Электрификация

Справочник домашнего мастера

Радиоуправление своими руками

Радио управление 10 команд своими руками


В этой статье, вы увидите как сделать радиоуправление на 10 команд своими руками. Дальность действия данного устройства 200 метров на земле и более 400м в воздухе. Нажатие кнопок может производиться в любой последовательности, хоть все сразу все работает стабильно. С помощью его можно управлять разными нагрузками: воротами гаража, светом, моделями самолетов, автомобилей и так далее… В общем чем угодно, все зависит от вашей фантазии.
Для работы нам потребуются список деталей:
1) PIC16F628A-2 шт (микроконтроллер)
2) MRF49XA-2 шт (радио трансмиттер)
3) Катушка индуктивности 47nH (или намотать самому)-6шт
Конденсаторы:
4) 33 мкФ (электролитический)-2 шт
5) 0,1 мкФ-6 шт
6) 4,7 пФ-4 шт
7) 18 пФ-2 шт
Резисторы
8) 100 Ом-1 шт
9) 560 Ом-10 шт
10) 1 Ком-3 шт
11) светодиод-1 шт
12) кнопки-10 шт
13) Кварц 10MHz-2 шт
14) Текстолит
15) Паяльник
Вот схема этого устройства
Передатчик

И приемник

Как видите устройство состоит из минимум деталей и под силу каждому. Стоит только захотеть. Устройство очень стабильное, после сборки работает сразу. Схему можно делать как на печатной плате. Так и навесным монтажом (особенно для первого раза, так будет легче программировать). Для начала делаем плату. Распечатываем

И травим плату

Припаиваем все компоненты, PIC16F628A лучше припаивать самым последним, так как его нужно будет еще запрограммировать. Первым делом припаиваем MRF49XA

Главное очень аккуратно, у нее очень тонкие выводы. Конденсаторы для наглядности. Самое главное не перепутать полюса на конденсаторе 33 мкФ так как у него выводы разные, один +, другой -. Все остальные конденсаторы припаиваете как хотите у них нет полярности на выводах


Катушки можно использовать покупные 47nH но лучше намотать самому, все они одинаковые (6 витков провода 0,4 на оправке 2 мм)
Когда все припаяно, хорошо все проверяем. Далее берем PIC16F628A, его нужно запрограммировать. Я использовал PIC KIT 2 lite и самодельную панельку
Вот схема подключения
Это все просто, так что не пугайтесь. Для тех кто далек от электроники, советую не начинать с SMD компонентов, а купить все в DIP размере. Я сам так делал в первый раз
И все это реально заработало с первого раза
Открываем программу, выбираем наш микроконтроллер
Нажимаем вставить файл с прошивкой и нажимаем WRITE
Аналогично делам и с другим микроконтроллером.
Файл TX-это для передатчика, а RX — для приемника. Главное потом не перепутать микроконтроллеры. И припаиваем микроконтроллеры на плату. После того как соберете, ни в коем случае не подключайте нагрузку сразу к плате, а то спалите все. Нагрузку к плате следует подключать через мощный транзистор как на фото
На схеме светодиоды стоят чисто для проверки работоспособности. Если у кого нету программатора тоже обращайтесь, помогу с уже прошитыми микросхемами.
С вопросами и предложениями обращаться на почту fyodorov_s@ukr.net или в комментариях.
Вот файлы с прошивкой Rx1.zip (скачиваний: 3157)
Автор схемы: Blaze с форума vrtp.ru Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. .

Аппаратура радиоуправления

Переделка модулей FS1000A И XY-MK-5V для передачи аналогового сигнала

Как переделать модули радиопередатчика типа FS1000A и приемника типа XV-MR-5V для организации аналогового канала связи. Как-то возникла необходимость в передаче аналогового сигнала. Модуль передатчика FS1000A представляет собой простой однокаскадный микромощный передатчик на транзисторе Q1 …

1 402 0 Схема АМ и ЧМ радиоаппаратуры на 27МГц для передачи команд используя DTMF

Схема передатчика и приемника на диапазон 27МГц для работы с двухтональной кодировкой команд (DTMF), применяющаяся в телефонии, очень удобна так же и для устройства радиоуправления. Сигнал можно передать по любому аналоговому каналу связи, высокая помехозащищенность и относительная доступность …

1 555 0 Схема управления миниатюрным электродвигателем для игрушки

Эта схема предназначена для управления электродвигателем модели трамвая. Модель трамвая движется по отрезку железной дороги то в одну, то в другую сторону. Еще есть стрелка и тупик в депо. Модель должна двигаться по основному отрезку пути сначала в одну сторону, затем в конце пути ударяется …

0 430 0 Схема радиоуправления на основе модулей TX118SA-4 и RX480E-4

Схема подключения модулей TX118SA-4 и RX480E-4 для организации четырехканальной системы радиоуправления. Наверное, многие хотели бы дистанционно управлять различными бытовыми приборами, и самодельными устройствами. Но их останавливает сложность изготовления передатчика и приемника, необходимость …

1 705 0 Простой АМ приемник и передатчик сигнала радиоуправления 27МГц (9018, LM386)

Принципиальная схема простой КВ аппаратуры радиоуправления на 27МГц, построенной на транзисторах 9018 и микросхеме LM386. Этот радиотракт работает на частоте 27,12 МГц, его можно использовать дляпропорционального радиоуправления моделями, либо в любом случае, когда нужно передать НЧ-сигнал на …

2 3338 0 Изготавливаем систему радиоуправления на основе дверного радиозвонка (433МГц)

Принципиальная схема дистанционного радиоуправления на основе китайского квартирного радиозвонка. В магазинах электротоваров можно приобрести квартирный звонок с радиоуправлением. Устройство производится в Китае, и состоит из двух модулей, питающихся от автономных источников. Один из модулей …

0 3431 2 Самодельный комплект радиоуправления на основе телефона-трубки (433МГц)

Принципиальная схема системы радиоуправления, построенной на основе телефона-трубки, рабочая частота — 433МГц. В конце 90-х были очень популярны телефоны-трубки, да и сейчас они повсюду продаются. Но, сотовая связь болееудобна и сейчас повсеместно вытесняет стационарную. Купленные когда-то …

2 3457 0 Рулевая машинка для модели с двумя электродвигателями (К561ЛЕ5, IRF510)

Существуют игрушки — модели вездеходов, танков, луноходов, у которых есть две гусеницы или два ряда колес, работающих от отдельных электродвигателей. При этом поворот выполняется отключением одного из двигателей (с той стороны, в которую нужно повернуть). Поворот происходит резко или нужно его регулировать скачками включая — выключая сторону движителя.

2 2963 1 Система дистанционного радиоуправления на UM3758-130A

Это устройство в основном предназначено для управления гаражными дверями, центральным замком в автомобиле, освещением, включением сигнализации на расстоянии и т. д. Использованные в его конструкции специализированные схемы фирмы UMC UM3758-130A позволяют установить З12 комбинаций кодов. Весь…

1 3600 0 Регулятор-стабилизатор оборотов для коллекторных электродвигателей 220В

В конструкции регулятора применена специализированная интегральная схема фирмы TELEFUNKEN U2008. Система предназначена для регулирования оборотов коллекторных двигателей, питаемых от сети 220 В. Хорошо работает с электродвигателями, используемыми в инструментах — дрели, шаговой пилы, лобзика …

Радиоуправление: схемы и конструкции своими руками

Схемы и конструкции радиоуправления, которые несложно собрать своими руками. Литература по системам радиоуправления

– аналоговые схемы радиоуправления;
– разработки на микросхемах;
– схемы радиоуправления на микроконтроллерах;
– готовые модули приемник – передатчик;
– самодельные модули приемник – передатчик;
– применяемые антенны;
– вопросы настройки самодельных модулей
– и многое другое, что связано с радиоуправлением.

