Электрификация

Справочник домашнего мастера

Проверка катушки индуктивности

«Признавая свои ошибки, мы находим источник силы»

Решил сделать прибор для проверки якорей на короткозамкнутые витки и прочее. Пригодится если решили отремонтировать коллекторный двигатель и проверить правильно ли намотали. Очень полезная вещь и когда то в СССР выпускалась. Но теперь Днем с огнем не сыщешь.

Не будем вдаваться в сложные формулы, постараюсь объяснить на мигах, что сделал. Статью разобью на 2 части. «Часть первая. Магнитопровод». «Часть вторая. Электричество». Потом объясню из за чего 2 части.

Часть первая. Магнитопровод.

Во первых нам нужен магнитопровод, или же по другому — статор от двигателя пылесоса. Потом нам нужно вырезать в одной его стороне часть под углом 90 градусов, Куда будет ложиться сам якорь для проверки. Можно болгаркой, пилкой, ложкой — как кому удобнее.

Затем, нам нужно создать площадку для намотки катушки. Многие пишут, что нужно взять электрокартон, какой то еще -тон, но у меня его нет и в ближайшие 50 километров в окружности он не намечается, Купить негде. А значит нужна альтернатива. Помните, когда ремонтируют двигатели мотоциклов и автомобилей и нет прокладки — ее раньше вырезали из папки «Дело №». Вот и мы так и сделаем, но нужно иметь ввиду — папка грубая, нам сойдет и обложка тетради. Имелся у меня похожий магнитопровод и там был электрокартон, но немного уже чем нужно. Но нам ведь достаточно замерить толщину и приблизительно подобрать. Лишь бы была прослойка между проволокой и самим статором.

P.S. Прибор на статоре пылесоса, навеян мотивами темы на одном форуме. Оригинал . Спасибо автору за толчек в правильном направлении.

Меряем толщину:

Електрокартон от иного двигателя, но в который укладывались когда-то обмотки.

и обложка тетради

Теперь вырезаем:

И наматываем в один слой на магнитопровод, скрепив все дело скотчем:

Потом нам нужны щеки, чтобы провод упирался по сторонам и у нас получилась полноценная катушка. Вырезаем их из фанеры, предварительно рассчитав размеры.

И выбираем стамеской лишнее. Можно немного зачистить на наждаке.

Не забываем учесть угол статора и подгоняем тем же наждаком — небольшой угол на самих щечках

Желательно чтобы сами щечки, становились туго на магнитопроводе.

Если нет, берем тетрадь и отрезаем по размеру щечек кусочек листа и наматываем с проклеиванием. Пока стенка не станет более менее туго.

Вставляем щеки и проклеиваем клеем. У меня пошло чуть ли не пол пачки ПВАКа. Клеил и заливал его около десятка раз. На следующее утро все было готово.

Вот и все по части Магнитопровода.

Часть вторая. Электричество.

Начнем. Нам нужна проволока. Я нашел у себя, когдато смотанную с кинескопа от старого телевизора проволоку. сопротивление мне сразу показалось не достаточным — всего 13 Ом, диаметром 0,4 при длинне провода, как я потом высчитал 93м. 1 мм.квадратный медной проволоки выдерживает 3,2 -3,5 ампера. У нас, если половину выдержит, уже будет счастьем, нам этого должно хватить. Я так думал.

(По рассчетам (число витков = 50 / S * 220в) на этом сайте, высчитал нужное количество витков, получилось 660. Но мне не понравилось, что это применимо ко всем толщинам проводов! Как так?? Сайт вроде хороший, но в рассчетах я усомнился. иил я чтото не так понял.)

Но потом, меня начали одолевать смутные сомнения. Хоть я и не электрик но вс еже, как известно из закона Ома (здесь I=U\R) — если мы подадим 220 Вольт на проводник с сопротивлением проволоки 13 Ом, то по нем потечет ток где то 16 А. Проволока же наша выдерживает где то 1,25А. Короче, она просто пыхнет и выветрится через форточку. Думал думал и списав остальное на чудодейственную магнитную насыщенность сердечника и индуктивность (накопительность энергии) самой катушки, о которых я мало знаю, но решил мотать. В конце концов попытка не пытка. И любая, пусть даже провальная попытка — урок, для тех, кто хочет учиться.

Мотал я около 4-5 часов. Виток к витку, старательно. Все меньше веря в успех. Получилось около 800 витков.

Закончив, лег спать и оставил на утро.

Сегодня проверил. Поставил тестер и амепрметр в нужные режимы для взятия показаний.

При:

20 Вольт — около 1 Ампера

50 Вольт — 2 Ампера

И рискнув, поняв, что был прав вчера — подал сто вольт:

100 Вольт — 4,5 Ампера.

Так про какие 220 речь? Она точно «выветрится», эта проволока.

Не забыли сколько должно было быть? Не более 1,25А, а здесь 4,5А только при 100 Вольтах. Эксперимент увенчался дымом из под изоленты, плавлением проволоки и полным провалом. Но лучше так, чем сидеть и смотреть в окно с пьяной харей, бухая беспробудно.

А теперь о Частях. Часть «Магнитопровод» — полностью пригодна к воплощению в жизнь. А вот что касается части «Электричество» — думаю здесь ошибка заключалась в том, что нужно повысить сопротивление — иными словами, взять столько проволоки, чтобы выдержала 220 Вольт.

Подходящий донор уже есть, какой то старый дроссель от телевизора сопротивлением 240 Ом, диаметром провода — 0,08 мм. Думаю выдержит. А может нет. Так что продолжение следует.

>Купить в подарок или заказать уникальную вещь<

ПОДЕЛИТЕСЬ С ДРУЗЬЯМИ!

  • 15 свежих записей

About Mr. Retropino

  • Плазменная зажигалка для газа своими руками — 22.04.2017
  • Ионисторный динамо-фонарик своими руками — 20.11.2016
  • Конденсаторный ящик №2 — 31.08.2016
  • Фародержатель нового типа для мотоцикла Ява\CZ — 05.06.2016
  • Крепление для боксерского мешка своими руками — 28.05.2016
  • Конденсаторный ящик — 19.02.2015
  • Корпус для ППЯ — 31.01.2015
  • Прибор проверки якорей (ППЯ) – Рабочая версия — 31.01.2015
  • Усовершенствование фонарика — замена кнопки — 19.12.2014
  • ƒ↓ — Прибор проверки якорей (ППЯ) — 02.12.2014
  • УПК или устройство подсоединения коллектора — 27.11.2014
  • Проект «Горячая искра» — 17.04.2014
  • Вертикальная полка для свёрел — 24.01.2014
  • Нехитрая флешка — 18.12.2013

Для того, чтобы создать магнитное поле и сгладить в нем помехи и импульсы, используются специальные накопительные элементы. Катушки индуктивности в цепи переменного тока и постоянного применяются для накопления определенного количества энергии и ограничения электричества.

Конструкция

Главное назначение катушек индуктивности ГОСТ 20718-75 – это накопление электрической энергии в пределах магнитного поля для акустики, трансформаторов и т. д. Их используют для разработки и конструирования различных селективных схем и электрических устройств. От конструкции (материала, количества витков), наличия каркаса зависит их функциональность, размеры и область использования. Изготовление устройств производится на заводах, но можно сделать их самостоятельно. Самодельные элементы несколько уступают по надежности профессиональным, но обходятся в разы дешевле.

Фото — схема

Каркас катушки индуктивности выполняется из диэлектрического материала. На него наматывается изолированный проводник, который может быть как одножильным, так и многожильным. В зависимости от типа намотки, они бывают:

  1. Спиральными (на ферритовом кольце);
  2. Винтовыми;
  3. Винтоспиральными или комбинированными.

Примечательной особенностью катушки индуктивности для электрических схем является то, что её можно намотать как в несколько слоев, так и нированно, т. е., с обрывками Если используется толстый проводник, то элемент может обматываться без каркаса, если тонкий – то только на рамку. Эти каркасы катушек индуктивности бывают различного сечения: квадратные, круглые, прямоугольные. Полученная намотка может вставляться в специальный корпус какого-либо электрического устройства или использоваться в открытом виде.

Фото — конструкция самодельного элемента

Для увеличения индуктивности используются сердечники. В зависимости от назначения элемента, варьируется используемый материал стержня:

  1. С ферромагнитным и воздушным сердечником применяются при высоких частотах тока;
  2. Стальные используются в условиях низкого напряжения.

Вместе с этим, в электротехнике активно используются индуктивные классические катушки без сердечника, которые можно сделать своими руками при помощи намотки на немагнитный контур.Такие устройства имеют некоторые преимущества перед «сердечными». У них большая линейность импеданса. Но, у тороидальной модели намотка на немагнитный каркас способствует появлению паразитной емкости.

