода, то соответственно 80*8*2=40 витков.

Размеры катушки

Чтобы подогнать генератор под ветроколесо или наоборот потом ветроколесо под генератор нужно высчитать мощность генератора на разных оборотах, к примеру при 120об/м когда начнётся зарядка аккумулятора, и начнётся нагрузка на ветроколесо, и далее при 180,240,300,360,420,480,540,600об/м.
Исходя из выше рассчитанных данных мы получили 17вольт при 120об/м, сопротивление у нас 1.46Ом. более точные данные будут если мерить напряжение во время зарядки в реальном времени, но я для малого тока взял напряжение аккумулятора равным 13 вольт, а далее исходил из напряжения 14 вольт. В итоге ниже получились вот такие расчёты, но на более высоких оборотах при большой разнице холостого напряжения и напряжения при заряде аккумулятора КПД генератора будет падать и ток зарядки опять-же не будет таким большим, хотя генератор будет грузить винт на большую мощность, потери будут на нагреве катушек и в проводах. В общем ток зарядки будет ниже ещё на 10-20%.
при 120об/м — 17-13=4:1.46=2.7А*13=35ватт
при 180об/м — 25.5-14=11.5:1.46=7.8А*14=110ватт
при 240об/м — 34-14=20:1.46=13.6А*14=190ватт
при 300об/м — 42.5-14=28.5:1.46=19.5А*14=273ватт
при 360об/м — 51-14=37:1.46=25.3А*14=354ватт
при 420об/м — 59-14=45:1.46=31А*14=436ватт
при 480об/м — 68-14=54:1.46=36.9А*14=516ватт
при 600об/м — 85-14=71:1.46=48.6А*14=680ватт
Но ветроколесо желательно при расчёте делать на 30% мощнее чем расчетные данные генератора, и так чтобы на низких оборотах ветроколесо было чуть мощнее генератора. У нас при 120об/м 35ватт с генератора, значит ветроколесо должно при 120об/м иметь мощность около 40-50ватт. Если ветроколесо будет слабее, то генератор не позволит ему раскрутится до своих оборотов и в итоге обороты будут ниже и мощность тоже. Подробнее про расчёты ветроколес смотрите статьи в разделе, там всё есть.

Ветрогенератор своими руками: расчет винта и генератора переменного тока

Продолжая тему, посвященную ветроэнергетике в домашнем хозяйстве, считаем своим долгом рассказать о конструкции ветрогенератора – ключевого элемента системы. Статья ориентирована на тех, кто планирует собирать «сердце» ветроэнергетической установки своими руками.

Судя по опыту пользователей FORUMHOUSE, которые не привыкли искать легких путей, сборка ветрогенератора своими силами – задача, вполне осуществимая. И первое, что необходимо выполнить для ее успешной реализации – это правильно рассчитать основные элементы установки.

Для того чтобы основные моменты, представленные в настоящей статье, были вам понятны, рекомендуем ознакомиться с материалами, изложенными в ее первой и второй частях.

Из статьи вы узнаете:

  • Как правильно рассчитывать рабочий винт ветрогенератора.
  • Какие типы генераторов больше всего подходят для сборки в домашних условиях.
  • Как рассчитывать рабочие характеристики генератора переменного тока.

Расчет рабочего винта (ветроколеса)

Преобразование механической энергии воздушного потока в энергию электрическую начинается с рабочего винта. Поэтому методику расчета ветроколеса мы рассмотрим в первую очередь. Сделаем это на примере наиболее распространенного трехлопастного винта с горизонтальной осью вращения.

Ключевое правило, которого следует придерживаться, осуществляя расчет ветряка, заключается в следующем: мощность ветрового потока, которую можно снять с рабочих лопастей устройства, должна соответствовать электрической мощности самого генератора. Объясним почему: если мощность винта будет слишком малой, то даже при сильном ветре винт не сможет стронуть с места ротор генератора, находящегося под нагрузкой. Если же, наоборот, винт окажется слишком мощным для генератора, то при сильном ветре он раскрутит ротор до очень высоких оборотов, что неизбежно приведет к разрушению всей установки.

Учитывая этот момент, рассмотрим порядок расчета трехлопастного винта в соответствии с заданными характеристиками генератора. Предположим, что у вас уже есть генератор, с номинальной мощностью 300 Вт*ч (к примеру). Также представим, что свои номинальные характеристики устройство будет демонстрировать при оборотах ротора – 150 об/мин. Если средняя скорость ветра в вашей местности составляет 6 м/сек, то на нее и следует ориентироваться, осуществляя дальнейшие расчеты.

Далее: генератор переменного тока, на который ветроколесо передает вращательный момент, имеет свой собственный КПД (0,6…0,8). При различных условиях эксплуатации данный показатель может опускаться до более низких значений, поэтому в качестве примера возьмем КПД, равный 50%.

Для того чтобы устройство, обладающее подобным КПД, выдало необходимые 300 Вт*ч электрической мощности, на его ротор необходимо подать мощность, в два раза превышающую ту, которую требуется с него снять. То есть, механическая мощность, передаваемая на генератор с ветроколеса, должна быть равна 600 Вт.

Средний КИЭВ (коэффициент использования энергии ветра) у трехлопастных винтов равен 0,4 (это и будет КПД ветроколеса). Следовательно, мощность ветра (Х), которая должна воздействовать на рабочие лопасти ветряка (чтобы снять с них 600 Вт), можно вычислить, решив уравнение:

Х*0,4 = 600 Вт.

В нашем случае:

Х = 600:0,4 = 1500 Ватт.

Итак, количество необходимой энергии нам известно, теперь рассчитаем площадь, ометаемую рабочими лопастями ветроколеса (S).

dim_on_art Пользователь FORUMHOUSE

Вот нашел формулу: P = 0,5 *Q * S * V³ * Cp * Ng

Плотность воздуха – неизменна, площадь ометания ротора – тоже.

Эта формула обозначает мощность на выходных клеммах генератора. Учитывая, что значение мощности (1500 Вт) мы изначально взяли с учетом КИЭВ ветроколеса и КПД генератора, последние два значения из формулы убираем.

Мощность ветра, которую воздушный поток передает на ветроколесо, будет равна:

P = 0,5 *Q * S * V³

Все значения, входящие в формулу, нам известны (кроме площади – S). Решив простейшее уравнение, получим:

S = 1500/0,5*1,23*6³ = 11,292 м²

Площадь круга вычисляется по формуле:

S = πr²

где π – математическая константа (3,14), а r² – квадрат радиуса окружности ветроколеса.