1. Четырехкомандная система радиоуправления

2. Передатчик радиоуправления на микросхеме

3. Передатчик и приемник системы радиоуправления

4. Модуль передатчика радиоуправления на цифровой микросхеме

Подборка статей Владимира Днищенко для конструкторов аппаратуры радиоуправления:

Основные принципы пропорционального радиоуправления моделями (1.1 MiB, 9,216 hits)

Формирователи команд для аппаратуры пропорционального управления (805.3 KiB, 4,770 hits)

Рулевые машинки для аппаратуры пропорционального управления (1.1 MiB, 6,191 hits)

Радиоканал для аппаратуры пропорционального радиоуправления (1.5 MiB, 4,148 hits)

Радиоканал на транзисторах для аппаратуры пропорционального радиоуправления (1.2 MiB, 4,290 hits)

Аппаратура пропорционального радиоуправления (8.9 MiB, 5,228 hits)

ПРиемник прямого преобразования на интегральной микросхеме (693.2 KiB, 3,800 hits)

Простой супергетеродин для аппаратуры радиоуправления (764.0 KiB, 3,886 hits)

Радиоканал с частотной модуляцией для аппаратуры радиоуправления (752.1 KiB, 4,457 hits)

Книга Владимира Днищенко для конструкторов аппаратуры радиоуправления:

Дистанционное управление моделями (3.2 MiB, 6,784 hits)

Схема и ремонт радиоуправляемой игрушечной машинки Diskie Toys модели Mc QUEEN

Игрушечные машинки Diskie Toys серии Cars 2 копируют персонажей мультфильма Cars 2 (Тачки 2) и популярны у детей. Автор ремонтировал машинку модели «Молния Мак Куин» (Mc Queen) китайского производства, неизвестного года выпуска. На 3-й день машинка упала в воду, из неё пошёл дым, потом она стала останавливаться, не реагируя на команды с пульта. На интернет-сайте поддержки предложений по ремонту нет. В московских интернет магазинах гарантийный срок обмена неисправных радиоуправляемых игрушек, на момент написания статьи был 7 дней. Согласно инструкции по эксплуатации на RC (Radio-Car) Mc QUEEN установлен сертифицированный модуль радиоуправления «27138» на частоту 27 МГц. Сведений по ремонту этого модуля автор не нашел. В настоящей статье приведены электрические схемы пульта управления (рис.1), машинки модели Mc QUEEN (рис.2), описаны найденные неисправности и способы их устранения (рис.3), отмечены некоторые особенности управления машинкой.

На схемах буквенно-цифровые обозначения радиодеталей соответствуют обозначениям, указанным на монтажных платах. Не обозначенные на платах детали автор обозначил самостоятельно. Обозначенные на платах, но не распаянные детали, рассеиваемая мощность SMD резисторов, перемычки, в т.ч. SMD, на схемах не указаны. Маркировка полупроводниковых SMD приборов указана в рамке, если была нанесена разборчиво. Все приведенные на схемах номиналы были прочитаны или измерены. В пульте управления, контакты кнопок SB2, SB3, SB4, SB5—угольные, они соединены с соответствующими контактными площадками платы угольными дорожками, такие же угольные дорожки соединяют с платой средний вывод SA1 и вывод 10 ic2. Эти дорожки на плате не обозначены. Они отмечены на схеме пульта управления утолщенными линиями и символом резистора, с указанием сопротивления данной угольной дорожки, или замкнутого контакта SB2—SB5 между двумя соответствующими контактными площадками. Шифратор команд управления пульта, микросхема ic2 с маркировкой «515Т», и дешифратор команд управления машинки, микросхема U2 с маркировкой «515R», в корпусах SOP 14, китайского производства. Программируются ли они, неизвестно, но объём памяти на одну-две команды имеют, описание этих микросхем автор не нашёл.

Пульт управления потребляет ток 50—150 мА. Его работоспособность сохраняется при питании от 3-х батареек LR6 до напряжения 3,3В. Светодиоды D19-D20—индикаторы включения пульта. С вывода 8 ice2 включается радиопередатчик пульта управления, и передаются коды, модулирующие излучаемый сигнал . C вывода 9 ic2 сигналы управления поступают на вывод 3 ic1 звукового процессора, «черную таблетку», находящегося на отдельной плате, 8 на 15 мм.

В памяти ic1 2-х секундными файлами записаны звуковые эффекты. При поступлении сигнала управления ic1 выбирает нужный файл и транслирует его непрерывно до окончания управляющего сигнала. Динамик SPK находится внутри пульта управления. Первые два дня пульт мог произносить фразу: «Поговори со мной».

Схема 1

Схема 2

Движение вперёд—назад выполняется электродвигателем машинки М1, его работа управляется с пульта переменным сопротивлением RW1, включенным как реостат. Светодиоды шкалы пропорционального управления включаются последовательно, начиная с D18-D17 по D11-D10, они индицируют отклонение движка RW1 от среднего положения при движении вперёд—назад. Регулировка скорости движения осуществляется изменением частоты подачи команд вперёд—назад с пульта управления. Но эта регулировка не очень эффективна, т.к. на малых оборотах электродвигателю не хватает крутящего момента и машинка начинает дёргаться на старте. Поворот вправо—влево выполняется электродвигателем машинки М2, и управляется с пульта переключателем SA1. Для выполнения команды «Разворот» (Круговое вращение), нажатием переключателя SB1 «MODE» с пульта включается электродвигатель машинки М3 и подпружиненная платформа с закрепленным на ней колесом разворота опускается из верхнего положения. В нижнем положении платформы колесо разворота выдвигается и упирается в поверхность пола, шестерня на его оси входит в зацепление с шестерней редуктора двигателя ведущих колес М1, одновременно задние, ведущие колеса отрываются от поверхности, размыкается контакт SF3 и замыкается SF2, после чего двигатель М3 останавливается. Теперь команды поступающие с RW1 и SA1 блокируются, а двигатель М1 будет управляться датчиками положения SQ1 и SQ2 и вращать колесо разворота. Контакты SQ1 и SQ2 должны срабатывать при покачивании пультом из стороны в сторону, при замыкании одного из них машинка разворачивается вправо или влево в течение 3-х сек, затем самостоятельно останавливается. Датчики SQ1 и SQ2 металлические, цилиндрической формы, с осевым расположением выводов, без маркировки. Внутри, судя по звуку, находится шарик. При повороте датчика выводом золотистого цвета вниз контакт внутри датчика замыкается, а при повороте его вниз выводом серебристого цвета — размыкается. Датчики расположены на задней стенке пульта управления под углом в 90 град. один к другому, но угол их срабатывания более 150 град. Возможно, по этому, один из них был установлен в пульте вверх ногами, и чтобы изменить направление вращения машинки приходилось поворачивать пульт то вверх антенной, то вниз. Для отмены команды на круговое вращение выключают SB1, после чего повторно включается двигатель М3: платформа колеса разворота поднимается, шестерня на его оси отсоединяется от редуктора М1, размыкается SF2, ведущие колеса опускаются на поверхность, в верхнем положении платформы замыкается SF3 и М3 останавливается.

Схема 3

Машинка во время езды потребляет ток более 1А. При питании от 8-ми батареек LR6 она сохраняет работоспособность до напряжения 10,5В (1,3В на элемент). Полуразряженные элементы данного типоразмера не «держат» большой для них ток, поэтому применение аккумуляторов нежелательно. Самовосстанавливающийся предохранитель FU1 маркировки не имеет, и ни разу не сработал. Микросхема U1 без маркировки, вероятно, это сдвоенный операционный усилитель, аналогичный входящему в состав китайской микросхемы PTBA978B , «обвеска» их выводов совпадает, номиналы С4, С6, С9, С13 взяты из . Вне платы приемника машинки расположены электродвигатели М1, М2, М3, датчики SF1—SF3, разъём и выключатель питания, светодиоды фар, плата с сопротивлениями R14—R17. Двигатели М1 и М3 с редукторами, платформа с колесом разворота, ведущие колеса собраны в единый блок заднего моста. Датчик SF1 находится в неразборном узле крепления оси колеса разворота, доступа к нему нет, его контакты замыкаются и размыкаются при каждом обороте колеса разворота. Датчики SF2 и SF3 —микротумблеры нажимного действия, SF2 крепится в самом низу блока, он наиболее подвержен загрязнению. Датчик SF3 находится в верхней части сборки. Все три датчика соединены проводами с соответствующими контактными площадками на плате: К2, К3, К4, при срабатывании они замыкают на общий провод соответствующие выводы микросхемы U2. При нарушении контактов датчиков SF2 и SF3, или обрыве их соединительных проводов, после подачи или отмены команды «MODE» двигатель М3 продолжает работать, непрерывно опуская и поднимая колесо разворота. Дешифратор U2, заметив ошибку в выполнении команды, самоблокируется и прекращает выполнение всех команд. Для перезапуска U2 машинку нужно выключить и повторно включить переключателем SA1.