Исходя из принципа работы, бывают такие типы:

  1. Контурные. Преимущественно используются в радиотехнике для создания колебательных контуров платы, работают вместе с конденсаторами. Для соединения используется последовательное подключение. Это современный вариант плоской контурной катушки Тесла;
  2. Вариометры. Это высокочастотные перестраиваемые катушки, индуктивностью которыми можно при необходимости управлять при помощи дополнительных устройств. Они представляют собой соединение двух отдельных катушек, при этом, одна подвижна, а вторая нет;
  3. Сдвоенные и подстроечные дроссели. Основные характеристики этих катушек: малое сопротивление постоянному току и высокое переменному. Дроссели изготавливаются из нескольких катушек, соединенных обмотками между собой. Их часто используют в виде фильтра для различных радиотехнических приборов, устанавливают для контроля помех в антенны и т. д.;
  4. Трансформаторы связи. Их конструктивной особенностью является то, что на одном стержне установлено от двух и более катушек. Они используются в трансформаторах для обеспечения определенной связи между отдельными компонентами устройства.

Маркировка катушек индуктивности определяется по количеству витков и цвету корпуса.

Фото — маркировка

Принцип действия

Схема работы катушек индуктивности активного действия основан на том, что каждый отдельный виток намотки пересекается с магнитными силовыми линиями. Этот электрический элемент необходим для того, чтобы извлекать электрическую энергию из источника питания и преобразовывая её сохранять в виде электрического поля. Соответственно, если ток цепи увеличивается – то расширяется и магнитное поле, но если он уменьшается – поле будет неизменно сжиматься. Эти параметры также зависят от частоты и напряжения, но в целом, действие остается неизменным. Включение элемента производит сдвиг фаз тока и напряжения.

Фото — принцип работы

Помимо этого, индуктивные (каркасные и бескаркасные) катушки обладают свойством самоиндукции, его расчет производится исходя из данных номинальной сети. В многослойной и однослойной обмотке создается напряжение, которое противоположно напряжению электрического тока. Это называется ЭДС, определение электродвижущей магнитной силы зависит от показателей индуктивности. Её можно рассчитать по закону Ома. Стоит отметить, что независимо от напряжения сети, сопротивление в катушке индуктивности не изменяется.

Фото — соединение отдельных выводов элементов

Связь индуктивности и понятия (изменения) ЭДС можно найти по формуле εc = — dФ/dt = — L*dI/dt, где ε – это значение ЭДС самоиндукции. И если скорость изменения электрической энергии будет равна dI/dt = 1 A/c, то и L = εc.

Видео: расчет катушки индуктивности

Вычисление

Основные характеристики катушки индуктивности: добротность, индуктивность, потери, резонанс, паразитарная емкость и ЭДС. Также прибор зависит от ТИК – температурного коэффициента.

Для того чтобы рассчитать различные параметры, используются специальные физические формулы. К примеру, простейший колебательный контур состоит из катушки и конденсатора, он рассчитывается по следующей формуле:

Формула — формула колебательного контура

Где L – это сам элемент, накапливающая магнитную энергию.

В это же время, период свободных колебаний этого контура вычисляется по:

Формула — период свободных колебаний

Где C – это конденсатор, реактивный элемент схемы, отдающий накапливающий электрическую энергию конкретной цепи. Величина индуктивного сопротивления в такой цепи вычисляется по XL = U/I. Здесь X – это емкостное сопротивление. При расчете резистора в пример вставляются основные параметры этого элемента.

Индуктивность соленоида определяет формула:

Формула — индуктивность катушки-соленоида

Помимо этого, уровень индуктивности имеет определенную зависимость от температуры на плате. Параллельное подключение нескольких деталей, изменение плотности и размеров витков обмотки и прочие параметры влияют на основные свойства этого элемента.

Фото — зависимость от температуры

Чтобы узнать параметры катушки индуктивности, можно использовать различные методы: измерить мультиметром, испытать на осциллографы, проверить отдельно амперметром или вольтметром. Эти варианты очень удобны тем, что в них в качестве реактивных элементов применяются конденсаторы, электропотери которых очень малы и могут не учитываться в расчетах. Иногда с целью упростить задачу применяется специальная программа расчета и измерения нужных параметров. Это позволяет значительно упростить выбор нужных элементов для схем.

Купить катушки индуктивности (SMD 150 мкГн и другие) и провода для их намотки можно в любом электротехническом магазине, их цена варьируется от 2 долларов до нескольких десятков.

Катушка индуктивности

Обозначение, параметры и разновидности катушек индуктивности

Одним из самых известных и необходимых элементов аналоговых радиотехнических схем является катушка индуктивности. В цифровых электронных схемах индуктивные элементы практически потеряли свою актуальность и применяются только в устройствах питания как сглаживающие фильтры.

Катушки индуктивности на принципиальных схемах обозначаются латинской буквой “L” и имеют следующее изображение.

Разновидностей катушек индуктивности существуют десятки. Они бывают высокочастотные, низкочастотные, с подстроечными сердечниками и без них. Бывают катушки с отводами, катушки, рассчитанные на большие напряжения. Вот так, например, выглядят бескаркасные катушки.

Катушки для СВЧ аппаратуры называются микрополосковыми линиями. Они даже внешне не похожи на катушки. С катушками индуктивности связан такой эффект как резонанс и гениальный Никола Тесла получал на резонансных трансформаторах миллионы вольт.

Основной параметр катушки это её индуктивность. Величина индуктивности измеряется в Генри (Гн, англ. – «H»). Это достаточно большая величина и поэтому на практике применяют меньшие значения (мГн, mH – миллигенри и мкГн, μH– микрогенри) соответственно 10-3 и 10-6 Генри. Величина индуктивности катушки указывается рядом с её условным изображением (например, 100 μH). Чтобы не запутаться в микрогенри и миллигенри, советую узнать, что такое сокращённая запись численных величин.

Многие факторы влияют на индуктивность катушки. Это и диаметр провода, и число витков, а на высоких частотах, когда применяют бескаркасные катушки с небольшим числом витков, то индуктивность изменяют, сближая или раздвигая соседние витки.

Часто для увеличения индуктивности внутрь каркаса вводят сердечник из ферромагнетика, а для уменьшения индуктивности сердечник должен быть латунным. То есть можно получить нужную индуктивность не увеличением числа витков, что ведёт к увеличению сопротивления, а использовать катушку с меньшим числом витков, но использовать ферритовый сердечник. Катушка индуктивности с сердечником изображается на схемах следующим образом.

В реальности катушка с сердечником может выглядеть так.

Также можно встретить катушки индуктивности с подстроечным сердечником. Изображаются они вот так.

Катушка с подстроечным сердечником вживую выглядит так.

Такая катушка, как правило, имеет сердечник, положение которого можно регулировать в небольших пределах. При этом величина индуктивности также меняется. Подстроечные катушки индуктивности применяются в устройствах, где требуется одноразовая подстройка. В дальнейшем индуктивность не регулируют.

Наряду с подстроечными катушками можно встретить и катушки с регулируемой индуктивностью. На схемах такие катушки обозначаются вот так.

В отличие от подстроечных катушек, регулируемые катушки индуктивности допускают многократную регулировку положения сердечника, а, следовательно, и индуктивности.

Ещё один параметр, который встречается достаточно часто это добротность контура. Под добротностью понимается отношение между реактивным и активным сопротивлением катушки индуктивности. Добротность обычно бывает в пределах 15 – 350.

На основе катушки индуктивности и конденсатора выполнен самый необходимый узел радиотехнических устройств, колебательный контур. На схеме изображён входной контур простого радиоприёмника рассчитанного на работу в диапазонах средних и длинных волн.

В настоящее время в этих диапазонах станций практически нет. Катушка индуктивности L1 имеет достаточно большое число витков, чтобы перекрыть диапазон по максимуму. Для улучшения приёма к первой обмотке L1 подключается внешняя антенна. Это может быть простой кусок проволоки длиной в пределах двух метров.

Благодаря большому числу витков в индуктивности L1 присутствует целый спектр частот и как минимум пять — шесть работающих радиостанций. Две индуктивности L1 и L2 намотанные на одном каркасе представляют собой высокочастотный трансформатор. Для того чтобы выделить на катушке индуктивности L2 станцию, работающую, допустим на частоте 650 КГц необходимо с помощью переменного конденсатора C1 настроить колебательный контур на данную частоту.

После этого выделенный сигнал можно подавать на базу транзистора усилителя высокой частоты. Это одно из применений катушки индуктивности. Точно на таком же принципе построены выходные каскады радио- и телевизионных передатчиков только наоборот. Антенна не принимает слабый сигнал, а отдаёт в пространство ЭДС.

Примеров использования катушки индуктивности великое множество. На рисунке изображён весьма несложный, но хорошо зарекомендовавший себя в работе сетевой фильтр.

