Электрификация

Справочник домашнего мастера

Преобразователь 5 вольт

Что такое напряжение, формула

В данной статье мы подробно разберем что такое напряжение, как просто его представить и измерить.

Определение

Напряжение — это электродвижущая сила, которая толкает свободные электроны от одного атома к другому в том же направлении.

В первые дни электричества напряжение было известно как электродвижущая сила (ЭДС). Именно поэтому в уравнениях, таких как закон Ома, напряжение представлено символом Е.

Алессандро Вольта

Единицей электрического потенциала является вольт, названный в честь Алессандро Вольта, итальянского физика, жившего между 1745 и 1827 годами.

Алессандро Вольта был одним из пионеров динамического электричества. Исследуя основные свойства электричества, он изобрел первую батарею и углубил понимание электричества.

Представление напряжения

Легче всего понять напряжении, представив давлении в трубе. При более высоком напряжении (давлении) будет течь более сильный ток. Хотя важно понимать, что напряжение (давление) может существовать без тока (потока), но ток не может существовать без напряжения (давления).

Напряжение часто называют разностью потенциалов, потому что между любыми двумя точками в цепи будет существовать разница в потенциальной энергии электронов. Когда электроны протекают через батарею, их потенциальная энергия увеличивается, но когда они протекают через лампочку, их потенциальная энергия будет уменьшаться, эта энергия покинет цепь в виде света и тепла.

Возьмите, например, обычную 1,5-вольтовую батарею AA, между двумя клеммами (+ и -) есть разность потенциалов 1,5 Вольт.

Напряжение или разность потенциалов — это просто измерение количества энергии (в джоулях) на единицу заряда (кулона). Например, в 1,5-вольтовой батарее AA каждый кулон (заряд) будет получать 1,5 вольт или джоулей энергии.

Напряжение =

1 вольт = 1 джоуль на кулон

100 вольт = 100 джоулей на кулон

1 кулон = 6 200 000 000 000 000 000 электронов (6,2 × 10 18 )

В чем измеряется напряжение

Мы измеряем напряжение в единицах «Вольт», которые обычно обозначаются просто буквой «V» на чертежах и технической литературе. Часто необходимо количественно определить величину напряжения, это делается в соответствии с единицами СИ, наиболее распространенные величины напряжения, которые вы увидите:

  • мегавольт (мВ)
  • киловольт (кВ)
  • вольт (В)
  • милливольт (мВ)
  • микровольт (мкВ)

Напряжение всегда измеряется в двух точках с помощью устройства, называемого вольтметром. Вольтметры являются либо цифровыми, либо аналоговыми, причем последний является наиболее точным. Вольтметры обычно встроены в портативные цифровые мультиметровые устройства, как показано ниже, они являются распространенным и часто важным инструментом для любого электрика или инженера-электрика. Обычно вы найдете аналоговые вольтметры на старых электрических панелях, таких как распределительные щиты и генераторы, но почти все новое оборудование будет поставляться с цифровыми счетчиками в качестве стандарта.

Портативный цифровой мультиметр с функцией вольтметра

На электрических схемах вы увидите устройства вольтметра, обозначенные буквой V внутри круга, как показано ниже:

Расчет напряжения

В электрических цепях напряжение может быть рассчитано в соответствии с треугольником Ома. Чтобы найти напряжение (V), просто умножьте ток (I) на сопротивление (R).

Напряжение (V) = ток (I) * сопротивление (R)

V = I *R

Пример

Ток в цепи (I) = 10 А
Сопротивление цепи (R) = 2 Ом

Напряжение (V) = 10 А * 2 Ом

Ответ: V = 20В

Резюме

  • Напряжение — это сила, которая перемещает электроны от одного атома к другому
  • Напряжение также известно как разность потенциалов
  • Напряжение измеряется в единицах «вольт» (В)
  • Батареи увеличивают потенциальную энергию электронов
  • Лампочки и другие нагрузки уменьшают потенциальную энергию электронов
  • Напряжение измеряется с помощью вольтметра
  • Напряжение цепи можно рассчитать путем умножения тока и сопротивления

Преобразователь 5В 5А на базе TPS40057. Маленький, недорогой, классный.

Рубрика: Преобразователи / Обзоры товаров с AliExpress; kirich ; Опубликовано: 30-12-2019, 21:49 $1.43 Один из читателей попросил сделать обзор этого преобразователя, но как-то так получалось, что все предыдущие заказы были неудачны. И вот наконец-то я купил эту платку и протестировал её 🙂
В обзоре как всегда осмотр, тесты и выводы.
Для начала стоит сказать, что подобный преобразователь у меня уже был, только он там был дороже, зато с четырьмя USB выходами — обзор. Собственно потому все сказанное там, по большей части относится и к преобразователю из обзора.
Разница здесь только в конструкции, размерах и заявленном выходном токе. Там было 8А, здесь же продавец декларирует только 5А.
По цене они отличаются примерно в 2 раза, обозреваемый обошелся в 1.43 (включая доставку, она платная), а так как не всегда нужны USB разъемы, то разница существенная.
Упаковка представляла собой обычный антистатический пакетик, внутри аккуратная платка, немного меньше спичечного коробка.
Размеры — 45х30.5х16мм.