В нашем случае r² = 11,292/3,14 = 3,596.

Следовательно, радиус ветроколеса будет равен 1,89 м, а его диаметр – 3,78 м.

Теперь необходимо удостовериться в том, что такое ветроколесо сможет при ветре – 6 м/с развить достаточное количество оборотов. В этом нам поможет коэффициент быстроходности ветряка – Z (у трехлопастных устройств Z=5).

Окружная (концевая) скорость лопастей ветряка с коэффициентом быстроходности Z5 будет равна произведению коэффициента (Z) на скорость ветра (6*5=30 м/с). Периметр ветроколеса диаметром 3,78 метра равен 11,87 м (L=2πr). Это длина его окружности по внешнему диаметру лопастей, то есть, расстояние, которое конец каждой лопасти проходит за один оборот. Следовательно, за секунду каждая лопасть сделает 2,53 оборота (30 м/с делим на 11,87 м) или 151 оборот за минуту. Что нам и требовалось.

Для того чтобы увеличить обороты, мы можем уменьшить диаметр ветроколеса, но мощность винта в этом случае снизится.

Netbyka Пользователь FORUMHOUSE

Уменьшение диаметра ветроколеса должно давать увеличение оборотов. Его можно уменьшать до тех пор, пока мощности винта будет хватать для прокручивания генератора под нагрузкой. Это и будут оптимальные параметры.

Мы представили вашему вниманию методику «грубого» расчета ветроколеса, основанную на характеристиках генератора и существующих потребностях в альтернативной электроэнергии.

Учитывая, что большой ветряк и построить сложно, и обслуживать – непросто, конструкцию рабочего винта можно рассчитать под конкретные условия эксплуатации (добавляя или уменьшая количество лопастей, а также меняя при этом их длину). Это поможет изменить коэффициент быстроходности, а, следовательно, и количество оборотов. Также при недостаточном количестве оборотов мощные ветрогенераторы (особенно многолопастные – тихоходные) оснащаются дополнительным редуктором-мультипликатором.

BOB691774 Пользователь FORUMHOUSE

При малых скоростях вращения ротора выработки электроэнергии нет вообще. Мультипликатор решает эту проблему даже при малых оборотах.

Как бы мастер ни старался, самодельный ветрогенератор всегда будет далек от совершенства: самодельные лопасти, самодельные катушки – при изготовлении всего этого трудно соблюсти рекомендуемые аэродинамические и электротехнические параметры. И если в теории мы рассчитали, что ветроколесо диаметром 3,78 метра (при ветре 6 м/с) позволит получить нам 300 Вт*ч электроэнергии, на практике этот показатель можно смело уменьшить на 30%. Этим самым мы на стадии расчетов учтем недостатки кустарной сборки и возможные потери мощности.

Расчет генератора

Рассмотрим последовательность расчета трехфазного генератора переменного тока на постоянных магнитах. Трехфазные генераторы получили значительно более широкое распространение (нежели однофазные) за счет своих характеристик: отсутствие сильных вибраций и гула во время работы, улучшенные характеристики по мощности, току и т. д.

Мощность генератора зависит от целого ряда факторов: скорость вращения, величина магнитной индукции, количество витков на обмотках статора и т. д. Также она напрямую зависит от величины ЭДС генератора, которая определяется по формуле:

E=B•V•L

Где:

  • E – ЭДС (В);
  • B – величина магнитной индукции (Тс);
  • V – линейная скорость движения магнитов (м/с) – произведение длины окружности ротора на количество оборотов;
  • L – активная длина проводника (м), которую перекрывают магниты генератора.

Среднее значение индукции постоянных магнитов, используемых в составе генераторов переменного тока, равно 0.8 Тл. Его можно смело применять во время осуществления предварительных расчетов.

Если генератор изготавливается на основе неодимовых магнитов, величина магнитной индукции будет выше (от 1 до 1,4 Тл).

Рассмотрим последовательность предварительного расчета трехфазного аксиального генератора, пользуясь примером, который предложил один из пользователей FORUMHOUSE.

Хиттч Пользователь FORUMHOUSE

Вот, что я имею: 24 магнита (неодимовые) толщиной – 5 мм, шириной – 9.5 мм, длиной – 20 мм. Имею среднегодовую скорость ветра – 5 м/сек. Планирую сделать два ротора – по 12 магнитов на роторе (то есть – 12 полюсов). Соотношение полюсов и катушек – 2/3 (на каждые 2 полюса идет 3 катушки). Получаем 12 полюсов и 18 катушек (по 12 магнитов на каждом диске ротора). Ветроколесо выбрал диаметром 2 метра (двухлопастное). Его быстроходность – Z7. При ветре 5 м/с ветряк должен развивать 334 об/мин (334/60= 5,6 об/сек).

Оптимальное соотношение полюсов и катушек в трехфазном генераторе – 2/3. Один полюс формируется двумя магнитами.

Пользователя интересовал расчет дискового генератора аксиального типа.

Преимущества аксиальных генераторов заключаются в отсутствии магнитного залипания, что позволяет им стартовать при сравнительно небольшой скорости ветра (около 2-х м/с). Основной их недостаток, в сравнении с классическими самодельными моделями, заключается в том, что для получения одинаковой мощности на сборку аксиального генератора необходимо потратить, как минимум, в 2 раза больше магнитов.

Под классическими моделями подразумеваются устройства, изготовленные из асинхронного двигателя или из стандартного автомобильного генератора.

Но вернемся к аксиальникам: ротор аксиального генератора на прямоугольных неодимовых магнитах будет иметь следующий вид.

Учитывая, что длина магнита – 20 мм, активная длина катушек тоже будет 20 мм (или 0,02 м).

Активная длина проводника аксиального генератора равна длине магнита. В классических генераторах с металлическим статором активная длина проводника равна ширине статора. Хиттч

Нижний радиус магнитов – 59 мм.

Верхний радиус магнитов (59 + 20) = 79 мм.

Следовательно, радиус по центру магнитов будет равен 69 мм. Эту величину и будем использовать в своих расчетах. За один оборот ротора каждый магнит пройдет расстояние, равное периметру окружности по центру магнитов (2πr или πd). В нашем случае:

L = 2*0.069*3.14 = 0.433 м.

Подставим известные значения в формулу для расчета ЭДС генератора и определим этот показатель для одного витка катушки. Индукцию неодимовых магнитов примем равной – 1 Тл (при условии, что расстояние между магнитами на противоположных дисках ротора не превышает толщину магнитов).

E=B•V•L = 1*0,433*0,02 = 0,0087 В.