Фильтр состоит из двух дросселей (катушек индуктивности) L1 и L2 и двух конденсаторов С1 и С2. на старых схемах дроссели могут обозначаться как Др1 и Др2. Сейчас это редкость. Катушки индуктивности намотаны проводом ПЭЛ-0,5 – 1,5 мм. на каркасе диаметром 5 миллиметров и содержат по 30 витков каждая. Очень хорошо параллельно сети 220V подключить варистор. Тогда защита от бросков сетевого напряжения будет практически полной. В качестве конденсаторов лучше не использовать керамические, а поискать старые, но надёжные МБМ на напряжение не менее 400V.

Вот так выглядит дроссель входного фильтра компьютероного блока питания ATX.

Как видно, он намотан на кольцеобразном сердечнике. На схеме он обозначается следующим образом. Точками отмечены места начала намотки провода. Это бывает важно, так как это влият на направление магнитного потока.

Выходные выпрямители современного импульсного блока питания всегда конструируют по двухполупериодным схемам. Широко известный выпрямительный диодный мост, у которого большие потери практически не используют. В двухполупериодных выпрямителях используют сборки из двух диодов Шоттки. Самая важная особенность выпрямителей в импульсных блоках питания это фильтры, которые начинаются с дросселя (индуктивности).

Напряжение, снимаемое с выхода выпрямителя обладающего индуктивным фильтром, зависит кроме амплитуды ещё и от скважности импульсов, поэтому очень легко регулировать выходное напряжение, регулируя скважность входного. Процесс регулирования скважности импульсов называют широтно-импульсной модуляцией (ШИМ), а в качестве управляющей микросхемы используют ШИМ контроллер.

Поскольку амплитуда напряжения на входах всех выпрямителей изменяется одинаково, то стабилизируя одно напряжение, ШИМ контроллер стабилизирует все. Для увеличения эффекта, дроссели всех фильтров намотаны на общем магнитопроводе.

Именно таким образом устроены выходные цепи компьютерного блока питания формата AT и ATX. На его печатной плате легко обнаружить дроссель с общим магнитопроводом. Вот так он выглядит на плате.

Как уже говорилось, этот дроссель не только фильтрует высокочастотные помехи, но и играет важную роль в стабилизации выходных напряжений +12, -12, +5, -5. Если выпаять этот дроссель из схемы, то блок питания будет работать, но вот выходные напряжения будут «гулять» причём в очень больших пределах – проверено на практике.

Так магнитопровод у такого дросселя общий, а катушки индуктивности электрически не связаны, то на схемах такой дроссель обозначают так.

Здесь цифра после точки (L1.1; L1.2 и т.д.) указывает на порядковый номер катушки на принципиальной схеме.

Ещё одно очень хорошо известное применение катушки индуктивности это использование её в системах зажигания транспортных средств. Здесь катушка индуктивности работает как импульсный трансформатор. Она преобразует напряжение 12V с аккумулятора в высокое напряжение порядка нескольких десятков тысяч вольт, которого достаточно для образования искры в свече зажигания.

Когда через первичную обмотку катушки зажигания протекает ток, катушка запасает энергию в своём магнитном поле. При прекращении прохождения тока в первичной обмотке пропадающее магнитное поле индуцирует во вторичной обмотке мощный короткий импульс напряжением 25 – 35 киловольт.

Импульсный трансформатор из тех же катушек индуктивности является основным узлом хорошо известного устройства для самообороны как электорошокер. Схем может быть несколько, но принцип один: преобразование низкого напряжения от небольшой батарейки или аккумулятора в импульс слабого тока, но очень высокого напряжения. У серьёзных моделей напряжение может достигать 75 – 80 киловольт.

Главная &raquo Радиоэлектроника для начинающих &raquo Текущая страница

Также Вам будет интересно узнать:

  • Стабилитрон. Параметры, обозначение.

  • Как устроен динамик.

  • Параметры транзисторов MOSFET.

Предлагаемая приставка к частотомеру для определения расчетным путем индуктивности в диапазоне 0,2 мкГн… 4 Гн отличается от прототипов пониженным напряжением на измеряемой индуктивности (амплитуда не более 100 мВ), что снижает погрешность измерения для катушек на малогабаритных кольцевых и замкнутых магнитопроводах и дает возможность измерить с достаточной для практики точностью начальную магнитную проницаемость магнитопроводов. Кроме того, малое значение напряжения на контуре позволяет оценивать индуктивность катушки непосредственно в конструкции, без демонтажа.

Для многих начинающих радиолюбителей изготовление и оценка индуктивности катушек, дросселей, трансформаторов становится «камнем преткновения». Промышленные измерители малодоступны, самодельные законченные конструкции, как правило, сложны в повторении и при их настройке необходимы промышленные приборы. Поэтому особой популярностью пользуются простые приставки к частотомеру или осциллографу.

Описания и схемы подобных устройств были опубликованы в периодической литературе . Они просты в повторении, удобны в применении. Но сведения в статьях в части заявленных погрешностей и пределов измерения нередко приводят к ошибочным выводам и искаженным результатам. Так в указано, что приставка позволяет измерить индуктивность более 0,1 мкГн, а погрешность измерения зависит от подбора конденсатора, который в авторской конструкции имеет допустимое отклонение номинальной емкости не более ±1 %. И это при том, что на указанных на схеме транзисторах устойчивая генерация начинается с индуктивностью колебательного контура 0,15…0,2 мкГн (желающие легко могут проверить), а собственная индуктивность выводов от платы до разъема 30 мм оказывается равной 0,1…0,14 мкГн. В другой статье указывается погрешность до 1,5 % от верхнего предела (кстати, обратите внимание, нижний предел 0,5 мкГн с погрешностью 0,9 мкГн ― и это верно, иными словами измерение таких величин носит оценочный характер) как для маленьких, так и больших значений индуктивности, без учета собственной емкости катушек. А такая емкость может достигать соизмеримой с контурной величины и вносить дополнительную погрешность до 10…20 %.

В этой статье сделана попытка в какой-то мере восполнить отмеченный пробел и показать методы оценки погрешности измерений и способы применения действительно простой и полезной конструкции в лаборатории каждого радиолюбителя.

Предлагаемая приставка к частотомеру предназначена для оценки и измерения с достаточной для практики точностью индуктивности в диапазоне 0,2 мкГн… 4 Гн. Она отличается от прототипов пониженным напряжением на измеряемой индуктивности (амплитуда не более 100 мВ), что снижает погрешность измерения индуктивности на малогабаритных кольцевых и замкнутых магнитопроводах и дает возможность измерить начальную магнитную проницаемость магнитопроводов. Кроме того, малое значение напряжения на контуре позволяет оценивать индуктивность катушки непосредственно в конструкции, без демонтажа. Такую возможность оценят те, кому часто приходится заниматься ремонтом и настройкой аппаратуры при отсутствии схем и описаний.

Для работы с приставкой подходят любые самодельные или промышленные частотомеры, позволяющие измерять частоту до 3 МГц с точностью не менее 3х знаков. Если нет частотомера, подойдет и осциллограф. Точность измерения временных параметров у последних, как правило, порядка 7…10%, что и определит погрешность измерения индуктивности.

В интервале значений индуктивности 0,2…0,5 мкГн погрешность измерения не превышает 50 %, в зависимости от точности учета “паразитной” индуктивности приставки. Погрешность измерения в интервале 0,5…5 мкГн уменьшается до 5…20 % в связи с тем же ограничением. Индуктивность более 5 мкГн ― вплоть до 20 мГн возможно измерить с наименьшей погрешностью, не превышающей 2 %. В интервале значений 20…200 мГн погрешность не более 5 %, если собственная емкость собственная емкость катушки менее 1000 пФ. Для индуктивности более 0,2 Гн из-за влияния активного сопротивления катушки погрешность измерения может возрасти до 5…20 %, а выше 1 Гн ― даже до 20…50 %. Ток, потребляемый приставкой при напряжении питания в интервале значений 5…15 В, не более 22 мА. Для определения собственной “паразитной” емкости катушки следует использовать эталонный конденсатор по методу, описанному ниже.

Принцип измерения индуктивности основан на известном соотношении, связующим параметры элементов колебательного контура с частотой его резонанса (формула Томсона)


Здесь и далее во всех формулах частота указана в мегагерцах, емкость ― в пикофарадах, индуктивность ― в микрогенри.

При емкости контура Ск = 25330 пФ, формула упрощается

, где Т ― период в микросекундах.

В приставке (ее схема показана на рис. 1) используется генератор с эмиттерной связью в

двухкаскадном усилителе, частота гармонических колебаний которого определяется емкостью конденсатора С1 и измеряемой индуктивностью Lx, подключаемой к пружинным зажимам Х1. Так как используется непосредственное соединение базы транзистора VT1 с коллектором VT2, то коэффициент петлевого усиления генератора высок, что обеспечивает устойчивую генерацию при изменении соотношения L/C в широком диапазоне. Коэффициент петлевого усиления пропорционален крутизне используемых транзисторов и может эффективно регулироваться изменением тока эмиттеров, для чего используется выпрямитель на диодах VD1, VD2 и управляющий транзистор VT3. Введение усилителя на транзисторе VT4 с КU= 8…9 позволило снизить амплитуду напряжения на контуре до уровня 80…90 мВ при выходной амплитуде 0,7 В. Эмиттерный повторитель обеспечивает работу на низкоомную нагрузку.