Преобразователь построен на базе ШИМ контроллера TPS40057, рядом видны два силовых транзистора TOSHIBA TPCA8053-H, 60В 15А и сопротивление в открытом состоянии 13.9мОм.

Контроллер TPS40057 позволяет строить на его базе понижающие преобразователи с синхронным выпрямлением. Работает на частоте до 1МГц, имеет внутри драйверы для управления полевыми транзисторами, термозащиту и защиту от перегрузки.

1. На входе платы установлен трехконтактный разъем для подключения питания и выхода. Лично на мой взгляд очень кривое решение, у предыдущего преобразователя земля была выведена на разные контакты и разъем стоял соответственно четырехконтактный.
2. Также на плате есть два электролитических конденсатора, 470мкФ 35 Вольт и конечно это дешевый Chang, который здесь почти никак не работает. Мало того, конденсатор на 35 Вольт при выходном 5 смотрится как-то странно.
3. А вот дроссель хороший, намотан медной шиной приличного сечения, правее виден диод для защиты от переполюсовки.
4. Снизу пусто, потому при необходимости плату наверное даже можно приклеить через двухсторонний скотч, хотя также есть и три крепежных отверстия.

Схему не перечерчивал, да и нет в этом особого смысла так как ну очень похожа на типовую схему из даташита.

Для тестирования использовался стенд, состоящий из блока питания на базе преобразователя RD6006 и электронной нагрузки EBD-A10H. Падение на входных проводах не учитывалось так как провода короткие, а для подключения нагрузки использовано четырехпроводное подключение.
При подаче питания на плате засвечивается красный светодиод, подключенный к выходу преобразователя.

Кроме всего прочего плата имеет защиту от работы при пониженном напряжении, старт при входном напряжении 8.2 Вольта, выключение при около 8.0 Вольт, т.е. имеется небольшой гистерезис.
При этом когда плата отключается, то входной ток падает почти до нуля, что позволяет использовать эту функцию как защитную от переразряда при питании от аккумуляторов. Например со сборкой 3S литиевых аккумуляторов и отключении при 8 Вольт получается 2.66В на ячейку, что вполне допустимо для большинства аккумуляторов.
В рабочем режиме собственное потребление около 16-17мА при 9 Вольт и 21-22мА при 24 Вольта.

Выходное напряжение чуть завышено, 5.05-5.08 Вольта, при этом плата отлично держит нагрузку вплоть до тока в 9.5А, напряжение при этом падает до 5.02В.
Нагрузочный график при входном 12 Вольт