Это получилась ЭДС одного витка катушки при скорости вращения генератора – 1 об/сек (60 об/мин).

Расстояние между магнитами на противоположных дисках не должно превышать толщину самих магнитов. В противном случае значение магнитной индукции, воздействующей на проводники катушки, заметно снижается. Это следует учитывать, рассчитывая ширину статора.

Обратимся к исходным данным, которые нам предоставил пользователь Хиттч.

Хиттч

Рассчитаем напряжение катушки при одном обороте в секунду: 0,0087*125 = 1,087 В.
Если учесть, что расчетная скорость вращения генератора составляет 5,6 об/сек, ЭДС, полученная с одной катушки при ветре 5 м/сек, будет равна:

1,087*5,6 = 6,087 В.

Каждая фаза генератора объединяет между собой несколько катушек (если всего катушек 18, то на каждую фазу идет по 6 катушек). При этом обмотки самодельных трехфазных генераторов принято соединять между собой «звездой» (концы всех трех обмоток объединяются в один узел, а нагрузка подключается на начало каждой из обмоток).

Соединение «звездой» увеличивает напряжение генератора в 1,7 раз, но при этом настолько же увеличивает и его сопротивление.

Соединив фазы генератора по типу «звезда», мы сможем увеличить ЭДС каждой катушки в 1,7 раза. То есть получим значение – 10,35 В. Но на практике в отдельный момент времени магниты перекрывают примерно половину катушек каждой фазы. Это означает, что лишь 3 катушки из каждой фазы одновременно будет генерировать напряжение. То есть каждая фаза при ветре 5 м/сек будет генерировать:

10,35*3 = 31,05 В.

Это мы получили ЭДС генератора, которое для простоты расчетов примем за его напряжение без учета внутреннего сопротивления.

Расчет мощности

Чтобы вычислить значение мощности, которую генератор будет подавать на аккумулятор, необходимо рассчитать силу тока в цепи АКБ.

В соответствии с законом Ома:

I = U/R+r

Где:

  • I – сила тока;
  • U – разница между напряжением генератора и напряжением аккумулятора (U = Ug-Ua)
  • R + r – сопротивление внешних элементов цепи и источника тока.

Рассчитаем сопротивление катушек генератора. Для этого будем использовать значение сопротивления проводника (в данном случае – сопротивление медного провода диаметром 0,4 мм и длиной 1 метр), которое будет равно 0,14 Ом.

Общая длина провода одной катушки генератора – 7250 мм.

Хиттч

Периметр магнита (9+9)+(20+20) = 58 мм. Это длина одного витка. 58 * 125= 7250 мм. 7250 мм * 6 (катушек в одной фазе) = 43500 мм (43,5 м).

Сопротивление фазы:

43,5*0,14 = 6,09 Ом

При соединении катушек по типу «звезда» получаем увеличение сопротивления в 1,7 раз:

6,09*1,7 = 10,353 Ом

Подставляем значения в формулу расчета силы тока: 31,05 В (напряжение генератора) минус 13 В (напряжение аккумулятора) и делим на сопротивление генератора 10,353 Ом. Сопротивление аккумулятора учтем чуть позже.

Получим:

I = 31,05 – 13/10,353 = 1,74 А.

Это ток заряда аккумулятора.

Aleksei2011 Пользователь FORUMHOUSE

Берем напряжение генератора и отнимаем от него напряжение АКБ (это 13Вольт). Разницу делим на сопротивление генератора и получаем ток заряда аккумулятора.

В этом случае мощность, потребляемая аккумулятором при ветре 5 м/сек, составит:

1,74А*13В = 22,62 Вт*ч или 0,023 (кВт*ч).

В представленных расчетах не были учтены такие параметры, как сопротивление аккумулятора, сопротивление проводников, идущих от генератора к аккумулятору, потери на сопротивления диодного моста и т. д. В среднем неучтенные при расчетах потери мощности достигают 30%, следовательно, на практике генератор выдаст 0,0069 кВт*ч. (всего около 7 Вт*час).

Добиться увеличения мощности можно установкой более широких и толстых магнитов, а также уменьшением сопротивления обмоток (путем использования более толстого провода в обмотке).

Вот мнение опытного практика относительно генератора, расчеты которого приведены выше.

Aleksei2011

Аксиальник на таких магнитах слишком слабый получится, им только пальчиковые аккумуляторы заряжать. Если же их в автомобильный генератор поместить, сделать новый ротор и перемотать статор, то до 150ватт будет ветряк выдавать с винтом 1,5 м.

Методика расчета, которую мы представили вашему вниманию, подходит как для аксиальных, так и для классических генераторов на постоянных магнитах. Самостоятельные расчеты позволяют получить весьма приближенные результаты. Тем не менее, выполнив их перед изготовлением генератора, можно будет вполне обоснованно судить о рабочих характеристиках будущего устройства.

Как мы уже говорили, расчет рабочего винта следует выполнять, опираясь на характеристики генератора. При этом мощность лопастей должна соответствовать мощности генератора и немного ее превосходить.

Aleksei2011

Вначале необходимо рассчитать мощность на разных оборотах, а уже после этого – подгонять винт под мощность генератора. Необходимо, чтобы винт был мощнее генератора на 10-20%. При таких условиях эффективность генератора будет максимальной.

Тема, посвященная изготовлению винтов и генераторов переменного тока своими руками, очень объемна. Более углубленно мы рассмотрим ее в одном из следующих материалов. А сейчас вы можете ознакомиться с практическими советами опытных пользователей FORUMHOUSE, которыми они руководствуются, рассчитывая конструкцию винтов и ветрогенераторов для домашних ВЭУ. Также об особенностях конструкции ветрогенераторов и ее зависимости от правильных расчетов можно прочесть в другом разделе нашего портала. В нем выложены практические наработки пользователей и их соображения по данной проблеме. Тем же, кого интересует более объективный подход к альтернативной электроэнергетике, предлагаем посмотреть видеосюжет, посвященный комплектованию стандартной солнечной электростанции.

Расчет катушек для ветрогенератора

Нами была разработана конструкция ветрогенератора с вертикальной осью вращения. Ниже, представлено подробное руководство по его изготовлению, внимательно прочтя которое, вы сможете сделать вертикальный ветрогенератор сами.