Устройство работоспособно при изменении напряжения питания в интервале 5…15 В, при этом вариации уровня выходного напряжения не превышают 20 %, а уход частоты F= 168,5 кГц (с катушкой высокой добротности, намотанной на сердечнике 50ВЧ при индуктивности L= 35 мкГн) не более 40 Гц!

В конструкции можно использовать в позициях VT1, VT2 транзисторы КТ361Б, КТ361Г, КТ 3107 с любым буквенным индексом, хотя несколько лучшие результаты достигаются с КТ326Б, КТ363; в позиции VT3 ― кремниевые транзисторы структуры р-n-р, например, КТ209В, КТ361Б, КТ361Г, КТ3107 с любым буквенным индексом. Для буферного усилителя (VT4, VT5) пригодно большинство высокочастотных транзисторов. Параметр h21Э для транзистора VT4 ― более 150, для остальных не менее 50.

Диоды VD, VD2 ― любые высокочастотные кремниевые, например, серий КД503, КД509, КД521, КД522.

Резисторы ― МЛТ-0,125 или аналогичные. Конденсаторы, кроме С1, ― малогабаритные соответственно керамические и электролитические, допустим разброс 1,5…2 раза.

Конденсатор С1 емкостью 25330 пФ определяет точность измерения, поэтому ее значение желательно подобрать с отклонением не более ±1 % (можно составить из нескольких термостабильных конденсаторов, например 10000+10000+5100+ 220пФ из группы КСО, К31. Если нет возможности точно подобрать емкость, можно воспользоваться описанной ниже методикой.

В качестве разъема Х1 удобно использовать пружинящие зажимы для «акустических» кабелей. Разъем Х3 для соединения с частотомером ― СР–50-73Ф.

Детали монтируют на печатной плате (рис. 2) из односторонне фольгированного стеклотекстолита.

Чертёж печатной платы в формате lay разработки П.Семина можно

Допустимо использовать навесной монтаж. В качестве корпуса для приставки можно применить любой подходящий по размерам коробок из любого материала. Разместить разъем Х1 необходимо так, чтобы обеспечить минимальную длину соединяющих его с платой проводников. На фото, для примера, показан аккуратно выполненная конструкция от Павла Семина.

После проверки правильности монтажа следует подать питание напряжением 12 В, не подключая катушки к разъему Х1. Напряжение на эмиттере VT5 должно быть примерно равным половине питающего напряжения; если отклонение больше, потребуется подбор резистора R4. Ток потребления окажется близким к 20 мА. Присоедините к разъему Х1 катушку Lx индуктивностью в пределах десятков―сотен микрогенри (точное значение некритично), а к разъему Х3 ― осциллограф или высокочастотный вольтметр. На выходе приставки должно быть переменное напряжение 0,45…0,5 В эфф (амплитудное значение 0,65…0,7 В). При необходимости его уровень можно установить в диапазоне 0,25…0,7 Вэфф подбором резистора R8.

Теперь можно приступить к калибровке приставки, подключив ее к частотомеру.

Это можно сделать несколькими методами.

Если есть возможность измерить с точностью не хуже 1 % катушку на незамкнутом магнитопроводе с индуктивностью порядка десятков-сотен мкГ , то используя ее как образцовую, подберите емкость конденсаторов С1 так, чтобы показания приставки совпали с требуемым значением.

Во втором случае понадобится один термостабильный эталонный конденсатор, емкость которого не менее 1000 пФ и известна с высокой точностью. В крайнем случае, если нет возможности точно измерить емкость, можно применить конденсаторы КСО, К31 с допуском ±2―5 %, смирившись с вероятным увеличением погрешности. Автор использовал конденсатор К31-17 с номинальной емкостью 5970 пФ ±0,5 %. Сначала по частотомеру фиксируем частоту F1 для катушки Lx без дополнительного внешнего конденсатора. Затем присоединяем параллельно катушке эталонный конденсатор Cэт и фиксируем частоту F2. Теперь можем определить реальную входную емкость собранной приставки и индуктивность катушки Lx по формулам

Чтобы можно было пользоваться приведенными в начале статьи упрощенными формулами, нужно подбором группы конденсаторов С1 установить емкость Свх равной 25330±250 пФ. После окончательной корректировки емкости конденсаторов С1 сделайте контрольный замер по приведенной выше методике, чтобы убедиться, что емкость Свх соответствует требуемой.Вручную делать многократные пересчеты долго, поэтому автор пользуется удачной программой расчетов MIX10, разработанной А. Беспальчиком.

После этого приставка готова к работе. Попробуем оценить ее возможности; для этого проведем несколько опытов.

  1. При измерении малых значений индуктивности большую погрешность вносит собственная индуктивность приставки, состоящая из индуктивности проводников, соединяющих разъем Х1 с платой, и индуктивности монтажа. Попробуем ее измерить. Сначала замкнем контакты разъема Х1 прямым коротким проводником. Скрученные провода, идущие к разъему Х1 длиной 30 мм, и перемычка длиной 30 мм образуют один виток катушки. Если в генераторе транзисторы КТ326Б, колебания возникают только при ударном возбуждении контура путем периодичного включения питания; при этом частота F1 = 2,675…2,73 МГц, что соответствует индуктивности 0,14 мкГн (с транзисторами КТ3107Б генерация совсем не возникает). Теперь сделаем из провода диаметром 0,5 мм кольцо диаметром 3 с расчетной индуктивностью около 0,08 мкГн и подключим к Х1. Для генератора на транзисторах КТ326Б частотомер показал значение 2,310 МГц, что соответствует индуктивности 0,19 мкГн. Вариант на транзисторах КТ3107Б генерировал только при ударном возбуждении контура. Таким образом, собственная индуктивность приставки оказалась в пределах 0,1…0,14 мкГн.

Выводы: высокая точность измерений обеспечивается для индуктивности более 5 мкГн. При значениях в интервале 0,5… 5 мкГн надо учитывать собственную индуктивность 0,1…0,14 мкГн. При индуктивности менее 0,5 мкГн измерения носят оценочный характер. Уверенно регистрируемая минимальное значение индуктивности 0,2 мкГн.

  1. Измерение неизвестной индуктивности. Допустим, для нее частота F1= 0,16803 МГц, что по упрощенной формуле расчета индуктивности дает 35,42 мкГн.

При проверке с эталонным конденсатором частота F2 = 0.15129 МГц соответствует индуктивности 35,09 мкГн. Погрешность ― менее 1 %.

  1. Используя измеренную индуктивность в качестве образцовой, можно оценить входную емкость генератора. Емкость контура состоит из емкости группы конденсаторов С1 и емкости Сген, состоящей из суммы емкости монтажа и емкости, вносимой транзисторами VT1, VT2, т. е. Свх= С1+Сген.

Чтобы определить величину Сген, отключаем конденсаторы С1 и измеряем с используемой индуктивностью частоту F3. Теперь Сген можно рассчитать по формуле

В авторском варианте приставки с транзисторами КТ3107Б емкость Сген равна 85 пФ, а с транзисторами КТ326Б ― З9 пФ. По сравнению с требуемым значением 25330 пФ это меньше 0,4 %, что позволяет применять практически любые высокочастотные транзисторы без заметного влияния на точность измерения..

  1. Благодаря большой собственной емкости приставки, при измерении индуктивности до 0,1 Гн погрешность, вносимая собственной емкостью катушек, несущественна. Так при измерении индуктивности первичной обмотки выходного трансформатора от транзисторных приемников получилось значение L = 105,6 мГн. При дополнении колебательного контура эталонным конденсатором 5970 пФ получилось другое значение ― L=102 мГн, а собственная емкость обмотки Стр= Сизм– С1 = 25822 – 25330 = 392 пФ.
  2. Амплитуда на измерительном колебательном контуре величиной 70…80 мВ оказывается меньше порога открывания кремниевых p-n переходов, что позволяет во многих случаях измерять индуктивность катушек и трансформаторов прямо в схеме (естественно, обесточенной). Благодаря большой собственной емкости приставки (25330 пФ), если емкость в измеряемой цепи не более 1200 пФ, погрешность измерения не превысит 5 %.

Так при измерении индуктивности катушки контура ПЧ (емкость контура не более 1000 пФ) непосредственно на плате транзисторного приемника получено значение 92,1 мкГн. При измерении индуктивности катушки, выпаянной из платы, расчетное значение оказалось меньше ― 88,7мкГн (погрешность менее 4 %).

Для подключения к катушкам индуктивности, размещенных на платах, автор использует щупы с соединительными проводами длиной 30 см, скрученных с шагом одна скрутка на сантиметр. Ими вносится дополнительная индуктивность 0,5…0,6 мкГн ― это важно знать при измерении малых величин, для оценки ее достаточно замкнуть щупы между собой.