Сломанная машинка отключалась после нажатия на пульте кнопки SB1 из-за невозможности выполнить команду «MODE». На её плате до обугливания выгорели транзисторы Q8 и Q11, управляющие двигателем М3, так, что невозможно было установить их тип и проводимость. Комплиментарная пара транзисторов подключенная эмиттерами к «+» М3, включала бы его при закрытом транзисторе Q7. Но М3 должен включаться по команде «MODE» при открывании Q7, тогда p-n-p транзистор Q11 и n-p-n Q8 надо подключать коллекторами к выводу «+» М3. После установки на место Q8 и Q11 пары транзисторов «8050» и «8550» коллекторами к «+» М3, тот заработал, но в течение суток эти транзисторы сгорели повторно. Пришлось рисовать схемы и разбираться в причине происшедшего: оказалось, что при переключении Q7, через транзисторы Q8 и Q11 некоторое время течет сквозной ток, а такое, как на плате, подключение их базовых выводов к D9 этот ток только увеличивает. При выполнении команды «MODE» М3 включается всего на 2—3 секунды, поэтому проработать несколько дней эта схема могла. Но при частом включении команды «MODE», или повышении сопротивления контактов SF2-SF3, транзисторы Q8 и Q11 сгорали бы обязательно. Чтобы избежать сквозного тока, из цепи управления М3 был удален n-p-n транзистор Q8, убрать бы его сразу и ничего бы не сгорело. На место Q11 был припаян 2Т836Б, всё заработало, но из-за отслаивания фольги контактных площадок Q11, (ранее он выгорал сильнее Q8), пришлось изменить схему включения М3. Результат ремонта показан на рис. 3. С платы удалены: диод D9, отслоившаяся фольга контактных площадок Q11. На место D9 установлен R28, транзистор 2Т836Б припаян в отверстия Q8, место Q11 оставлено свободным. Вывод «+» М3 подключен к плюсу питания платы, а «—» М3 к эмиттеру 2Т836Б.

Возможно, что плата приёмника предназначалась для другого изделия, а впоследствии была приспособлена к данной модели машинки. Возможно, что дефектная плата досталась только части машинок данной серии.

Из-за увеличения сопротивления контактов микротумблеров SF2 и SF3 они были промыты, для чего пришлось разбирать задний мост машинки. В пульте управления датчики SQ1 и SQ2 были заменены на кнопочные выключатели, установленные на заднюю стенку пульта. Управление машинкой стало удобнее. Пластиковая трубка, предназначенная для поддерживания антенного провода машинки в вертикальном положении, сломалась, пришлось установить на машинку съёмную антенну.

После ремонта и переделки машинка без поломок работает уже много месяцев.

Список литературы:
1. Интернет сайт http://service.dickietoys.de
2. Интернет сайт http://www.masteraero.ru «Как переделать и установить аппаратуру радиоуправления с китайских игрушек…» Автор Савельев В.
3. Интернет сайт http://supreg 1. narod.ru «Приемник для радиоуправляемой игрушки» Автор Мартемьянов А.

Решил сделать схемы которые делал в детстве и они у меня не получились и описать свои ошибки. Тогда я никак не мог понять почему я передатчиком посылаю одни команды, а приемником если и принимаю, со совсем что то непохожее. Сейчас я конечно знаю почему у меня так получалось, но в виду излишка свободного времени решил все это сделать в железе как тогда в детстве. Ностальгия наверное. Для начала взял самые простейшие схемы, Тем более форум просто забит вопросами «Как сделать радиоуправление на одну команду».

Когда начинал писать, то думал, что постепенно дойду и до сложных постепенно усложняя приемную и передающую часть., т.к. в каждом конкретном случае возникают проблемы совершенно разные. К примеру вместо сверхрегенератора применить для радиоуправления простую и дешевую микросхему TDA7000 или TDA7021.

Подход в этом случае будет немного другой, т.к. там будут действовать другие дестабилизирующие факторы. Конечно для профессионалов эта идея покажется смешной, но для начинающих в качестве первой конструкции по моему самое то и поняв общие принципы можно уже с понятием делать на специализированных микросхемах.

На TDA7000(70221) по моему и схема и настройка будет еще проще. В ней, при её простоте заложено довольно много возможностей для целей радиоуправления.

К сожалению статья моя раздулась до безобразия, а я успел только про примитивные сверхрегенераторы на 27 мгц написать, поэтому я ими и закончил

Понятно подходы выделения полезного сигнала при радиоуправлении различны для разных приемных и передающих систем. У каждой системы есть свои особенности.

Даже если взять тот же сверхрегенератор, но частоту взять раз в десять больше, то одно проблемы отпадут, но появятся новые.

К сожалению в этой статье до этого не дошел, хотя сам передатчик и приемник сверхрегенератор на частоту 225 мгц сделал.

На этих частотах обработка сигнала и его выделение проще, но труднее сама аппаратура, но при этом открываются большие возможности в конструировании малогабаритной аппаратуры радиоуправления на большие расстояния..

Вот даже моя примитивная система на 225 мгц работает в пределах квартиры без всяких антенн. Частоту взял именно эту просто из за того, что вытащил кварц на 25 мгц из старой сетевой карточки и сделал на его основе передатчик. Справа там просто мультивибратор на логике, что бы сигнал передатчика промодулировать.

А это приемник сверхрегенератор на частоту 225 мгц.

Монтаж на пятачках. Считаю, что для макетов идеальный способ. Расположение пятачком делается в процессе монтажа и заранее неизвестно. Прочитать об этом способе можно в книге С.Г. Жутяев «Любительская УКВ радиостанция»

С этим все. Начинаю со сверхрегенераторами на 27 мгц, а там как получится.

Понятно, что сначала нужно было сделать простейший маломощный передатчик — маячек для моих экспериментов. Схему сделал для данных целей самую примитивную. Сделал на трех транзисторах. Генератор на 27 мгц и мультивибратор на микросхеме. В дальнейшем этот мультивибратор для однокомандной апппаратуры будет лишний. Его приделал только для настройки. Питание 4,5 вольта.

Как говорил, схема сверхрегенератора классическая. Катушка такая же, как и в передатчике. Транзистор КТ315Б

Подключил к УНЧ и антенну длиной 15 см. Покрутил R2 и добился шумов суперизации.

Взял книжку книжку Г. Миль «Электронное дистанционное управление моделями» Подцепил осциллограф к точке «1» на схеме и как подозревал картинка моя было и близко на эту не похожа.

Что я только не крутил, но они форму менять не хотели или их уровень поднимался выше от нулевой линии, что тоже уменьшало чувствительность.

Дроссель в эмиттере у меня был самодельный. Намотано 50 витков провода на резисторе 100 ком. От отчаяния взял и поставил фабричный дроссель ДПМ-01 и произошло чудо. Осциллограмма сразу приняла приличный вид и чувствительность улучшилась.

Стал экспериментировать с самодельными дросселями. Во всяком случае на 27 мгц наиболее близким к этому оказался намотанный на ферритовом кольце дроссель диаметром 10 мм. Витков 35. Тип феррита не знаю. Взял случайный. Дальше эксперименты прекратил, но понял, что дроссель в сверхрегенераторе очень важная часть и никогда его не нужно как иногда рекомендуют мотать просто на резисторе.

Настала пока делать однокомандную управление. В теории все просто выглядит. Когда несущей нет, то сверхрегенератор сильно шумит. Этот шум нудно выпрямить и использовать как команду. Если подать просто несущую, т.е. включить передатчик без модуляции, то эти шумы пропадают. После детектора получается ноль, а это равносильно подаче команды. Эта система привлекает тем, что когда передатчик отключен, то на выходе приемника нет ложных команд. Шумит он и шумит.

Вот и у Г. Миля об этом написано.