Используемые материалы и оборудование:

Список используемых деталей и материалов для ротора:

Предварительно вырезанный лист металла

Вырезан из стали толщиной 1/4″ при помощи гидроабразивной, лазерной и др. резке

Ступица от авто (Хаб)

Должна содержать 4 отверстия, диаметр около 4 дюймов

2″ x 1″ x 1/2″ неодимовый магнит

Очень хрупкие, лучше заказать дополнительно

1/2″-13tpi x 3′ шпилька

TPI – кол-во витков резьбы на дюйм

1/2″.-13tpi колпачковая гайка

Для того, чтобы выдержать зазор между роторами

Список используемых деталей и материалов для турбины:

3″ x 60″ Оцинкованная труба

ABS пластик 3/8″ (1.2×1.2м)

Магниты для балансировки

Если лопасти не сбалансированы, то магниты прикрепляются для балансировки

В случае, если лопасти не держат форму, то можно добавить доп. уголки

винты, гайки, шайбы и гроверы для 1″ уголка

Список используемых деталей и материалов для статора:

Эпоксидка с затвердителем

1/4″ кольцевой наконечник

Для эл. соединения

1/2″-13tpi x 3′ шпилька нерж.

Нерж. сталь не является ферромагнетиком, поэтому не будет “тормозить” ротор

0.51мм эмал. провод

Список используемых деталей и материалов для монтажа:

1-1/4″ фланец трубы

Инструменты и оборудование:

1/2″-13tpi x 36′ шпилька

Используется для поддомкрачивания

1″ лист алюминия

Для изготовления проставок, если понадобятся

Для покраски держателей пластика. Цвет не принципиален

Голубая краска бал.

Для покраски ротора и др. частей. Цвет не принципиален

Паяльник и припой

Ветрогенераторы с вертикальной осью вращения не настолько эффективны, как их горизонтальные собратья, однако вертикальные ветрогенераторы менее требовательны к месту их установки.

1. Соединяющий элемент – предназначен для соединения ротора к лопастям ветрогенератора.

2. Схема расположения лопастей – два встречных равносторонних треугольника. По данному чертежу потом легче будет расположить уголки крепления лопастей.

Если не уверены в чем то, шаблоны из картона помогут избежать ошибок и дальнейших переделываний.

Последовательность действий изготовления турбины:

  1. Изготовление нижней и верхней опор (оснований) лопастей. Разметьте и при помощи лобзика вырежьте из ABS пластика окружность. Затем обведите ее и вырежьте вторую опору. Должны получиться две абсолютно одинаковые окружности.
  2. В центре одной опоры вырежьте отверстие диаметром 30 см. Это будет верхняя опора лопастей.
  3. Возьмите хаб (ступица от авто) и разметьте и просверлите четыре отверстия на нижней опоре для крепления хаба.
  4. Сделайте шаблон расположения лопастей (рис. выше) и разметьте на нижней опоре места крепления уголков, которые будут соединять опору и лопасти.
  5. Сложите лопасти в стопку, прочно свяжите их и обрежьте до требуемой длины. В данной конструкции лопасти длиной 116 см. Чем длинее лопасти, тем больше энергии ветра они получают, но обратной стороной является нестабильность в сильный ветер.
  6. Разметьте лопасти для крепления уголков. Накерните, а затем просверлите отверстия в них.
  7. Используя шаблон расположения лопастей, который представлен на рисунке выше, прикрепите лопасти к опоре при помощи уголков.

Последовательность действий по изготовлению ротора:

  1. Положите два основания ротора друг на друга, совместите отверстия и напильником или маркером сделайте небольшую метку по бокам. В дальнейшем, это поможет правильно сориентировать их относительно друг-друга.
  2. Сделайте два бумажных шаблона расположения магнитов и приклейте их на основания.
  3. Промаркируйте полярность всех магнитов при помощи маркера. В качестве тестера полярности можно использовать небольшой магнит, обмотанный тряпкой или изолентой. Проводя его над большим магнитом, будет хорошо видно, отталкивается он или притягивается.
  4. Приготовьте эпоксидную смолу (добавив в нее отвердитель). И равномерно нанесите ее снизу магнита.
  5. Очень аккуратно поднесите магнит к краю основания ротора и переместите его к своей позиции. Если магнит устанавливать сверху ротора, то большая мощность магнита может его резко примагнитить и он может поломаться. И никогда не суйте свои пальцы и другие части тела между двумя магнитами или магнитом и железом. Неодимовые магниты очень мощные!
  6. Продолжайте приклеивать магниты к ротору (не забудьте смазывать эпоксидкой), чередую их полюса. Если магниты сьезжают под действием магнитной силы, то воспользуйтесь куском дерева, располагая его между ними для страховки.
  7. После того, как один ротор закончили, переходите к второму. Используя ранее поставленную метку, расположите магниты точно напротив первого ротора, но в другой полярности.
  8. Положите роторы подальше друг от друга (чтобы они не примагнитились, иначе потом не отдерете).

Изготовление статора очень трудоемкий процесс. Можно конечно купить готовый статор (попробуй еще найти их у нас) или генератор, но не факт, что они подойдут для конкретного ветряка со своими индивидуальными характеристиками

Статор ветрогенератора – электрический компонент, состоящий из 9-ти катушек. Катушка статора изображена на фото выше. Катушки разделены на 3 группы, по 3 катушки в каждой группе. Каждая катушка намотана проводом 24AWG (0.51мм) и содержит в себе 320 витков. Большее количество витков, но более тонким проводом даст более высокое напряжение, но меньший ток. Поэтому, параметры катушек могут быть изменены, в зависимости от того, какое напряжение вам требуется на выходе ветрогенератора. Нижеследующая таблица поможет вам определиться:

Вручную наматывать катушки – это скучное и трудное занятие. Поэтому, чтобы облегчить процесс намотки я бы вам посоветовал сделать простое приспособление – намоточный станок. Тем более, что конструкция его достаточно проста и сделать его можно из подручных материалов.

Витки всех катушек должны быть намотаны одинаково, в одном и том же направлении и обращайте внимание или отмечайте, где начало, а где конец катушки. Для предотвращения разматывания катушек, они обмотаны изолентой и промазаны эпоксидкой.

Приспособление для намотки катушек

Приспособа сделана из двух кусков фанеры, изогнутой шпильки, куска ПВХ-трубы и гвоздей. Перед тем, как изогнуть шпильку, нагрейте ее горелкой.

Небольшой кусок трубы между дощечками обеспечивает заданную толщину, а четыря гвоздя обеспечивают необходимые размеры катушек.

Вы можете придумать свою конструкцию намоточного станка, а может у вас уже имеется готовый.

После того, как все катушки намотаны их необходимо проверить на идентичность друг к другу. Это можно сделать при помощи весов, а также нужно померить сопротивления катушек мультиметром.