В заключение еще несколько полезных советов.

Определить магнитную проницаемость кольцевого магнитопровода без маркировки можно по следующей методике. Намотать 10 витков провода, равномерно распределив его по кольцу, и измерить индуктивность обмотки, а полученное значение индуктивности подставить в формулу:

В практических расчетах удобно пользоваться упрощенной формулой для расчета числа витков на кольцевых магнитопроводах

Значения коэффициента k для ряда широкораспространенных кольцевых магнитопроводов по данным В. Т. Полякова приведены в табл. 1.

Таблица 1

Типоразмер К18х8х4 К18х8х4 К18х8х4 К18х8х4 К18х8х4 К18х8х4
Магнитная проницаемость 3000 2000 1000 2000 1000 400
k 21 26 37 31 44 70

Для широко распространенных броневых магнитопроводов из карбонильного железа индуктивность удобнее рассчитывать в микрогенри, поэтому введем коэффициент m, и формула соответственно изменится:

Некоторые значения для распространенных броневых магнитопроводов приведены в табл. 2.

Сердечник СБ-9а СБ-12а СБ-23-17а СБ23-11а
m 7.1 6.7 4.5 4.0

Составить подобную таблицу для имеющихся у вас кольцевых и броневых магнитопроводов, воспользовавшись предлагаемой приставкой, не составит большого труда.

ЛИТЕРАТУРА

1.Гайдук П. Частотомер измеряет индуктивность. ― Радиолюбитель, 1996, № 6, с. 30.

С.Беленецкий, US5MSQ Луганск Украина Радио, 2005, №5, с.26-28

Обсудить статью, высказать свое мнение и предложения можно на форуме

Прибор предназначен для измерения емкости и индуктивности в радиолюбительской практике, с отображением на шкале стрелочного микроамперметра. Измерение осуществляется в шести диапазонах, переключаемых галетным переключателем на два направления:

1. 10пф — 100 пф или 1 мкГН — 10 мкГн.

2. 100 пф — 1000 пФ или 10мкГн — 100мкГн

3. 1000пФ — 0,01 мкФ или 100мкГн — 1 мГн.

4. 0,01мкФ — 0,1мкФ или 1 мГн — 10 мГн.

5. 0,1 мкФ — 1 мкФ или 10 мГн — 100 мГн.

6. 1 мкФ -10 мкФ или 100 мГн — 1 Гн.

Переключение режимов измерения емкости и индуктивности осуществляется подключением измеряемого элемента к соответствующему разъему. «Сх» и «Lx», соответственно. Питается прибор от источника постоянного тока стабильным напряжением 5V. Принципиальная схема показана на рисунке.

Схема состоит из генератора прямоугольных импульсов, частоту которых можно ступенчато изменять и измерительного моста, в одно плечо которого включен микроамперметр. Принцип основан на измерении среднего значения разрядного тока конденсатора или ЭДС самоиндукции индуктивности. При этом пределы измерения зависят от частоты, на которой измерение происходит. Налаживают прибор в два этапа. Сначала нужно измеряя частоту на выходах элементов D1.3-D1.6 с помощью частотомера подобрать точнее сопротивления резисторов R1-R6 до получения следующих величин: R1 — 1 МГц. R2 -100 кГц, R3 -10 кГц, R4 -1 кГц, R5 -100 Гц, R6 -10 Гц. После этого следует переходить к настройке измерительного моста. Нужны будут образцовый конденсатор на 1000 пФ и образцовая индуктивность 100 мкГн. Переводим S1 во второе положение и подключаем к входу «Сх» конденсатор 1000 пФ. Затем резистором R9 устанавливаем стрелку микроамперметра на максимальное деление шкалы. Далее, отключаем конденсатор от «Сх» и подключаем индуктивность 100 мкГн к «Lx». Резистором R8 устанавливаем стрелку микроамперметра на максимальное деление шкалы.

Радиоконструктор №4 2014г стр. 18

Пока мне не нужно было заниматься намоткой выходного трансформатора, тема измерений индуктивности катушек с сердечниками меня мало интересовала. Досаждала, конечно ненадежность китайских коробочек, претендующих на звание “измеритель индуктивности”, но теперь, когда я стал углубляться в этот вопрос, то оказалось, что они, эти коробочки, еще и дают разные показания при замерах на разных пределах измерений… А это наводит на нехорошие мысли, а главное – мешает систематической работе – непонятно, что ты замерил. Вот пример – у меня есть выходник 10К, который должен иметь индуктивность первички около 30 Генри. Посмотрите, что показывает тестер на пределе 20 Генри и что на пределе 200 Генри – ну что, как тут определять правильную цифру – голосованием ?


Я бы понял, если бы испытательная частота была разной – но нет, частота замера на этих пределах одна и та же – 100 Гц….Ну а если и тестер умер ( за 5 лет сейчас у меня уже третий ) – то все сделанные ранее замеры вообще повисают в воздухе… Пришел к выводу – нужен стандарт !
Еще несколько лет назад, когда я купил выходной трансформатор у одного старого японца, у нас возник с ним спор по поводу индуктивности первички. Я замерил его своей “китайской коробочкой” и получил 70 Генри, хотя японец утверждал, что там аж 160… Когда я спросил его, как он это измерил, то прислал мне вот такую совсем простенькую от руки нарисованную схемку измерений, сущность замера которой в пояснениях не нуждается.

Сделал все как мне сказал этот уважаемый японец-сан и получилось в точности 160 Генри…. Что же тогда замерил “измеритель индуктивности” ? Я замерил на осциллографе, что на пределах 200 и 20 Генри – китайский тестер генерирует 100 Гц, а на всех остальных диапазонах – 1000 Гц. То есть выясняется, что результат измерений зависит от частоты испытательного прибора. И еще оказалось, что результат замера также еще и зависит от величины приложенного напряжения…
Все это на превый взгляд как-то не вяжется с теорией – известно, что индуктивность катушки зависит от сечения сердечника, от количества витков и величины мю сердечника, но никак не от частоты и тем более не от величины приложенного напряжения. Но давайте не будем торопиться. В физике магнитезма есть такая формула зависимости магнитной индукции в сердечнике:

Bm = U * 10E(8) / ( 4,44*F*N*S )

где U – приложенное напряжение
F – частота переменного тока
N – количество витков в катушке
S – сечение магнитопровода.

Любой тестер ( испытатель ) подает на измеряемую катушку определенной величины и частоты напряжение, создавая в сердечнике некоторую величину магнитной индукции B. Проблема в том, что мю, то есть магнитная проницаемость сердечника мягко говоря, не является величиной постоянной, а точнее, сильно зависит от величины магниной индукции. Вот тут и становится понятно, отчего результаты замеров так сильно зависят от величин, которые вроде прямым образом на индуктивность влиять не должны – то есть от частоты и от величины приложенного напряжения. Так как величина мю с ростом величины магнитной индукции сильно увеличивается ( особенно при отсутствии зазора в магнитопроводе ), иногда в десятки раз, отсюда из приведенной выше формулы следует простое правило – результат замера индуктивности будет тем больше, чем ниже частота и чем выше величина испытательного напряжения. Поэтому всегда, когда идет разговор об индуктивности первичной обмотки выходного трансформатора, необходимо указывать, в каких условиях проводились измерения. Особенно это касается трансформаторов для двухтактников, где нет немагнитного зазора.
А раз все это так, получается есть смысл сделать замеры индуктивности первичной обмотки трансформатора не при каких-то отвлеченных значениях частоты ( в тестерах – это 100 или 1000 Гц в зависимости от диапазона ) и напряжения, а при тех значениях, которые реально будут иметь место в работающем транформаторе. Как это и делают японцы – на частоте 50 Гц и подают небольшое ( так называемое “малосигнальное” ) напряжение на первичку. В общем, у меня появилось желание сделать прибор по той примитивной схеме от японца, но только с цифровой шкалой для удобства пользования. Вот схема прибора:

На картинке – уже собранный вольтметр, который я купил на рынке в Риге за 8 Лат ( около 11 Евро ). У него четыре разрядные цифры, разрядную точку надо поставить между третьим и четвертым разрядом.

Детали. Нужен качественный сдвоенный потенциометр 50К, лучше логарифмический, идеально подойдет ALPS или аналогичный для аудиоприменения. Также надо точно подобрать резисторы R2 и R3. LM1085 можно заменить на LM317, напряжение питания вольтметра может быть любым в пределах 6.8 – 10 Вольт. Сетевой трансформатор – любой маломощный с примерно подходящими напряжениями на вторичной обмотке. Измерительный вольтметр может быть любой с входным сопротивлением не ниже 10М, с пределом измерений от минус 2 до плюс 2 вольта. На вторичной обмоке транфсорматора указано на схеме номинальное напряжение 6.3 вольта, но т.к. он работает практически на холостом ходу, то фактически там есть 7.1 вольта.