Такая привлекательная простая схема. Жалко, что на практике она очень нестабильно работает. Так и у меня в те годы получилось и решил я её добить. Может кому пригодится. Дело в том, что на выходе сверхрегенератора присутствует переменное напряжение суперизации, как видели оно порядка единиц вольт, хотя и частота у него намного больше напряжения шумов, но величина шумов всего лишь несколько милливольт и эффективно отделить их очень затруднительно. Конечно идеальный случай поставить НЧ трансформатор или ФНЧ на LС элементах, но лень мотать тысячи витков. Хотя в давние времена люди были не такие ленивые и мотали такое.

Здесь нужно заметить, что если сверхрегенератор использовать для приема голоса, то сильное подавление частоты суперизации можно не делать. Просто не нужно будет подавать на УНЧ сильный сигнал, что бы не загонять его в режим отсечки этим напряжением суперизации. В нашем случае это напряжение нужно убрать как можно сильнее. На выходе сверхрегенератора стоит примитивный фильтр НЧ на R5, С7 но все, на что он способен, так получить на его выходе вот такое с амплитудой порядка 0,2 вольта, а шумов при таком на экране осциллографа еще и не видим, хотя они там точно есть. Амплитуда этих шумов совсем мала. Это картинка в точке «2»

Если присмотреться, то наши шумы чуть видны в верхней части этих импульсов.

При таком безобразии приемник будет реагировать не на шумы, а на эти импульсы.

Т.к. ни LC фильтр мне не хочется, ни трансформатор ставить, то остается единственны путь, это поставить активный RС фильтр с частотой среза в несколько килогерц.

Взял опять на транзисторе. После фильтра поставил усилитель с маленьким выходным сопротивлением и получил основной блок для дальнейших экспериментов.

Если теперь посмотреть сигнал в точке «3» при отсутствии несущей, то видим только шум сверхрегенератора приличной амплитуды. Он то и является в нашем случае сигналом команды.

Кстати макет базового блока так выглядит. Виден монтаж на пятачках. Конструкция довольно жесткая. Можно спокойно её бросать и ничего с ней не будет. Все сделано на выводах деталей обрезанных до размера 1 – 2 мм

Единственно желательно сердечник катушки закрепить.

Теперь имея базовый блок делаем для начала простейшее однокомандное управление.

Принцип простой. Шумы уже выделили. Теперь их усилим, продетектируем, подадим на триггер Шмита и дальше на силовой ключ. Если передатчик не включен, то светодиод горит. При включении передатчика шумы пропадают и светодиод гаснет. Если нужно другая логика, то нужно добавить еще один ключ или вместо светодиода поставить реле, но это уже нюансы.

Это макет однокомандного управления так выглядит.

Передатчик для него до безобразия просто выглядит. Просто генератор на кварце 9 мгц работающий на третьей механической гармонике. Его просто включают или выключают.

В принципе можно сделать и без кварца. Для увеличения мощности в генераторе поставил два транзистора КТ315 в параллель, что тоже необязательно. Можно один или что то мощнее, например КТ603 или КТ3117

А это полная схема. Вверху базовый блок, снизу дешифратор команды.

Деталей получилось довольно много, но это компенсируется простотой и наглядностью настройки, где каждый каскад выполняет одну определенную функцию.

Теперь, как и задумал элементарные принципы передачи нескольких команд. Я взял две команды, хотя по этому принципу можно сделать порядка четырех.

Принцип частотного разделения каналов. Принцип широко известен. Правда для разделения каналов в аналоговых системах обычно применяют избирательные LС фильтры, но это не для ленивых, а коты как известно здорово ленивые.

Вот здесь схема с катушками из книги Г. Миля.

Поэтому фильтры решил взять активные на RС. Схем много перепробовал, но не понравились. Больше понравился фильтр Мюллера Фогта. О нем тоже в книге Г. Миля написано.

Базовый блок прежний, только после него вместо усилителя и триггера Шмита пришлось поставить усилитель-ограничитель, т.к. случались ложные срабатывания когда передатчик расположен близко от приемника. Было одновременное срабатывание двух соседних каналов. Когда поставил ограничитель и ограничил величину сигнала поступающих на фильтры, этот дефект пропал.

И наконец полная схема вместе с фильтрами и выходными ключами. Частоты я брал случайные. Первая получилась 1200 гц, вторая 750 гц. Желательно, что бы они не делились на целое число и не создавали в тракте гармоники, т.е. выбор 1200 гц и 600 гц был бы совсем не удачен в данном случае.

Само собой схемы фильтров можно взять и другие, но мне эти понравились.

А это внешний вид макета.

Теперь к передатчику можно переходить. Схема стандартная. Задающий генератор на кварце 9 мгц. Кварц работает на третьей механической гармонике. Дальше идет апериодический буферный каскад в котором происходит также модуляция. Подобная схема модуляции позволяет сделать большую скорость передачи, хотя требует дополнительного каскада. Выходной каскад самый примитивный. Если в нем предусмотреть цепи согласования с антенной, то параметры его конечно улучшаться. Так же можно в оконечном каскаде поставить и более мощный транзистор, хотя бы КТ603, но у меня не было этих целей. Я начал антенну согласовывать, но бросил, т.к. дальности для моих экспериментов и так хватало, а так при желании мощность его можно существенно увеличить особо не раздувая габаритов.

Модулятор по сути два мультивибратора работающих на разных частотах.

На схеме все понятно. Включаем или один мультивибратор или другой.

Там резистор R17 можно подобрать для увеличения мощности, но я не стал. Мне большая мощность не нужна была для экспериментов.

А это макет передатчика с которым я экспериментировал. Система само собой полностью работоспособная. Там видна спиральная антенна и удлиняющая катушка. Окончательно я её не настроил, т.к. большой дальности не преследовал на данном этапе своих экспериментов.

Все!

Силы мои иссякли, да и по опыту знаю, что чем длиннее статья, тем меньше охотников дочитать её до конца. Хотел сделать еще дистанционный аналоговый термометр, но выдохся. Просто на входе модуляции передатчика поставить генератор управляемый напряжением, а в качестве дешифратора приемника поставить преобразователь частота-напряжение. Такие ставили в аналоговых частотомерах.

В заключение хочу сказать, что конечно вместо примитивных шифраторов и дешифраторов на транзисторах здесь можно поставить более совершенные шифраторы и дешифраторы на логике или на МК в которых предусмотреть дополнительно свою систему зашиты достоверности информации дополнительно к этой, хотя не вижу смысла делать такое к таким примитивным передатчикам и приемникам.

КИТАЙСКАЯ РАДИОУПРАВЛЯЕМАЯ МАШИНКА

Раньше даже близко не было такого изобилия товаров вообще и игрушек в частности. И во многом современный детский рай обязан прогрессу в электронике. Говорящие роботы, мультикоптеры, роботы-шпионы — всё это не просто есть в магазинах, а продаётся по очень недорогой, для многих, цене. К тому же игрушки иногда бывают настолько продвинутые в плане радиоэлектронной начинки и интересные по работе, что тут впору покупать их не для детей, а для себя. Тем более если отец радиолюбитель 🙂 В общем случайно проходя мимо витрины магазина «Всё по доллару» заметил коробку с китайской радиоуправляемой машинкой, которая стоила всего 10$! Естественно это за весь комплект.

Комплектация Р/У машинки

  • Машина — гоночный автомобиль
  • Пульт дистанционного управления
  • Четыре аккумулятора 1,2 В 600 мА/ч
  • Зарядное устройство 4,8 В 250 мА

Характеристики авто на радиоуправлении

  • Питание машинки — 4 шт. 1,2 В никель-кадмиевые аккумуляторы
  • Питание пульта — 3 пальчиковые батарейки АА
  • Время заряда — 5 часов
  • Время работы — пол часа
  • Частота радиоканала — 27 МГц
  • Дальность действия радиоканала — 10 метров

На коробке всё написано по китайски — ни одного не то что русского — даже английского слова. Что ж, время учить китайский или развивать интуицию 🙂 Сложного по идее ничего нет: вставил аккумуляторы в авто, три батарейки в пульт — и поехали.