Схема соединения катушек статора

Не подключайте домашних потребителей напрямую от ветрогенератора! Также соблюдайте меры безопасности при обращении с электричеством!

Процесс соединения катушек:

  1. Зачистите шкуркой концы выводов каждой катушки.
  2. Соедините катушки, как показано на рисунке выше. Должно получиться 3 группы, по 3 катушки в каждой группе. При такой схеме соединений получится трехфазный переменный ток. Концы катушек припаяйте, либо воспользуйтесь зажимами.
  3. Выберите одну из следующих конфигураций:

А. Конфигурация звезда. Для того, чтобы получить большое напряжение на выходе, соедините выводы X,Y и Z между собой.

B. Конфигурация треугольник. Для того, чтобы получить большой ток, соедините X с B, Y с C, Z с A.

C. Для того, чтобы в будущем сделать возможность изменять конфигурацию, нарастите все шесть проводников и выведите их наружу.

  • На большом листе бумаге нарисуйте схему расположения и подключения катушек. Все катушки должны быть равномерно распределены и соответствовать расположению магнитов ротора.
  • Прикрепите катушки при помощи скотча к бумаге. Приготовьте эпоксидную смолу с отвердителем для заливки статора.
  • Для нанесения эпоксидки на стеклоткань используйте малярную кисть. Если необходимо, то добавьте небольшие кусочки стеклоткани. Центр катушек не заполняйте, чтобы обеспечить их достаточное охлаждение при работе. Постарайтесь избегать образования пузырьков. Целью данной операции является закрепление катушек на своих местах и придание плоской формы статору, который будет располагаться между двумя роторами. Статор не будет нагруженным узлом и не будет вращаться.

Для того, чтобы стало более понятно, рассмотрим весь процесс в картинках:

Готовые катушки помещаются на вощеную бумагу с начерченной схемой расположения. Три небольших круга по углам на фото выше – места отверстий для крепления кронштейна статора. Кольцо в центре предотвращает попадание эпоксидки в центральную окружность.

Катушки закреплены на своих местах. Стеклоткань, небольшими кусочками помещается вокруг катушек. Выводы катушек можно вывести внутрь или наружу статора. Не забудьте оставить достаточный запас длины выводов. Обязательно еще раз проверьте все соединения и прозвоните мультиметром.

Статор практически готов. Отверстия для крепления кронштейна, сверлятся в статоре. При сверлении отверстий смотрите не попадите в выводы катушек. После завершения операции, обрежьте лишнюю стеклоткань и если необходимо, шкуркой зачистите поверхность статора.

Труба для крепления оси хаба была обрезана под нужный размер. В ней были просверлены отверстия и нарезана резьба. В дальнейшем в них будут вкручены болты, которые будут удерживать ось.

На рисунке выше показан кронштейн, к которому будет крепиться статор, находящийся между двумя роторами.

На фото выше показана шпилька с гайками и втулкой. Четыре таких шпильки обеспечивают необходимый зазор между роторами . Вместо втулки можно использовать гайки большего размера, либо самому вырезать шайбы из алюминия.

Генератор. Окончательная сборка

Небольшое уточнение: малый воздушный зазор между связкой ротор-статор-ротор (который задается шпилькой с втулкой), обеспечивает более высокую отдаваемую мощность, но возрастает риск повреждения статора или ротора при перекосе оси, который может возникнуть при сильном ветре.

На левом рисунке ниже, показан ротор с 4-мя шпильками для обеспечения зазора и двумя алюминиевыми пластинами (которые в дальнейшем будут убраны).

На правом рисунке показан собранный и покрашенный в зеленый цвет статор, установленный на место.

1. В плите верхнего ротора просверлите 4 отверстия и нарежьте в них резьбу для шпильки. Это необходимо для плавного опускания ротора на свое место. Уприте 4 шпильки в алюминиевые пластины приклеенные ранее и установите на шпильки верхний ротор.

Роторы будут притягиваться друг к другу с очень большой силой, поэтому и нужно такое приспособление. Сразу выровняйте роторы относительно друг-друга по поставленным ранее метках на торцах.

2-4. Поочередно вращая ключом шпильки, равномерно опускайте ротор.

5. После того, как ротор уперся в втулку (обеспечивающая зазор), выкрутите шпильки и уберите алюминиевые пластины.

6. Установите хаб (ступицу) и прикрутите его.

После установки шпилек (1) и фланца (2) ваш генератор должен выглядеть приблизительно так (см. рис. выше)

Болты из нержавейки служат для обеспечения электрического контакта. На провода удобно использовать кольцевые наконечники.

Колпачковые гайки и шайбы служат для крепления соедин. платы и опоры лопастей к генератору. Итак, ветрогенератор полностью собран и готов к тестам.

Для начала, лучше всего рукой раскручивать ветряк и измерять параметры. Если все три выходные клеммы закоротить между собой, то ветряк должен вращаться очень туго. Это может быть использовано для остановки ветрогенератора для сервисного обслуживания или в целях безопасности.

Ветрогенератор можно использовать не только для обеспечения дома электричеством. К примеру данный экземпляр, сделан так, чтобы статор вырабатывал большое напряжение, которое затем используется для нагрева.

Рассматриваемый выше генератор выдает 3-х фазное напряжение с различной частотой (зависит от силы ветра), а к примеру в России используется однофазная сеть 220-230В, с фиксированной частотой сети 50 Гц. Это отнюдь не означает, что данный генератор не подойдет для питания бытовых приборов. Переменный ток с данного генератора может быть преобразован в постоянный ток, с фиксированным напряжением. А постоянный ток уже может использоваться для питания светильников, нагрева воды, заряда аккумуляторов, а может быть поставлен преобразователь для преобразования постоянного тока в переменный. Но это уже выходит за рамки данной статьи.

На рисунке выше простая схема мостового выпрямителя, состоящего из 6-ти диодов. Он преобразовывает переменный ток в постоянный.