Как работает схема ? Есть два режима работы – “БАЛАНС” – балансировка сопротивлений измерительного потециометра Р1 и тестируемой индуктивности, при этом переключатель ( тумблер с двумя парами контактов ) S2 находтся в положении, указанном на схеме. Когда достигнут баланс ( вольтметр показывает ноль ) , тогда переключатель S2 переводится в другое положение – “ЧТЕНИЕ” и тогда можно прочитать значение индуктивности, так как потенциометр Р2, ( сдвоенный с Р1 ) будет показывать падение напряжения, в точности равное измеряемой индуктивности. Пределы изменений – от 3.2 до 159 Генри. Точность зависит от качества сдвоенного потенциометра Р1/Р2 и от точночти подбора резисторов R2 и R3.

Настройка собранного прибора. Вначале надо отбалансировать измерительный мост. В режиме “БАЛАНС” подключают к клеммам индуктивность около 10 – 20 генри ( любой дроссель ) и выставляют ноль на вольтметре. После этого замеряя тестером переменное напряжение на дросселе и на потенциометре Р1+ R2 и вращают движок подстроечника VR3, каждый раз подстраивая ноль на измерительном вольтметре добиваются того, чтобы измерительный вольтметр показывал ноль при равенстве измеренных тестером напряжений на дросселе и ( R2+Р1). После этого переводят тумблер режима работы в положение “ЧТЕНИЕ” и поставив потенциометр Р2 на максимальное сопротивление, подстроечником VR2 устанавливают показание 159.2 ( т.е. 1.592 вольта ) Генри. На этом настройка заканчивается.
В заключение – фотографии законченного изделия.

Надо отметить, что данный прибор не претендует на высокую точность измерений. Он пригоден для примерной оценки индуктивности первички выходного трансформатора или индуктивности дросселя по принятому стандарту – 50 Гц и напряжении 5 вольт RMS на тестируемой индуктивности. Метод не учитывает активное сопротивление обмотки, Но даже если активное сопротивление не учитывать, все равно для большинства реально существующих выходных трансформаторов ошибка не превысит 2 – 3 %, что вполне достаточно для поставленной задачи. В случае необходимости можно поправку на активное сопротивление внести, учитывая, что Lcorret=Ract/(2*3,14*50 ), где Ract – замеренная величина активного сопротивления обмотки, и Lfact=L – Lcorrect, где L -показания измерителя.
Также, для повышения точности измерений первички двухтактных трансформаторов ( или любых индуктивностей без немагнитного зазора ) желательно прибор включать в сеть через стабилизатор напряжения, или, хотя-бы через ЛАТР. Для измерения дросселей и индуктивности первички однотактных трансформаторов в этом необходимости нет. Например, я провел пробный замер индуктивности первичной обмотки трансформатора TW60SE, так вот при изменении сетевого напряжения ( я пользовался ЛАТРом ) от 200 до 237 вольт ( 18 % ) расхождения в показании измерителя составило менее 3 %.

*************************************************************************************************

29 августа 1885 г.

Схема устройства была найдена в сети и повторена. Трассировку платы пришлось произвести с нуля с учётом доступности SMD элементов. Данный вариант собран целиком на бескорпусных радиоэлементах для получения максимальной компактности. Питание осуществляется от батареи CR2032 (3 Вольта). Имеет два индикатора и кнопку. Порядок проверки таков: Устройство калибруется резистором во включенном состоянии. Зелёный светодиод — замыканий нет. Красный — замыкание. Для тестирования к примеру якоря, устройство располагается катушками перпендикулярно якорю на расстояние в 1-2 мм и производится вращение. Если в поле попадает обмотка с замыканием — загорается красный светодиод.

Так выглядит устройство без корпуса. Удобный тестер и имеет право занимать место в гараже. При проверке генераторов экономит время. Для проверки того же якоря посредством мультиметра придётся проверять каждую обмотку по отдельности на сопротивление, а обмоток может быть N-ое количество.

Простое тестирование на замкнутом кольце из куска провода. Попадая в поле, замкнутый проводник наводит ЭДС и рвёт связь контуров — загорается красный индикатор.

Компактно и надёжно. Очень пригодится для тестирования различных обмоток. Например в случае с ремонтом генератора.

Схема и разводка платы.

Файл в формате — Layout 6.0 ->

Могу выслать готовый комплект для сборки самостоятельно (плата + компоненты) пишите в коментарии.

Пример проверки якоря и обнаружение замыкания в обмотке на видео ниже.

Loading the player…

В результате того, что было получено не мало запросов на готовый прибор ИКЗ — изготовлена ограниченная партия в 8шт и 2 kit (комплекта) для самостоятельной сборки.
Дата сборки 08.02.2018

— Стоимость готового устройства — 1К.
— Стоимость набора для самостоятельной сборки — 0,5К.
— Цена без учёта доставки.
— Отправка либо ТК, либо почтой россии. Отправка из Челябинска.

Оплатить можно путём перевода на карту СБ. Пишите в личку VK по вопросу оплаты.
Порядок таков, оплачиваете на карту, высылаю, скидываю трэк, за получение расчитываетесь с ТК или почтой.

Следующая партия будет по мере моего желания и свободного времени.

Итого: Партия приборов из 8 шт. и 2 комплекта для самосбора проданы и разлетелись в разные города и сёла. На текущий момент приборов нет и комплектов тоже. Будут? Не знаю.

Собрать партию и начать её распростронять меня побудили комментарии к статье. Опыт интересный. Но, во всём этом есть пару моментов, которые меня останавливают на организацию следующей: Первый, это то, что некоторые заказчики ожидали чудо-прибор, который явно и точно покажет такую неисправность как межвитковое КЗ. Второй момент, это конечно почта россии, комментарии тут излишне. По первому моменту, мне странно, что нет комментариев тех, кто получил прибор, о том как используют и с какими трудностями сталкиваются. От себя могу добавить, лишь только то, что прибор аналоговый, требует калибровки перед использованием и есть некоторые факторы которые могут вносить не ясность в работу прибора, а именно конструкция проверяемого объекта. Некоторым из заказчиков высылал видео калибровки и примеры тестирования самого прибора на исправность. В большинстве случаев о положительной работе никто не пишет и скорее всего потому, что прибор работает и всё устраивает. Всем кто хотел, я выслал прибор и никого не кинул. Всем спасибо.

20.11.2019 Последние новости:

Стоимость готовый прибор — 1000 р.
Стоимость комплекта для самостоятельной сборки — 500р.
Доставка оплачивается отдельно с ТК или почтой.
Отправка «Почта России» I-классом ~ 200р — 250р.

Как выглядят отправления:
После отправки у вас будет трек-номер отправления и фото отправки.

Важные моменты:

1. Отзывов практически никто не оставляет здесь. Иногда пишут в ВК в личку. Сохраню здесь в виде скринов.

Лично я прибор использую крайне редко, так как не связан с подобными ремонтами где применялся бы индикатор, потому ориентироваться могу только на отзывы.

2. Иногда всё же пишут в личку «Не работает, ты сам то проверял когда отправлял?»
Да, конечно, каждый прибор предварительно проверяю на куске замкнутого провода в кольцо. В начале калибрую прибор подстроечным резистором на плате, выставляю порог срабатывания и проверяю. Если прибор показывает замыкания в кольце провода, а вне его нет — считаю прибор работоспособным. Ещё переодически тестирую на имеющемся у меня роторе с наличием межвиткового замыкания (тот что на видео.)

Обычно после того, как люди калибруют, то всё удаётся.
И ещё хотелось бы отметить то, что этот прибор аналоговый, он вполне может что-то и не показать по ряду причин, таких как: отсутствие межвиткового КЗ, замыкание не образовывает кольца где возможно наведение поля, не выставлена чувствительность, чувствительность выкручена на максимум.

3. Если вы не готовы самостоятельно собрать прибор, не заказывайте комплект для сборки!
Монтаж имеет важное значение и если у вас нет опыта сборки и пайки, то не рекомендуется заниматься этим самостоятельно. Если всё же вы на это решились, то ответственность за работу прибора вы несёте самостоятельно. Практика показывает, что не каждый с этим может справиться и в последствии могут возникнуть притензии.

Например как не следует выполнять монтаж:

ПРИБОР ДЛЯ ПРОВЕРКИ ТРАНСФОРМАТОРОВ

Тестер трансформаторов — это незаменимый прибор при ремонте телевизоров, мониторов и других подобных устройств. С большой точностью он может указать на КЗ в витках. У меня работает с 2003 года, на работу нареканий нет. Прибор запускается сразу и налаживания не требует. Подключил, кнопку нажал, посмотрел — если будет замыкание в витках — покажет. Не подводил еще ни разу, таким тестером намного лучше, чем генератором да осциллографом, наличия короткого вычислять. Собирал по оригинальной схеме, только мастеркитовскую печатку немного переделал, сжал и поместил на нее батарейки питания. Дальше схема электрическая и описание от автора, опубликованное в журнале «Ремонт электронной техники»:

Данный несложный прибор позволяет без выпаивания трансформатора из схемы диагностировать дефекты и существенно сократить время ремонта. Известно, что частая причина отказов телевизоров и мониторов — это выход из строя силовых элементов блоков питания и строчной развертки. Это легко объяснимо, ведь они работают в очень тяжелых условиях, при высоких токах и напряжениях. Нередко выход из строя одного элемента, например строчного трансформатора, провоцирует выход из строя других связанных с ним элементов, таких как выходной транзистор или демпферные диоды. Иногда трудно сразу обнаружить все поврежденные элементы и определить причину их отказа, а при неправильно определенной причине замененные элементы могут через короткое время снова выйти из строя, увеличивая затраты на ремонт и, что еще хуже, роняя репутацию мастера в глазах клиентов.