Пульт управления машинкой

Обратите внимание, в комплект не входят батарейки для ПДУ, только к автомобилю. Так что понадобится 3 элемента АА по 1,5 В.

Пульт сразу привлёк внимание полным отсутствием кнопок, не считая кнопки включения.

Всё дело в том, что здесь команды на поворот влево-вправо, движение вперёд-назад, подаются наклоном. Если открыть пульт ДУ и изучить плату с деталями, то видно 4 датчика положения. Внутри этих цилиндриков, впаянных с наклоном, и находятся датчики в виде шариков.

Сама микросхема передатчик формата DIP, как и остальные детали, поэтому пульт очень компактный и лёгкий. К нему спереди прикручена телескопическая антенна на 3 колена. Длинна в разложенном виде — около 30 см. Если вы стоите рядом с авто — можно и не раскладывать её. Но при дальности свыше 5 м это необходимо.

Радиоуправляемая машина

Прежде чем установить аккумуляторы в батареечный отсек авто, необходимо их зарядить. Для этого в комплекте есть маленькой зарядное устройство, естественно импульсное.

Плата внутри него — копия обычной зарядки от мобильного телефона. И параметры (и схема) аналогичные — импульсный преобразователь на транзисторе примерно 2-3 ватта.

При включении кнопки машинки (она на днище), все 4 колеса сразу начнут мигать синими и красными светодиодами, установленными изнутри. Это и красиво, и удобно — сразу понятно, что питание активировано. Чтоб не было ситуации, при которой поигрались и забыли обесточить авто, посадив или вообще угробив аккумуляторы.

Разберём её тоже и заглянем под крышку. Приёмная часть собрана на базе микросхемы RX-2B. Схемы включения вы можете , они стандартны для большинства радиоуправляемых моделей 27 МГц, малого радиуса действия.

А транзисторы С945 коммутируют два моторчика — основной, что находится в задней части авто, и вспомогательный, ответственный за поворот передних колёс.

Фары спереди засвечиваются когда машина едет вперёд. При заднем ходе они сразу гаснут. Интересно, что тут применили не светодиоды, а лампочки. Это конечно более реалистично, но расход энергии увеличивается почти на 100 мА, поэтому для экономии просто перерезал ножницами провода, идущие к ним от платы управления.

Видеоролик работы машинки

В общем китайцы в очередной раз удивляют не столько технологиями, хотя они держат руку на пульсе и постоянно пополняют рынок новыми интересными девайсами, а возмутительно низкой ценой. Подумайте, сколько бы стоили отдельно 4 аккумулятора? А зарядное устройство? Не говоря про остальное. Что касается качества: ребёнок играет уже больше месяца и ничего, машина жива-здорова, хотя перезаряжалась уже раз 20.

Схемы передатчиков

Аппаратура пропорционального управления

Аппаратуру пропорционального управления моделями изготавливают многие зарубежные фирмы. В основном это импульсная многоканальная аппаратура, укомплектованная рулевыми машинками. Ее схемные решения вполне могут быть использованы для изготовления аппаратуры в любительских условиях.

Известный чешский инженер-конструктор В. Валента так и поступил. Он взял за основу аппаратуру системы «Телепроп», внес в нее необходимые изме-нения и изготовил свой, модернизированный вариант. Описание этой аппаратуры познакомит читателя с тем, как на практике реализуют один из принципов построения импульсной многоканальной радиолинии пропорционального управления. Особенность этой системы в том, что при передаче на борт радиоуправляемой модели информации о положении ручек управления командодатчиков применяется широтно-импульсная модуляция (ШИМ) с временным разделением каналов управления и синхропаузой (рис. 1). Модулирующий сигнал формируют тактовый (Т=20 мс) и многофазный регулируемый мультивибраторы, дифференцирующие цепи, диодные суммирующие ячейки и выходной одновибратор.

Рис. 1. Эпюры, поясняющие структуру импульсной последовательности в командных каналах

На рис. 2 показана принципиальная схема четырехканального шифратора. Мультивибратор на транзисторах VT2, VT3 запускает многофазный мультивибратор, транзисторы VT4-VT7 которого открыты током базы через резистивные цепи.

Предположим, что в начальный момент времени транзистор VT3 закрыт. Конденсатор СЗ заряжается до некоторого напряжения, зависящего от положения движка переменного резистора R6. При переключении мультивибратора транзистор VT3 откроется и напряжение конденсатора СЗ закроет транзистор VT4.

Транзистор VT4 будет закрыт до тех пор, пока конденсатор СЗ не разрядится через цепь R8, R9. Таким образом, время переключения транзистора VT4 зависит от положения движка переменного резистора R6, соединенного с управляющим рычагом командодатчика, и от положения движка подстроечного резистора R8, устанавливающего ширину импульса при нейтральном положении этого рычага.

К коллектору транзисторов VT3- VT7 подключены дифференцирующие цепи С7, R7, С8, R12 и т. д., подключенные через диоды VD1-VD5 к сборной линии. На ней формируется сигнал, состоящий из синхропаузы и продифференцированных коротких импульсов, возникающих в начале и конце канального интервала. Эпюры коллекторного напряжения транзисторов шифратора показаны на рис. 3.

Рис. 3. Эпюры напряжения на коллекторах транзисторов шифратора

Модулирующий транзистор передатчика работает как ключ, который в ритме модуляции подключает напряжение питания к выходной ступени. Так как узкие импульсы на сборной линии (рис. 4) из-за разброса номиналов элементов дифференцирующих цепей имеют разную длительность, то модулятор формирует модулирующий сигнал в виде импульсов с определенными параметрами. Для этой цели предназначен одновибратор на транзисторах VT8, VT9 (рис.2), постоянную времени которого выбирают соответственно длительности импульса. Транзистор VT9 одновременно служит модулятором.

Рис. 4. Импульсы на сборной линии, модулирующий и модулированный сигналы

Для налаживания шифратора необходим осциллограф с калибровкой временной развертки. К шифратору подключают батарею с напряжением 12 В. По осциллографу проверяют эпюры коллекторного напряжения (рис. 3).

Подстроечным резистором R2 устанавливают необходимую длительность периода мультивибратора (20 мс). Длительность каждого канального импульса при нейтральном положении рычага командодатчика должна быть 1,5 мс. При переводе рычага командодатчика в крайние положения длительность канального импульса изменяется соответственно на +0,5 или -0,5 мс. Таким образом, пределы изменения длительности импульса 1-2 мс. Подстроечными резисторами R8, R13, R18, R23 устанавливают необходимую длительность импульса в каждом канале при нейтральном положении рычага. С рычагами в командодатчике передающего устройства механически связаны движки переменных резисторов R6, R11, R16 и R21.

Далее контролируют по осциллографу напряжение на сборной линии. Коллектор транзистора VT9 через резистор сопротивлением 100 Ом временно соединяют с общим проводом (с минусовым выводом источника питания). Эпюра напряжения должна соответствовать рис. 5. Конденсатор С13 предназначен для придания импульсам модулирующего сигнала формы трапеции.

Рис. 5. Эпюра напряжения на выходе модулятора

Такая форма импульса снижает уровень гармоник в высокочастотном сигнале, сужает полосу излучения и повышает выходную мощность передатчика. Если длительность импульса отличается от 200 мкс, то ее изменяют подборкой конденсатора С12. Замыкающий резистор сопротивлением 100 Ом снимают- шифратор можно подключать к передатчику.

Задающий генератор передатчика (рис. 6) выполнен по схеме с кварцевой стабилизацией частоты. Связь между ступенями индуктивная. К коллектору транзистора выходного каскада подключен П-фильтр С5, L4, С6, который эффективно подавляет гармонические составляющие. Катушка L5 — согласующая. Рекомендуемая длина антенны-1400 м. В передатчике могут быть применены следующие отечественные транзисторы: VT1 -серий КТ315-КТ316; КТ306А- КТ306В, КТ603; VT2 — серий КТ603. КТ904А, КТ606А.

Рис. 6. Схема передатчика

Катушки имеют следующие характеристики: L1 — 14 витков провода ПЭВ-2 0,8 на каркасе диаметром 8 мм с ферритовым подстроечником длиной 10 мм; L2-5-6 витков монтажного провода диаметром 0,8 мм. в хлорвиниловой или фторопластовой изоляции, L2 наматывают поверх L1; L4-7 витков провода ПЭВ-2 0,8 на таком же каркасе, как и L1; L5 -19-25 витков ПЭВ-2 0,3 на том же каркасе (число витков подбирается в зависимости от длины примененной антенны).