Расчет катушек для ветрогенератора
Расчет катушек для ветрогенератора Нами была разработана конструкция ветрогенератора с вертикальной осью вращения. Ниже, представлено подробное руководство по его изготовлению, внимательно прочтя

Как сделать аксиальный ветрогенератор

Эта статья посвящена созданию аксиального ветрогенератора на неодимовых магнитах со статорами без металла. Ветряки подобной конструкции стали особенно популярны из-за растущей доступности неодимовых магнитов.
Материалы и инструменты использованные для постройки ветряка этой модели:
1) ступица от автомобиля с тормозными дисками.
2) дрель с металлической щеткой.
3) 20 неодимовых магнитов размером 25 на 8 мм.
4) эпоксидная смола
5) мастика
6) труба ПВХ 160 мм диаметром
7) ручная лебедка
8) труба металлическая длинной 6 метров
Рассмотрим основные этапы постройки ветряка.
За основу генератора была взята ступица автомобиля с тормозным диском. Так как основная деталь заводского производства, то это послужит гарантом качества и надежности. Ступица была полностью разобрана, подшипники находящиеся в ней были проверены на целостность и смазаны. Так как ступица была снята со старого автомобиля, то ржавчину пришлось зачистить с помощью щетки, которую автор насадил на дрель.
Ниже предоставлена фотография ступицы.
Затем автор приступил к установке магнитов на диски ротора. Было использовано 20 магнитов. Причем важно заметить, что для однофазного генератора количество задействованных магнитов равно количеству полюсов, для двухфазного соотношение будет три к двум или четыре полюса к трем катушкам. Магниты следует крепить на диски с чередованием полюсов. Для соблюдения точности необходимо сделать шаблон размещения на бумаге, либо начертить линии секторов прямо на самом диске.
Так же следует разметить магниты по полюсам маркером. Определить полюса можно поднося поочередно магниты к одной стороне проверяющего магнита, если притягивается — плюс, отталкивается- минус, главное, чтобы полюса при установке на диск чередовались. Это необходимо потому что магниты на дисках должны притягиваться друг к другу, а это будет происходить, только если магниты стоящие напротив друг друга будут разной полярности.
Магниты были приклеены на диски при помощи эпоксидной смолы. Чтобы смола не растекалась за границы диска автор сделал бордюры по краям при помощи мастики, то же самое можно сделать при помощи скотча, просто обмотав колесо по кругу.
Рассмотрим основные отличия конструкции однофазного и трехфазного генераторов.
Однофазный генератор будет давать вибрацию при нагрузках, что будет отражаться на мощности самого генератора. Трехфазная конструкция лишена подобного недостатка благодаря чему, мощность постоянна в любой момент времени. Это происходит потому, что фазы компенсируют потерю тока друг в друге. По скромным расчетам автора трехфазная конструкция превосходит однофазную на целых 50 процентов. К тому же из-за отсутствия вибраций мачта не будет дополнительно раскачиваться,следовательно не будет дополнительного шума при работе ротора.
При расчете зарядки 12-ого аккумулятора, которая будет начинаться на 100-150 оборотах в минуту, автор сделал по 1000-1200 витков в катушках. При намотке катушек автор использовал максимально допустимую толщину проволоки, чтобы избежать сопротивления.
Для наматывания проволоки на катушки автор соорудил самодельный станок, фотографии которого представлены ниже.
Лучше использовать катушки эллипсоидной формы, что позволит большей плотности магнитных полей их пересекать. Внутреннее отверстие катушки стоит делать по диаметру магнита либо больше него. В случае, если делать их меньше, то лобовые части практически не участвуют в выработке электроэнергии, а служат проводниками.
Толщина самого статора должна равняться толщине магнитов, которые задействованы в установке.
Форму для статора можно сделать из фанеры, хотя автор решил этот вопрос иначе. Был нарисован шаблон на бумаге, а затем сделаны борта при помощи мастики. Так же для прочности была использована стеклоткань. Для того, чтобы эпоксидная смола не прилипла к форме, ее необходимо смазать воском или вазелином, или можно использовать скотч, пленку, которую в последствии можно будет отодрать от готовой формы.
Перед заливкой катушки необходимо точно закрепить, а их концы вывести за пределы формы, чтобы затем соединить провода звездой или треугольником.
После того, как основная часть генератора была собрана, автор измерил протестировал его работу. При ручном вращении генератор вырабатывает напряжение в 40 вольт и силу тока в 10 ампер.
Затем автор изготовил мачту для генератора высотой в 6 метров. В будущем планируется увеличить высоту мачты за счет использования более толстой трубы минимум вдвое. Чтобы мачта была неподвижна основание было залито бетоном. Для опускания и поднимания мачты было сделано металлическое крепление. Это необходимо, чтобы иметь доступ к винту на земле, так как заниматься ремонтными работами на высоте не особенно удобно.

Для поднятия мачты используется ручная лебедка.
Сам винт для генератора был сделан из трубы ПВХ диаметром 160 мм.
После установки и испытаний генератора в стандартных условиях автор сделал следующие наблюдения: мощность генератора доходит до 300 ватт при ветре в 8 метров в секунду. В последующем увеличил мощность генератора за счет металлических сердечников установленных в катушки. Винт стартует уже при двух метрах в секунду.
Дальше автор приступил к совершенствованию конструкции в целях увеличения мощности генератора. Были набраны магнитопроводы из пластин, которые в последствии были установлены в конструкцию. Из-за их установки появился эффект залипания, но не очень сильный. Старт работы винта происходит при скорости ветра около двух метров в секунду.
Таким образом установка металлических сердечников увеличила мощность генератора до 500 ватт при ветре в 8 метров в секунду.
Для защиты от сильных ветров была использована классическая схема увода винта складывающимся хвостом.
В среднем генератор способен вырабатывать до 150 ватт энергии в час, которая идет на зарядку аккумуляторов. Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. .

Делаем ветрогенератор на неодимовых магнитах

Аксиальный ветрогенератор, который работает на неодимовых магнитах, впервые начали массово изготавливать в странах Запада. И это были вовсе не заводские изделия, а плод труда местных гаражных мастеров, поставивших себе на службу явление левитации. Серьезной популярности именно такие модели ветряка обязаны массовому распространению и дешевизне неодимовых магнитов. Постепенно комплектующие и схемы изготовления стали распространятся по всему миру и в настоящее время магнитный аксиальный ветрогенератор завоевывает признание на просторах Российской Федерации. Ниже описана последовательность создания одной из самых удачных моделей такого ветряка.

Процесс создания ротора

Основой генератора автор разработки решил сделать ступицу автомобиля с дисками тормоза, поскольку она мощная, надежная и идеально сбалансированная. Начав делать ветряк своими руками, в первую очередь следует подготовить основу для ротора — ступицу, — почистить ее от грязи, краски и смазки. После чего приступить к наклейке постоянных магнитов. Для создания данного ветрогенератора, их было использовано по двадцать штук на диске. Размер неодимовых магнитов составил 25х8 миллиметров. Однако, и их количество, и их размер могут варьировать в зависимости от целей и задач человека, своими собственными руками создающего ветрогенератор. Однако всегда будет правильным, для получения одной фазы, равенство количества полюсов числу неодимовых магнитов, а для трех фаз — выдержка соотношений полюсов и катушек — два к трем или три к четырем.