Наиболее трудными для диагностики являются импульсные трансформаторы блоков питания, строчные трансформаторы и отклоняющие катушки ЭЛТ. Наиболее частый вид их отказа — появление короткозамкнутых витков, и он никак не диагностируется при помощи тестера. Проверка методом замены на заведомо исправный элемент также не всегда возможна, ведь такие трансформаторы обычно делаются под конкретную модель телевизора и являются весьма дорогостоящими элементами.

Существенно облегчить диагностику любых трансформаторов и дросселей на ферритовых сердечниках помогает предлагаемый тестер импульсных трансформаторов. Идея работы прибора основана на том факте, что все подобные трансформаторы работают на принципе накопления энергии и поэтому должны иметь высокую добротность, а наличие короткозамкнутых витков резко ее снижает. Задача состоит в том, как ее оценить простыми средствами.

Можно возбудить в контуре ударные колебания и подсчитать число периодов, за которое амплитуда упадет до определенного уровня. Известно, что это число пропорционально добротности контура. На этом принципе и построен прибор.

Тестер состоит из трех частей: генератора импульсов ударного возбуждения, компаратора импульсов “звона” и счетчика импульсов. Генератор импульсов собран на компараторе DA1.2 (LM393), транзисторах VT1, VT2 и диоде VD2. Он вырабатывает короткие импульсы ударного возбуждения длительностью около 2 мс и частотой около 10 Гц. Диод VD2 устанавливает амплитуду импульсов возбуждения равной примерно 0,7 В, что позволяет проводить проверку трансформаторов без их выпаивания из схемы, так как при таком напряжении имеющиеся в схеме p-n-переходы оказываются закрытыми и не влияют на результат измерения.

Проверяемый трансформатор подключается к выводам 3 и 4 тестера и совместно с конденсатором СЗ создает колебательный контур. По спаду импульса возбуждения открывается транзистор VT2 и начинаются свободные затухающие колебания в образованном колебательном контуре. Эти колебания через переходной конденсатор С4 поступают на вход компаратора импульсов, собранного на DA1.1. На этот же вход поступает напряжение порога срабатывания, которое формируется делителем R11, R12 и опорным источником VD3. Порог выбран на уровне 10% от напряжения возбуждения.

В качестве опорного источника порога использован диод того же типа, что и в источнике ударного возбуждения, что гарантирует стабильность параметров тестера в достаточно широком диапазоне температур и питающих напряжений. С выхода компаратора импульсы поступают на вход счетчика импульсов, собранного на микросхеме DA2. Эта микросхема представляет собой два четырехразрядных сдвиговых регистра с последовательными входами.

В схеме тестера эти регистры соединены последовательно в один восьмиразрядный регистр, и информационный вход первого регистра подключен к лог. “1”. На тактовые входы микросхемы (выводы 1, 9) подаются импульсы с компаратора. Ко всем выходам регистра через токоограничивающие резисторы R15…R22 подключены светодиоды. Во время формирования импульса возбуждения регистры обнуляются по входам Reset (выводы 6 и 14) и все светодиоды гаснут. По спаду импульса возбуждения начинается колебательный процесс в контуре подключенного трансформатора. Возникшие колебания преобразуются компаратором в логические импульсы, которые далее поступают на сдвиговый регистр.

В сдвиговом регистре каждый импульс переносит лог. “1” на очередной разряд, зажигая последовательно светодиоды HL1…HL8. Для удобства пользования первые три светодиода красные (трансформатор неисправен), следующие два — желтые (ситуация неопределенная) и последние три — зеленые (трансформатор исправен). После окончания колебательного процесса число светящихся светодиодов равно числу периодов колебания. Если число импульсов более 8, то светятся все светодиоды.

Работа с прибором при проведении ремонта. Сначала нужно, не отпаивая никаких компонентов, подключить прибор выводом GND к шасси телевизора, а выводом НОТ к коллектору выходного транзистора строчной развертки. Если при нажатии на кнопку “Тест” загорится более четырех светодиодов, это говорит об исправности выходных цепей строчной развертки. Если светится менее двух светодиодов, то это говорит о наличии коротких замыканий на выходе цепей — необходимо выпаять выходной транзистор и повторить измерение.

Если после этого светится более четырех светодиодов, то требуется замена выходного транзистора, в противном случае нужно выпаять демпфирующий диод и повторить измерение. Свечение более четырех светодиодов свидетельствует о необходимости замены этого диода. Такие же операции необходимо повторить с конденсатором обратного хода и отклоняющими катушками ЭЛТ. Если результат отрицательный, то необходимо выпаять строчный трансформатор и провести его тестирование вне схемы. Свечение менее двух светодиодов при проверке выпаянного трансформатора говорит о наличии короткозамкнутых витков в трансформаторе и необходимости его замены.

Порядок проверки импульсных блоков питания и отклоняющих катушек ЭЛТ аналогичен. Следует только отметить, что при проверке может потребоваться временно отключить шунтирующие цепи, которые устанавливаются параллельно обмоткам.

Аналог микросхемы 4015 — К561ИР2, она совсем не дефицит, в магазинах без проблем можно будет купить. правда для более мощных обмоток (генератор авто, электродвигатели) он не годится, на ферритовых сердечниках покажет любое КЗ, а на трансформаторной стали — нет. Транзистор поставил 2N5401, а на месте полевого — 2N7000, подбирать ничего не надо. Прибор запускается сразу. Автор схемы В. Чулков, сборка nickolay78.

Форум

Обсудить статью ПРИБОР ДЛЯ ПРОВЕРКИ ТРАНСФОРМАТОРОВ

FBTest v1.1 — прибор для проверки трансформаторов: обзор и тестирование

«FBTest v1.1», прибор для обнаружения короткозамкнутых витков.

Введение.

Есть у ремонтника такое понятие — интуиция, очень важный показатель, который на самом деле является просто эквивалентом количества проведенных однотипных ремонтов. Поэтому с большой долей вероятности специалист может определить неисправный ВЧ трансформатор по косвенным признакам, по сопротивлению обмотки, по характеру неисправности или интуитивно. В случае если нет богатого опыта ремонтов, определить неисправный ВЧ трансформатор, даже специалисту бывает довольно сложно, только путем замены обвязки элементов трансформатора и ШИМ. Проблема хоть и трудоемкая, но редко возникающая, поэтому вопрос по проверке ВЧ трансформатора в импульсных блоках питаниях не стоял остро, пока в ремонт не стали попадать промышленные импульсные блоки питания.

Для справки. Стоимость ремонта коммерческого импульсного блока питания начинается от 500 руб. в то время, как сам блок питания имеет стоимость от 250 руб. Вполне понятно почему коммерческий импульсный блок питания нет смысла ремонтировать.
С промышленными блоками питания дело обстоит иначе, при стоимости блока питания 4,5 т.р — 20 т.р. проверка ВЧ трансформатора со 100% гарантией при выходе из строя силового ключа на первичном этапе диагностики становится очень актуальной.

Самое неприятное в диагностике неисправного трансформатора, это тот факт, что вывод об его неисправности делается уже после замены элементов первичных и вторичных цепей.

Немного теории.

Упрощенная схема включения ВЧ трансформатора flayback блока питания

Чтобы понять необходимость проверки исправности ВЧ трансформатора достаточно рассмотреть подключение ВЧ трансформатора. При выходе из строя силового ключа, до момента пока не уйдут в обрыв драйвер и токовый датчик по первичной обмотке протекает значительный постоянный ток.

Вышедший из строя токовый датчик, говорит о значительном протекавшем токе и сильном нагреве резисторов

Такой режим работы хоть и кратковременный, но все же связан со значительным нагревом первичной обмотки, как вариант возможно появление короткозамкнутых витков из за повреждения изоляции проволоки в результате перегрева. Соответственно, в таком случае, замена только силового ключа, драйвера, датчика тока, генератора — будет безрезультатной, требуется замена ВЧ трансформатора. Поэтому диагностика исправности ВЧ трансформатора делает диагностику на порядок дешевле и быстрее.

Немного практики.