Кварцевый резонатор применяют на частоту 27,12 МГц±0,05%. Рекомендуется испытывать передатчик с полностью развернутой антенной. При эксплуатации передатчика без антенны, опасна тепловая перегрузка оконечного транзистора. «Удлинительную» катушку L5 антенны, если она применена, настраивают по индикатору напряженности поля. Корпус передатчика соединяют с общим проводом в одной точке.

На рис. 7 показан чертеж печатной платы передатчика. Плата показана со стороны деталей. Для питания передатчика применяют батарею из десяти никель-кадмиевых аккумуляторов ЦНК-0,45 или ЦНК-0.9У2. Запасным источником питания могут служить три батареи 3336, соединенные последовательно.

Pис. 7

Окончательно настраивают передатчик после установки его в корпус. Одновременно подстраивают «удлинительную» катушку антенны, при этом передатчик должен быть в руках. Мощность передатчика приблизительно равна 500 мВт. Рекомендуется оконечный транзистор передатчика установить на теплоотвод.

Бортовая часть аппаратуры содержит приемник, дешифратор, четыре одинаковых сервоусилителя и рулевые машинки. Приемник представляет собой супергетеродин, настроенный на фиксированную частоту. Для обеспечения бесподстроечной. связи гетеродин приемника собирают по схеме генератора с кварцевой стабилизацией частоты. Схема приемника изображена на рис. 8. На входе приемника применен полосовой фильтр, отделяющий антенну от входного транзистора VТ1. Это увеличивает избирательность и уменьшает обратное излучение гетеродина в антенну, позволяет без перестройки входных контуров применить любой высокочастотный канал в частотных пределах, выделенных для радиоуправления моделями, путем простой замены кварцевого резонатора. При этом разница по частоте между соседними каналами может быть равна 0,01 МГц.

Рис 8 Схема приемника

Гетеродин работает на частоте, которая ниже частоты принимаемого сигнала на 465 кГц. Диод VD3 служит детектором сигнала, a VD2 — детектором сигнала АРУ. Напряжение сигнала для АРУ снимается с первичной обмотки трансформатора промежуточной частоты (трансформаторами промежуточной частоты В. Валента называет фильтры промежуточной частоты, представляющие собой одиночные контуры с катушкой связи) и выпрямляется кремниевым диодом, который одновременно определяет рабочую точку смесителя и транзисторов усилителя промежуточной частоты. Четкая работа системы АРУ .важна, главным образом, при небольших расстояниях приемника от передатчика.

Приемник рассчитан на применение готовых деталей, в том числе и трансформаторов промежуточной частоты. Промежуточная частота может быть в пределах от 455 до 468 кГц. Показателем качества трансформатора высокой частоты является добротность. Она должна быть равна 120-140. Ширина полосы принимаемого сигнала 8-10 кГц. Монтировать приемник следует на одной плате. Монтаж может быть любым. Каркасы катушек L1 и L2 имеют диаметр 5 мм. Подстраивают катушку ферритовыми сердечниками, расстояние между осями катушек равно 9 мм (необходимо строго выдерживать это расстояние).

Катушки намотаны проводом ПЭВ-2 0,3; L1 содержит 10 витков, а L2-13 витков с отводом от третьего витка, считая от заземленного через конденсатор C3 конца. Высокочастотный дроссель L3 наматывается на изоляционном каркасе диаметром 3 мм и длиной 11 мм проводом ПЭВ-2 0,06 виток к витку до заполнения. Дроссель можно намотать и на резисторе МЛТ-0,5 сопротивление не менее 100 кОм.

Налаживание приемника заключается в настройке входного полосового. фильтра и трансформаторов промежуточной частоты. Автор рекомендует настраивать приемник по сигналам передатчика с укороченной антенной. Если настраивать приемник от генератора стандартных сигналов, необходимо очень точно знать частоту передатчика и настроить на нее генератор. Перед настройкой к приемнику подключают антенну длиной 1 м, а к выходу-высокоомные телефоны.

Сначала настраивают входной фильтр L1C1 и по мере увеличения чувствительности передатчик удаляют на такое расстояние, чтобы сигнал в телефоне был слышен слабо, и снова добиваются максимума при настройке (в том числе и уточнением режима транзистора VT4). Затем подстраивают трансформаторы промежуточной частоты.

Схема дешифратора приемника представлена на рис. 9. Диод VD1 предназначен для того, чтобы не пропустить сигнал помехи с амплитудой меньше прямого падения напряжения на нем, т. е. около 0,6 В. Амплитуда полезных сигналов, поступающих, с выхода приемника, равна приблизительно 1,1 В.

Схема дешифратора приемника

Полезный сигнал поступает на базу транзистора VT1, работающего инвертором. Транзисторы VT2 и VT3 — усилители-формирователи импульсов. Транзистор VT4 в отсутствие сигнала закрыт, и конденсатор С6 заряжен до полного напряжения питания. Первый же импульс откроет транзистор VT4 и разрядит этот конденсатор. На транзисторах VT5 и VT6 собран триггер Шмитта, который периодически открывает транзистор VT7, а он в свою очередь в эти моменты пропускает тактовые импульсы напряжения на сборную линию. Транзисторы VT8, VT10, VT12, VT14 входят в состав триггеров сдвигового регистра. Через диод VD2 запускается первый триггер регистра.

Эпюры коллекторного напряжения на транзисторах дешифратора и форма канальных импульсов на. эмиттерах транзисторов VT9, VT11, VT 13, VT15 показаны на рис. 10. Сдвиговый регистр на транзисторах различной структуры очень прост и вполне конкурентоспособен по сравнению с регистром на транзисторах, применяемых рядом зарубежных фирм. В дешифраторе следует использовать транзисторы с коэффициентом h21э>50.

Рис. 10. Эпюры напряженна в дешифраторе

Налаживание дешифратора несложно. Сначала подбирают резистор R3 так, чтобы на коллекторе транзистора VT1 было напряжение 1,5-2,5 В. Сопротивление резистора изменяют в пределах 430-820 кОм.

Завершающим звеном бортовой аппаратуры является электронный блок рулевой машинки. В системе использованы рулевые -машинки «Вариопроп». Принципиальная схема электронного блока рулевой машинки представлена на рис. 11. Назначение блока-совместно с двигателем рулевой машинки преобразовать длительность поступающих с дешифратора импульсов в механическое отклонение рычага рулевой машинки, пропорциональное длительности канального импульса, которая в свою очередь пропорциональна отклонению рычага командо-датчика. Одновибратор, собранный на транзисторах VT1 и VT2 и запускаемый фронтом входного канального положительного импульса, генерирует импульс отрицательной полярности. Оба импульса — положительный канальный и отрицательный одновибратора поступают через резисторы R13 и R14 в точку А для сравнения.

Рис. 11. Схема электронного блока рулевой машинки

При запуске одновибратора и нейтральном положении рычага рулевой машинки с коллектора транзистора VT2 в точку А поступает отрицательный импульс длительностью 1,5 мс. Длительность импульса одновибратора регулируют переменным резистором R2, движок которого механически связан с выходным валом рулевой машинки. В результате сравнения образуются короткие импульсы, полярность которых зависит от направления движения рычага командодатчика из нейтрального положения. При одинаковой длительности сравниваемых импульсов сигнал на вход усилителя постоянного тока, питающего рулевую машинку, не поступает, поэтому вал электродвигателя рулевой машинки не вращается.

Рассмотрим случай, когда импульсы одновибратора уже канальных. После вычитания получим положительные импульсы, длительность которых тем меньше, чем меньше разница .в длительности сравниваемых импульсов. Положительные импульсы открывают ключ на транзисторе VT4 и заряжают интегрирующий конденсатор С6 отрицательным по отношению к средней точке источника питания напряжением, которое поступает на усилитель постоянного тока на транзисторах VT6, VT8. Электродвигатель Ml включается и через понижающий редуктор перемещает вал руля и связанный с ним движок переменного резистора R2 вниз по схеме. Длительность положительного импульса одновибратора увеличивается и, когда она сравняется с длительностью канального импульса, напряжение в точке А станет равным нулю. Транзистор VT4 закроется, конденсатор С6 разрядится до половины напряжения питания, транзисторы VT6 и VT8 закроются, двигатель остановится.