Магниты следует располагать учитывая чередование полюсов, к тому же максимально точно, но прежде, чем приступить к их наклейке, нужно либо создать бумажный шаблон, либо прочертить линии, делящие диск на сектора. Чтобы не перепутать полюса, делаем отметки на магнитах. Главное — выполняем следующее требование — те магниты, которые стоят напротив друг друга, должны быть повернуты разными полюсами, то есть притягиваться.

Магниты приклеиваются к дискам при помощи супер-клея и заливаются. Также нужно сделать бордюрчики по краям дисков и в их центре, либо намотав скотча, либо вылепив из пластилина для недопущения растекания.

Фазы — что лучше — три или одна?

Многие любители электрической техники идут по пути наименьшего сопротивления и, чтобы не заморачиваться, останавливают свой выбор на однофазном статоре для ветряка. Однако у него имеется одна неприятная особенность, нивелирующая простоту сборки, — это вибрация в нагруженном состоянии, по причине непостоянства отдачи тока. Ведь амплитуда такого статора скачкообразна, — достигая максимума, когда неодимовые магниты располагаются над катушками, а после падая до минимума.

А вот, когда генератор сделан по трехфазной системе, то вибрации отсутствуют, и показатель мощности ветряка имеет постоянное значение. Причина такого отличия заключается в том, что ток, падая в одной фазе, в то же время нарастает в другой. И в итоге, ветрогенератор, работающий в трехфазной системе, может быть более эффективным до 50 %, чем точно такой же, но использующий однофазную систему. И главное, — нагруженный трехфазный генератор не дает вибрации, следовательно, мачта не дает повода для жалоб на ветрогенератор в надзирающие органы недоброжелателям из числа соседей, поскольку не создает надоедливого гула.

Способ намотки катушки статора ветряка

Для того, чтобы сделанный своими руками ветрогенератор на неодимовых магнитах работал с максимальной отдачей, статорные катушки следует рассчитывать. Однако большинство мастеров предпочитают делать их на глаз. К примеру, тихоходный генератор, способный заряжать 12 В аккумулятор, начиная со 100 — 150 оборотов за минуту, должен иметь во всех катушках от 1000 до 1200 витков, поровну разделенное между всеми катушками. Увеличение количества полюсов ведет к росту частоты тока в катушках, благодаря чему генератор, даже при малых оборотах, дает большую мощность.

Намотка катушек должна производиться по возможности более толстыми проводами, с целью снижения сопротивления в них. Делать это можно на оправке, либо на самодельном станке.

Для того чтобы разобраться, какой потенциал мощности имеет генератор, покрутите его с одной катушкой, поскольку, в зависимости от того, в каком количестве будут установлены неодимовые магниты и какова их толщина, данный показатель может существенно отличаться. Измерение проводятся без нагрузки при необходимом числе оборотов. Например, если генератор при 200 оборотах за минуту обеспечивает напряжение в 30 В, имея сопротивление в 3 Ом, то следует из 30 В вычесть 12 В (напряжение питания аккумулятора) и полученный результат — 18 делим на 3 (сопротивление в омах) получаем 6 (сила тока в амперах), которые и пойдут от ветрогенератора на зарядку АКБ. Однако, как показывает практика, по причине потерь в проводах и диодном мосту, реальный показатель, который будет производить магнитный аксиальный генератор, будет поменьше.

Магниты для создания ветрогенератора лучше брать в форме прямоугольника, поскольку их поле распространяется по длине, в отличие от круглых, поле которых сосредотачивается в центре. Катушки, как правило, мотают круглыми, хотя лучше делать их несколько вытянутыми, что обеспечивает больший объем меди в секторе, а также более прямые витки. Отверстие внутри катушек должно быть равно или превышать ширину магнитов.

Толщина статора должна быть такой же что и магниты. Форма для него обычно фанерная, для прочности под катушки и поверх них кладут стеклоткань, и все это заливается эпоксидной смолой. Для того, что бы не допустить прилипания смолы к форме, последнюю смазывают любым жиром либо применяют скотч. Провода предварительно выводят наружу и скрепляют между собой, концы каждой фазы после этого соединяют треугольником либо звездочкой.

Мачта для ветрогенератора

Мачту на которой будет расположен данный генератор, можно делать высотой от 6 и выше метров, чем выше, тем больше скорость ветра. Под нее следует вырыть яму и залить основание из бетона, а трубу укрепить таким образом, чтобы магнитный аксиальный ветрогенератор, сделанный своими руками, можно было опускать и поднимать. Делать это можно при помощи механической тали.

Винт ветряка

Его делают из поливинилхлоридных труб, чей оптимальный для этого диаметр — 160 мм. К примеру, ветрогенератор, работающий на принципе магнитной левитации, с диаметром в два метра и шестью лопастями, при скорости ветра в 8 метров за секунду, способен обеспечить мощность до 300 Вт.

Как повысить мощность ветряка?

Для подъема мощности ветрогенератора можно использовать магниты. Попросту на магниты, которые уже установлены наклеить еще по одному такому же или более тонкому. Другой способ основан на установке в катушки металлических сердечников, — пластин трансформатора. Это обеспечит усиление магнитопотока в катушке, однако вызывает небольшое залипание, которое, впрочем, совершенно не ощущается шестилопастным винтом. Стартует такой ветрогенератор при ветре в 2 м/с. Благодаря применению сердечников генератор получил увеличение мощности с 300 до 500 Вт/ч при ветре в 8 м/с. Также следует уделять внимание форме лопастей, — малейшие неточности снижают мощность.

Ветрогенератор с генератором без магнитного залипания

Я сделал фотосессию моего маленького ветрячка или, как я называю, действующей модели. Так как я его построил неожиданно для себя, просто решил потренироваться и узнать что получится, то сначала ничего не фотографировал, не думал, что им могут заинтересоваться, фотосессия получилась в обратном порядке, т.е. дедукцией – от целого к частям.

А теперь немного истории, и все по порядку:

Построить ветряк – моя давнишняя мечта, но было много препятствий. То жил в городской квартире, а дачи не было. То переезды из одного города в другой, потом в третий. В Светловодске я живу последние 18 лет. Здесь есть все условия – частный коттедж на две семьи, 5 соток огорода и столько же сада. С востока и юга открытая местность, с севера и запада рельеф выше моего. Ветры не балуют, т.е. не очень сильные. Ну, думаю, здесь я построю ветряк для души.