Нельзя сказать, что нет способа проверить ВЧ трансформатор, на самом деле их множество. Самый распространенный это подключение ВЧ трансформатора к импульсному блоку питания, если блок питания выйдет из режима, то трансформатор имеет короткозамкнутый виток. Для этого вторичная обмотка тестируемого ВЧ трансформатора включается ко вторичной обмотке ВЧ трансформатора рабочего импульсного блока питания. Следует обратить внимание на тот факт, что слишком длинные провода до тестируемого трансформатора могут сорвать работу блока питания при отсутствии неисправности в проверяемом трансформаторе.

Красными точками отмечены места подключения ВТОРИЧНОЙ обмотки проверяемого трансформатора

Данный способ требует определенной сноровки и опыта, и к тому же требует предварительного демонтажа тестируемого трансформатора.

«FBTest v1.1», прибор для обнаружения короткозамкнутых витков.

Гораздо проще воспользоваться готовым/самодельным прибором для обнаружения короткозамкнутых витков. Такие приборы работают по принципу резкого падения добротности колебательного контура при короткозамкнутых витках.

Колебательный контур с высокой (вверху) и низкой (внизу) добротностью.

Если посчитать количество колебаний до полного затухания, то можно гарантированно сделать выводы о наличии короткозамкнутых витков по добротности катушки.

Историческая справка. Метод используемый для проверки трансформаторов был еще известен в средние века. Кузнецы при изготовлении клинка, после ковки, закалки и формовки — перед выводом спусков, проверяли заготовку на предмет скрытых трещин. Заготовка клинка подвешивалась на бечевку и по ней ударяли металлическим прутком, если металлическая заготовка звенела долго, то значит, в ней не было трещин. В современных условиях подобным способом проверяют хрустальную посуду и стеклянные плафоны люстр при продаже.

«FBTest v1.1» прибор, который можно отнести к серии готовых функциональных изделий, то есть имеет корпус и сразу после покупки готов к использованию. Сам по себе прибор выполнен в лаконичном стиле, на корпусе размером со спичечный коробок, полностью отсутствуют органы управления. Задача прибора посчитать и отобразить количество импульсов до затухания, затуханием считается амплитуда импульса менее 15% от начального.

Габариты «FBTest v1.1» можно охарактеризовать как минимальные.

Включение прибора осуществляется замыканием щупов, а выключение происходит автоматически. Количество посчитанных колебаний отображается в шестнадцатеричном исчислении, так как колебаний не бывает больше 16, то хватает дисплея с одним знакоместом. Сам дисплей выполнен на ЖКИ, соответственно прибор имеет минимальное электропотребление до 5 мА в пиковом режиме. ЖКИ дисплей защищен от повреждений прозрачным пластиковым окошком, так что его можно смело бросать в сумку с инструментами, без боязни раздавить дисплей. К основным преимуществам прибора можно отнести не только сверхмалые габариты, но и размах входного измерительного импульса 0.5В, на практике это означает, что измерение исправности трансформатора можно проводить не выпаивая, так как измерительный импульс в принципе не сможет открыть PN переход активных элементов.

Корпус прибора открывается ногтем, под крышкой мы наблюдаем плату на ATmega48 и пальчиковую батарейку АА.

Плата измерителя «FBTest v1.1», вид со стороны деталей

Плата измерителя «FBTest v1.1», вид со стороны дисплея

На фото не очень хорошо видно, но на плате имеется интерфейс для внутрисхемного программирования, который закрыт бипером. Не смотря на обилие надписей, клеммы батарейки не подписаны, для ориентировки черный щуп сидит на минусе батарейки, он же контакт с пружиной.

Использование прибора.

Так как основные ВЧ трансформаторы встречающиеся в нашей мастерской – это трансформаторы импульсных блоков питания и питания CCFL ламп в инверторах мониторов то рассматривать будем только их. Судя по названию FBTtest, прибор изначально задумывался для проверки строчных трансформаторов ТВС/ТДКС (англ. flyback transformer (FBT)), которые имели тенденцию выходить из строя, при этом иметь высокий ценник, что бы держать подобный ЗИП на подмену.
Современный коммерческий импульсный блок питания имеет конструкцию, которая обеспечивает высокий ресурс ВЧ трансформатора, поэтому возможность выхода трансформатора напрямую зависит от выхода из строя силового ключа или грифлика. Другая картина наблюдается в промышленном импульсном блоке питания, воздействие агрессивных сред, высокая влажность, резкие перепады температуры делают слабым местом именно трансформатор, который в свою очередь выводит из строя силовой ключ. Чаще всего страдают ВЧ трансформаторы в зарядных устройствах для аккумуляторов, в сварочных инверторах, которые хранятся в гаражах и на балконах. В связи с этим при ремонте прибор актуален при ремонте промышленных импульсных блоков питания. Для диагностики коммерческих вариантов блоков питания – удобный, но не обязательный инструмент, дело даже не в том, что в них трансформаторы не часто выходят из строя, а в том, что перемотка трансформатора удовольствие трудоемкое и соответственно недешевое. Часть ремонтных мастерских при ремонте не занимается перемоткой трансформаторов, а купить новый, не всегда представляется возможным.
Трансформаторы в инверторах LCD мониторах имеют большую вероятность выхода из строя по отношению к трансформаторам в блоках питания, с чем это связано точно сказать не можем, но приходилось мотать ВЧ трансформаторы, процесс более сложный, чем мотать ВЧ трансформатор для БП.

Трансформаторы розжига ламп CCFL проверять гораздо проще, в основной своей массе это трансформатор с явно выраженными обмотками, у которых прибор может проверить только первичную обмотку (с стороны силовых ключей), вторичную обмотку (со стороны CCFL ламп) прибор не обнаруживает, слишком малое напряжение импульса. Результаты измерения подтверждают практику.

Неисправный трансформатор инвертора CCFL ламп

Этот же неисправный трансформатор, закорачиваем обмотку в обрыве.

Этот же неисправный трансформатор, закорачиваем обмотку, которая звонится как 1280ом.

Исправный трансформатор инвертора CCFL ламп

С трансформаторами импульсного БП все несколько сложнее, большое количество обмоток, как минимум одна первичная, одна вторичная (может быть больше), одна для питания ШИМ. Проверять есть смысл только первичную обмотку, так как остальные показывают полный бред, причем независимо, впаянный или выпаянный трансформатор. Найти неисправный трансформатор не удалось, поэтому короткозамкнутый виток эмулируем перемычкой.

Исправный трансформатор импульсного БП

Несправный трансформатор импульсного БП

Если не хватает навыков определить первичную обмотку, проверяйте все обмотки, если хоть одна даст цифру более 4, то ВЧ трансформатор исправный.

К сожалению, прибор не может определить короткозамкнутые витки на НЧ трансформаторах, трансформаторы выполнены на пермаллое(набор из Ш-образные тонких пластин) недоступны для диагностики.

Прибор для проверки импульсных трансформаторов.

Прибор для проверки импульсных трансформаторов.
Прибор позволяет определять наличие междувитковых замыканий в импульсных междукаскадных, силовых и строчных трансформаторах, отклоняющих системах телевизоров ,дросселях коррекции строчных разверток. /В большинстве случаев ,не выпаивая проверяемый элемент из платы/Принципиальная электрическая схема прибора представлена на рис.1: Основой прибора является широкополосный усилитель на транзисторах VT4,VT5,охваченный положительной обратной связью посредством подачи части напряжения с его выхода на вход, в фазе, с помощью делителя напряжения на элементахR17,R18,C8,R16. При подключении к выходу усилителя /контакты 3 и 4/катушки индуктивности /первичной обмотки импульсного трансформатора/ без междувитковых замыканий ,в ней возникают электромагнитные колебания, частота которых определяется индуктивностью катушки и емкостью конденсаторов подключенных параллельно катушке. При необходимости к катушке можно подключить дополнительные конденсаторы C9,C10,с помощью переключателейSW1 иSW2. Выпрямленное диодным детектором C4,C6,VD5,VD6,R10 напряжение , открывает транзистор VT2 и закрывает транзистор VT1 ,что вызывает прекращение свечения красного светодиода HL1 и вызывает свечение зеленого светодиода HL2, указывающего на исправность катушки индуктивности. В случае подключении к выводам 3и4 катушки с короткозамкнутыми витками,генерация электромагнитных колебаний не возникает транзистор VT2 закрыт,а VT1 открыт что приводит к свечению красного светодиода HL1, указывающего на неисправность катушки индуктивности. Для контроля прохождения тока в измерительной цепи/выводы3 и4/используется транзистор VT3 и элементыR7,RV1,R5,HL3.
Для проверки высоковольтных выпрямителей строчных трансформаторов используется цепь HL4,R19.
Питание прибора осуществляется от источника переменного напряжения 12В-:-14В подключаемого к выводам 1 и 2.
После сборки прибора необходимо установить ток холостого хода порядка 80мА-:-85мА. Для этого выводы 3 и 4 необходимо закоротить и подбирая величину R14 установить указанный выше ток. Далее изменяя величину резистора RV1 добиться свечения светодиода HL3.

admin

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Наверх