Однако система, содержащая интегрирующие звенья (конденсатор С6 и электродвигатель рулевой машинки), обладает инерционностью. Поэтому двигатель необходимо .выключить несколько ранее того момента, когда станут одинаковыми сравниваемые импульсы. Для этого вводят отрицательную обратную связь, поскольку иначе начнутся механические колебания выходного вала рулевой машинки. Напряжение отрицательной обратной связи с выхода усилителя рулевой машинки подано на вход одновибратора через резисторы R6 и R8.

В случае, когда импульс одновибратора имеет большую длительность, чем канальный, в точке А образуются отрицательные импульсы. Они открывают ключ на транзисторе VT3, конденсатор С6 заряжается положительно по отношению к передней точке источника питания, открываются транзисторы VT5 и VT7, и двигатель вращается в обратную сторону, перемещая движок переменного рези-стора R2 вверх по схеме. Как только входной канальный импульс по длительности сравняется с импульсом одновибратора, вращение вала двигателя рулевой машинки прекратится.

Резистор R12 и конденсатор С1 образуют фильтр в цепи питания одновибратора, необходимый для развязывания цепей питания одновибраторов, так как при работе рулевых машинок перепады тока, а значит, и колебания напряжения питания -значительны. Это приводит к изменению параметров импульсов одновибратора и нарушает пропорциональность отклонения рычага передатчика в рулевой машинки.

К преимуществам описанного электронного блока по сравнению с аналоговыми следует отнести то, что оконечный усилитель работает в ключевом режиме открыт или закрыт. Время, в течение которого усилитель находится в закрытом или открытом состоянии, зависит от амплитуды проинтегрированного пилообразного напряжения. Как только разница в длительностях импульсов канала и одновибратора начнет приближаться к нулю, амплитуда пилообразного напряжения станет минимальной. При этом на электродвигатель поступают импульсы малой длительности, и он, замедляясь, доводит руль до нужного положения.

Рассмотренный принцип широко применяют при создании аппаратуры пропорционального управления. Схемные решения отличаются большим разнообразием, например, способом запуска одновибратора, включением переменного резистора в механической обратной связи, изменением полярности или усилением входного канального импульса, заменой усилителя на транзисторах VT5, VT6 триггером Шмитта и т.д.

Электронный блок рулевой машинки монтируют на отдельной плате. На ней размещают все элементы, кроме переменного резистора R2 и электродвигателя М1. Рассмотрим процесс налаживания электронного блока рулевых машинок. Подборкой резисторов R1 и R3 устанавливают максимальный поворот рычага рулевой машинки. При этом удобно пользоваться управляющими сигналами передатчика. Вход электронного блока подключают к дешифратору. Гибкими проводниками подключают к плате выводы от переменного резистора R2 и электродвигателя. Включают питание, но средний вывод батарей пока оставляют свободным. Рычаг рулевой машинки устанавливают в нейтральное положение. Временно вместо резистора R4 подключают переменный резистор сопротивлением 47к0м. На экране осциллографа наблюдают эпюры напряжения в отдельных точках. Они должны соответствовать рис. 12.

Рис. 12. Эпюры напряжений в одновибраторе

Затем подключают осциллограф к точке А и наблюдают форму напряжения, изображенную на рис. 13,а-г. С дешифратора должны поступать импульсы, соответствующие нейтральному положению рычага командодатчика. Длительность этих импульсов — 1,5 мс.

Рис. 13. Эпюры напряжений в точке А

Переменным резистором, включенным вместо R4, устанавливают такое напряжение смещения на базе транзистора VT1, чтобы в точке А форма сигнала соответствовала рис. 13,а или е. Подбирая резисторы R13 или R14, нужно добиться того, чтобы выброс напряжения наблюдался только в начале и конце канального импульса (рис.13,яс). Измерив сопротивление переменного резистора, соответствующее этому случаю, впаивают на плату постоянный резистор R4 с таким же сопротивлением. Теперь подключают средний вывод батареи. Двигатель рулевой машинки должен при этом остаться в нейтральном положении, а при изменении команды, т. е. при перемещении рычага командоотдатчика передающего устройства, он должен равномерно вращаться. Транзисторы структуры р-п-р в усилителе постоянного тока следует применять с коэффициентом передачи тока базы h21э>80.

ПРОПОРЦИОНАЛЬНОЕ УПРАВЛЕНИЕ СКОРОСТЬЮ МОДЕЛИ С ХОДОВЫМ ЭЛЕКТРОДВИГАТЕЛЕМ

Большинство авто- и судомоделей приводится в движение электродвигателями. Развитие модельной техники пропорционального управления позволило решить задачу реверса ходового электродвигателя и плавное регулирование частоты вращения его вала в обоих направлениях. Плавное регулирование скорости движения дает возможность проводить модель безошибочно по сложным трассам.

Рассмотрим один из вариантов пропорционального управления частотой вращения ходового электродвигателя. Электронный блок этого своеобразного механизма преобразует длительность канальных импульсов в частоту вращения вала ходового электродвигателя и обеспечивает его реверсирование. Для управления таким блоком подходят импульсные системы пропорционального многоканального радиоуправления, у которых длительность канальных импульсов находится в пределах от 1±0,5 до 2±0,5 мс. Амплитуда канальных импульсов должна быть 4-9 В.

Схема блока управления частотой вращения вала электродвигателя изображена на рис. 1. В этом блоке могут работать электродвигатели с потреблением тока от 0,2 до 10-Л2 А. Блок надежен в работе, его особенность — отсутствие обратной связи.

С дешифратора на вход блока поступают канальные импульсы положительной полярности. Импульсы после дифференцирования конденсатором С3 фронтом запускают одновибратор на транзисторах VT1, VT2. На коллекторе транзистора VT2 (точка в) формируются импульсы отрицательной полярности калиброванные по длительности. Эпюры напряжения в разных точках блока показаны на рис. 2. Они сняты для случая питания блока напряжением 6 в а электродвигателя — 12 В. Длительность канального импульса равна 1 мс и изменяется в процессе управления на ±0,2 мс.

Рис. 2. Эпюры напряжений

Входной канальный импульс и импульс одновибратора в точке г складываются. Если результирующий импульс положителен, то пройдя через конденсатор С5, он откроет транзистор VT4 интегрирующей ступени и изменит напряжение на базе транзистора VT6. На транзисторах VT6 и VT7 собран мультивибратор. Изменение режима транзистора VT6 вызывает изменение частоты и длительности генерируемых импульсов. Если» же результирующий импульс в точке г отрицателен, то он инвертируется каскадом на транзисторе VT3 и также открывает транзистор VT4.

Импульсы прямоугольной формы с мультивибратора поступают на усилитель мощности на транзисторах VT8, VT9. В коллекторную цепь транзистора VT9 включен ходовой электродвигатель, частота вращения вала которого зависит от частоты и скважности импульсов. Выходной транзистор усилителя мощности работает в ключевом режиме, потери на нем незначительны. При равенстве по амплитуде канального импульса и импульса одновибратора двигатель остановится. Как показывает эпюра напряжения в. точке и, двигатель полностью не обесточивается, но мощность на нем не превышает долей ватта.

Если же суммарный импульс в точке г станет отрицательным, изменится направление вращения вала электродвигателя (произойдет реверсирование). Пеключают ходовой электродвигатель контакты реле КЗ, которое срабатывает после срабатывания промежуточного реле К1, являющегося нагрузкой транзистора VT10. Интегрирующий конденсатор поддерживает постоянство напряжения на бабазе транзистора VT10 при появлении положительных импульсов на базе транзистора VT5. Конденсатор С9 оглаживает напряжение на транзисторе VT10 и препятствует дребезжанию контактов реле К1.

На рис. 3 показан вариант схемы включения ходового электродвигателя с возбуждением от постоянного магнита.