Но когда занялся вплотную, оказалось все не так просто. Литературы подходящей не нашел. Долго не мог определиться с генератором, не знал, как правильно изготовить лопасти, какой редуктор применить, как защитить от урагана и т.п. Как говорится, варился в собственном соку. Но знал, что если очень хочется, то все получится. Неспеша делал мачту. На чермете подбирал подходящие куски труб, начиная с диаметра 325 мм по 1,5 м длиною (чтобы помещалась в багажнике моей машины). Взамен сдавал металлолом. Получилась мачта длиной 12м. Для фундамента привез бракованный фундаментный блок от высоковольтной опоры. Закопал его на 2метра в землю и 1м остался над землей. Затем обварил его двумя поясами из уголка, к ним приварил кронштейны. На концы кронштейнов к анкерным болтам приварил «пластинки» из 16мм железа размером 50 х 50 см, соединенных между собой мощными петлями. Купил на рынке мягкие 10 мм тросы и талрепы, все анодированное, не ржавеет. Сварил и закопал анкер под съемную лебедку. Лебедку тоже пришлось делать самодельную, используя готовый червячный редуктор. Кроме того, установил П-образную подпорку высотой около 2м, на которую должна ложиться мачта. Так как спешить было некуда – мачта делалась без спешки и поэтому получилась, на мой взгляд, красивая и надежная.

Решил построить действующую уменьшенную модель, чтобы выдавала до 1 ампера на 12-вольтовый аккумулятор.

Для изготовления ротора купил 24 шт. дисковых неодимовых магнита 20х5 мм. Нашел ступицу от колеса мотоблока, токарь по моим чертежам выточил два стальных диска диаметром по 105мм и толщиной 5мм, распорную втулку толщиной 15мм и вал. На диски наклеил и до половины залил эпоксидкой магниты по 12 шт на каждый, чередуя их полярность.

Для изготовления статора намотал 12 катушек эмальпроволокой диаметром 0,5мм по 60 витков на катушку (взял проволоку с петли размагничивания старого негодного цветного кинескопа, там его достаточно). Распаял катушки последовательно конец с концом, начало с началом и т.д. Получилась одна фаза (боялся, что будет маловато напряжения). Выпилил из 4 мм фанеры форму, натер ее воском.

Жаль, вся форма в сборе не сохранилась. На нижнее основание положил вощеную бумагу (спер в жены на кухне, она выпечку на ней делает), на нее наложил форму с круглячком в центре. Потом вырезал со стеклоткани два кружка. Один постелил на вощеную бумагу нижнего основания формы. На него выложил распаянные между собой катушки. Выводы из многожильного изолированного провода проложил в выпиленные ножовкой неглубокие пазы. Залил все это эпоксидкой. Подождал около часа, чтобы пузырьки воздуха все вышли, и эпоксидка разлилась равномерно по всей форме и пропитала катушки, долил, где надо, и накрыл вторым кружком стеклоткани. Сверху положил второй лист вощеной бумаги и прижал верхним основанием (куском ДСП). Главное, чтобы оба основания были строго плоскими. Утром разъединил форму и извлек красивый прозрачный статор толщиной 4мм.

Жаль, что для более мощного ветряка эпоксидка не годится, т.к. боится высокой температуры.

В ступицу вставил 2 подшипника, в них вал со шпонкой, на вал первый диск ротора с наклеенными и залитыми до половины эпоксидкой магнитами, потом распорную втулку толщиной 15мм. Толщина статора с залитыми катушками 4мм, толщина магнитов 5мм, итого 5+4+5=14мм. На дисках ротора оставлены бортики на краях по 0,5мм чтобы упирались магниты при центробежной силе (на всякий случай). Поэтому отнимем 1мм. Осталось 13мм. На зазоры остается по 1мм. Поэтому распорка 15мм. Потом статор (прозрачный диск с катушками), который крепится к ступице тремя медными 5 мм болтами, их видно на фото. После ставится второй диск ротора, который упирается в распорную втулку. Нужно остерегаться, чтобы палец не попал под магниты – очень больно защемляют. (Противоположные магниты на дисках должны иметь разную полярность, т.е. притягиваться.)

Зазоры между магнитами и статором регулируются медными гайками, размещенными на медных болтах по обе стороны ступицы.

На оставшуюся выступающую часть вала со шпонкой одевается пропеллер, который через шайбу (а если нужно то и втулку) и гровер прижимается гайкой к ротору. Гайку желательно закрыть обтекателем (я его так и не сделал).

Зато сделал крышу-козырек над ротором и статором, распилив алюминиевую кастрюльку так, чтобы захватить часть донышка и часть боковой стенки.

Пропеллер изготовил из метрового куска дюралевой поливной трубы диаметром 220 мм с толщиной стенки 2,5мм.

Просто на ней нарисовал двухлопастный пропеллер и выпилил электролобзиком. (Из этого же куска я еще выпилил три лопасти длиной по 1м для ветряка на автогенераторе, и еще как видите осталось). Переднюю кромку лопастей я заокруглил «на глаз» радиусом, равным половине толщины дюрали, а зднюю заострил с фаской приблизительно 1см на концах и до 3см к центру.

В центре пропеллера сначала просверлил отверстие 1мм сверлом для балансировки. Балансировать можно прямо на сверле, положив дрель на стол, или подвесить на нить к потолку. Балансировать нужно очень тщательно. Я отдельно балансировал диски ротора и отдельно пропеллер. Ведь обороты доходят до 1500 об/мин.

Так как магнитное залипание отсутствует, пропеллер весело вращается от малейшего ветерка, которого на земле даже не ощущаешь. При рабочем ветре развивает высокие обороты, у меня амперметр на 2А прямого включения, так он часто зашкаливает на 12 вольтовый старый автомобильный аккумулятор. Правда при этом начинает складываться и подниматься вверх хвост, т.е. срабатывает автоматическая защита от сильного ветра и чрезмерных оборотов.

Защита выполнена на основе наклонной оси вращения хвоста.

Отклонение оси составляет 18-20 градусов от вертикали.

Отработал этот ветрячок у меня 3 месяца. Снял, разобрал – подшипники в порядке, статор тоже цел. Немного приржавели магниты в тех местах, где не попала краска. Кабель идет напрямую без токосъемника. Он у меня есть сделанный, но я передумал его ставить. Когда демонтировал малый ветрячек — он небыл перекручен. Так что я убедился — он не нужен, только лишние хлопоты. Выдавал он до 30 ватт мощности. Шум от пропеллера при закрытых окнах не слышен. А при открытых не сильно слышно, если здоровый сон, то не разбудит, тем более на фоне шумов самого ветра.

admin

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Наверх