Налаживают блок, пользуясь осциллографом. Процесс начинают с узла управления. Необходимо следить, чтобы отношение длительности паузы к длительности выходных импульсов мультивибратора менялось при изменении ширины входного канального импульса. Выходной транзистор должен полностью отрываться. Между эмиттером и коллектором транзистора VT9 подключают вольтметр. Его показание должно быть близко к нулю при максимальном напряжении на двигателе. Если транзистор VT9 т открывается полностью, его следует заменить на другой, с большим значением коэффициента h21э или же заменить транзисторы VT6-VT8 другими, с большим значением этого коэффициента.

Затем добиваются четкой работы реле К1. Если оно не срабатывает при минимальном напряжении на двигателе, то следует подобрать транзисторы VT5 и VТ10 с большим значением h21э, а также уточнить номиналы резисторов в их базовых цепях. При токе нагрузки электродвигателя до 4 А можно выбрать R25 сопротивлением 300 Ом; R26-390 Ом; -VT8-из серии МП16; VT9-из серий П214 — П217, П4. Надежность работы блока при управлении мощными электродвигателями может быть повышена применением вместо одного транзистора VT9 двух, включенных параллельно и установленных на теплоотводы.

«Радиолюбительская телемеханика». Радио и связь. 1986г.

С ЧЕГО НАЧАТЬ РАДИОЛЮБИТЕЛЮ

Недавно ко мне, узнав что я радиолюбитель, на форуме нашего города, в ветке Радио обратились за помощью два человека. Оба по разным причинам, и оба разного возраста, уже взрослые, как выяснилось при встрече, одному было 45 лет, другому 27. Что доказывает, что начать изучение электроники, можно в любом возрасте. Объединяло их одно, оба были так или иначе знакомы с техникой, и хотели бы самостоятельно освоить радиодело, но не знали с чего начать. Мы продолжили общение в В_Контакте, на мой ответ, что в инете море информации на эту тему, занимайся — не хочу, я услышал от обоих примерно одинаковое, — что оба не знают с чего начать. Одним из первых вопросов было: что входит в необходимый минимум знаний радиолюбителя. Перечисление им необходимых умений, заняло довольно приличное время, и я решил написать на эту тему обзор. Думаю, он будет полезен таким же начинающим, как и мои знакомые, всем кто не может определиться, с чего начать свое обучение.

Сразу скажу, что при обучении, нужно равномерно сочетать теорию с практикой. Как бы ни хотелось, побыстрее начать паять и собирать конкретные устройства, нужно помнить о том, что без необходимой теоретической базы в голове, вы в лучшем случае, сможете безошибочно копировать чужие устройства. Тогда как если будете знать теорию, хотя бы в минимальном объеме, то сможете изменить схему, и подогнать её под свои потребности. Есть такая фраза, думаю известная каждому радиолюбителю: “Нет ничего практичнее хорошей теории”.

В первую очередь, необходимо научиться читать принципиальные схемы. Без умения читать схемы невозможно собрать даже самое простое электронное устройство. Также впоследствии, не лишним будет освоить и самостоятельное составление принципиальных схем, в специальной программе Splan.

Пайка деталей

Необходимо уметь опознавать по внешнему виду, любую радиодеталь, и знать, как она обозначается на схеме. Разумеется, для того чтобы собрать, спаять любую схему, нужно иметь паяльник, желательно мощностью не выше 25 ватт, и уметь им хорошо пользоваться. Все полупроводниковые детали не любят перегрева, если вы паяете, к примеру, транзистор на плату, и не удалось припаять вывод за 5 — 7 секунд, прервитесь на 10 секунд, или припаяйте в это время другую деталь, иначе высока вероятность сжечь радиодеталь от перегрева.

Также важно паять аккуратно, особенно расположенные близко выводы радиодеталей, и не навесить “соплей”, случайных замыканий. Всегда если есть сомнение, прозвоните мультиметром в режиме звуковой прозвонки подозрительное место.

Не менее важно, удалять остатки флюса с платы, особенно если вы паяете цифровую схему, либо флюсом содержащим активные добавки. Смывать нужно специальной жидкостью, либо 97 % этиловым спиртом.

Начинающие часто собирают схемы навесным монтажом, прямо на выводах деталей. Я согласен, если выводы надежно скручены между собой, а после еще и пропаяны, такое устройство прослужит долго. Но таким способом собирать устройства, содержащие больше 5 — 8 деталей, уже не стоит. В таком случае, нужно собирать устройство на печатной плате. Собранное на плате устройство, отличается повышенной надежностью, схему соединений можно легко отследить по дорожкам, и при необходимости вызвонить мультиметром все соединения.

Минусом печатного монтажа, является трудность изменения схемы готового устройства. Поэтому перед разводкой и травлением печатной платы, всегда, сначала нужно собирать устройство на макетной плате. Делать устройства на печатных платах, можно разными способами, здесь главное соблюдать одно важное правило: дорожки медной фольги на текстолите, не должны иметь контакта с другими дорожками, там, где это не предусмотрено по схеме.

Вообще есть разные способы сделать печатную плату, например, разъединив участки фольги – дорожки, бороздкой, прорезаемой резаком в фольге, сделанным из ножовочного полотна. Либо нанеся защитный рисунок защищающий фольгу под ним, (будущие дорожки) от стравливания с помощью перманентного маркера.

Либо с помощью технологии ЛУТ (лазерно — утюжной технологии), где дорожки от стравливания защищаются припекшимся тонером. В любом случае, каким-бы способом мы не делали печатную плату, нам необходимо, сперва её развести в программе трассировщике. Для начинающих рекомендую программу Sprint-layout 6, это ручной трассировщик с большими возможностями.

Также при самостоятельной разводке печатных плат, либо если распечатали готовую плату, необходимо умение работать с документацией на радиодеталь, с так называемыми Даташитами (Datasheet), страничками в PDF формате. В интернете есть Даташиты практически на все импортные радиодетали, исключение составляют некоторые Китайские.

На отечественные радиодетали, можно найти информацию в отсканированных справочниках, специализированных сайтах, размещающих страницы с характеристиками радиодеталей, и информационных страничках различных интернет магазинов типа Чип и Дип. Обязательно умение определять цоколевку радиодетали, также встречается название распиновка, потому что очень многие, даже двух выводные детали имеют полярность. Также необходимы практические навыки работы с мультиметром.

Мультиметр, это универсальный прибор, с помощью только его одного, можно провести диагностику, определить выводы детали, их работоспособность, наличие или отсутствие замыкания на плате. Думаю не лишним, будет напомнить, особенно молодым начинающим радиолюбителям, и о соблюдении мер электробезопасности, при отладке работы устройства.

После сборки устройства, необходимо оформить его в красивый корпус, чтобы не стыдно было показать друзьям, а это значит, необходимы навыки слесарного, если корпус из металла или пластмассы, либо столярного дела, если корпус из дерева. Рано или поздно, любой радиолюбитель приходит к тому, что ему приходится заниматься мелким ремонтом техники, сначала своей, а потом с приобретением опыта, и по знакомым. А это означает, что необходимо умение проводить диагностику неисправности, определение причины поломки, и её последующее устранение.

Часто даже опытным радиолюбителям, без наличия инструментов, трудно выпаять многовыводные детали из платы. Хорошо если детали идут под замену, тогда откусываем выводы у самого корпуса, и выпаиваем ножки по одной. Хуже и труднее, когда эта деталь нужна для сборки какого-либо другого устройства, или производится ремонт, и деталь, возможно, потребуется после впаять назад, например, при поиске короткого замыкания на плате. В таком случае нужны инструменты для демонтажа, и умение ими пользоваться, это оплетка и оловоотсос.

Использование паяльного фена не упоминаю, ввиду частого отсутствия у начинающих доступа к нему.

Вывод

Все перечисленное, это только часть того необходимого минимума, что должен знать начинающий радиолюбитель при конструировании устройств, но имея эти навыки, вы уже сможете собрать, с приобретением небольшого опыта, практически любое устройство. Специально для сайта Радиосхемы — AKV.

Форум для начинающих

Обсудить статью С ЧЕГО НАЧАТЬ РАДИОЛЮБИТЕЛЮ

admin

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Наверх