При питании в 24 Вольта картина практически идентична.
КПД платы ожидался немного больше, чем я получил в тесте. Я измерял при двух входных напряжениях, 12 и 24 Вольта и в диапазоне нагрузок от 1 до 9 Ампер. Значения по горизонтали соответствуют току нагрузки в амперах.
После этого был термопрогрев, проводился он при входном напряжении 12 Вольт, сначала 20 минут при 50% нагрузке, потом 20 при 100% и еще 10 минут при 150% (7.5А).
Преобразователь вел себя неплохо, хотя нагрев входного диода был очень даже большим. Собственно это был самый греющийся компонент на плате.
У предыдущего преобразователя защита от переполюсовки была решена куда как более правильно, при помощи полевого транзистора, здесь же производитель сэкономил, поставив диод, пусть и Шоттки. Я считаю что более корректно в таком случае поставить диод параллельно питанию, установив перед ним предохранитель, но в итоге для второго теста просто закоротил его перемычкой.
Результат не замедлили проявиться, КПД сразу подрос, особенно при входном напряжении в 12 Вольт. На диоде при выходном токе в 9А и входном напряжении 12 Вольт терялось около 1.5Вт.
Интересно что график хоть и стал более похож на тот, что показан в даташите, но все равно заметно от него отличается, но там он и снимался для 24 Вольт входного, 3.3 выходного, другого диапазона токов, да и компоненты отличаются.
А вот нагрев понравился мне больше, даже при токе в 7.5А самая высокая температура была у одного из транзисторов, около 100 градусов. А ведь заявлен был ток до 5А.
Осциллограммы снимались в четырех режимах, при нулевом выходном токе, при 2.5, 5.0 и 7.5А. При этом размах пульсаций почти не менялся и составлял около 100мВ, разница была только в амплитуде кратковременных выбросов. У предыдущего преобразователя была примерно такая же картина, но размах пульсаций был примерно в два раза больше.
Ниже показаны две более интересные осциллограммы, на них вы не видите коротких выбросов. Эти осциллограммы снимались на выходном конденсаторе преобразователя при токах нагрузки 2.5 и 7.5А
На данном фото выходной конденсатор находится снизу.
Еще в самом начале обзора я посетовал что установили трехконтактный клеммник, но похоже что кроме всего прочего не совсем корректно развели печатную плату, например мне не очень нравится что от конденсатора идет длинная дорожка, а кроме того и по земляному проводнику есть узкие места, что как раз и может давать показанные выше эффекты.
У производителя в даташите разводка платы заметно отличается от показанной выше, но как минимум там плата раза в полтора больше.
А как максимум, в даташите плата четырехслойная, у "китайца" всего два слоя, что также может влиять на уровень пульсаций по выходу, особенно это касается коротких выбросов.
И тем не менее, плата очень понравилась и я однозначно рекомендую ее к покупке. Только вот пожалуй я бы также рекомендовал убрать (закоротить) входной диод, либо поставить его параллельно входу и добавить предохранитель, без него КПД выше, а нагрев соответственно ниже.
Если же нужны USB выходе, то подойдет плата из предыдущего обзора, также рекомендую к покупке, тем более что там есть "обманки" по USB портам, позволяющие давать команду устройствам чтобы они заряжались максимальными для них токами.
У меня на этом все, надеюсь что было полезно. Также поздравляю всех с наступающими Новогодними праздниками и желаю всего самого наилучшего, ну и конечно чтобы ваши устройства всегда работали надежно и никогда вас не расстраивали 🙂 $1.43

MC34063 – универсальная микросхема для самых простых импульсных преобразователей. На ней без применения внешних переключающих транзисторов можно строить понижающие, повышающие и инвертирующие преобразователи. А это основные типы преобразователей, не имеющих гальванической развязки.

Основные технические характеристики MC34063

  • Широкий диапазон значений входных напряжений: от 3 В до 40 В;
  • Высокий выходной импульсный ток: до 1,5 А;
  • Регулируемое выходное напряжение;
  • Частота преобразователя до 100 кГц;
  • Точность внутреннего источника опорного напряжения: 2%;
  • Ограничение тока короткого замыкания;
  • Низкое потребление в спящем режиме.

Понять как работает микросхема проще всего по структурной схеме.
Разберем по пунктам:

  1. Источник опорного напряжения 1,25 В;
  2. Компаратор, сравнивающий опорное напряжение и входной сигнал с входа 5;
  3. Генератор импульсов сбрасывающий RS-триггер;
  4. Элемент И объединяющий сигналы с компаратора и генератора;
  5. RS-триггер устраняющий высокочастотные переключения выходных транзисторов;
  6. Транзистор драйвера VT2, в схеме эмиттерного повторителя, для усиления тока;
  7. Выходной транзистор VT1, обеспечивает ток до 1,5А.

Генератор импульсов постоянно сбрасывает RS-триггер, если напряжение на входе микросхемы 5 – низкое, то компаратор выдает сигнал на вход S сигнал устанавливающий триггер и соответственно включающий транзисторы VT2 и VT1. Чем быстрее придет сигнал на вход S тем больше времени транзистор будет находиться в открытом состоянии и тем больше энергии будет передано со входа на выход микросхемы. А если напряжение на входе 5 поднять выше 1,25 В, то триггер вообще не будет устанавливаться. И энергия не будет передаваться на выход микросхемы.

Производители этой микросхемы (например Texas Instruments) в своих datasheets пишут, что её работа основана на широтно-импульсной модуляции (PWM). Даже если и можно назвать то, что делает MC34063 ШИМом, то очень уж примитивным.

  • Самый главный недостаток MC34063 – отсутствие встроенного усилителя ошибки. Поэтому пульсации выходного напряжения получаются достаточно большими. И не просто так в рекомендациях по применению предлагается на выход преобразователя устанавливать дополнительный LC-фильтр.
  • Второй недостаток – не простое подключение внешнего МДП транзистора.

Мое же мнение, что если требуется низкий уровень пульсаций, либо большая мощность преобразователя, то лучше использовать другие микросхемы – с внутренним усилителем ошибки и с драйвером работающим с полевыми транзисторами.

MC34063 для нетребовательных к пульсациям и мощности применений!

MC34063 повышающий преобразователь

Например я данную микросхему использовал чтобы получить 12 В питание интерфейсного модуля от ноутбучного порта USB (5 В), таким образом интерфейсный модуль работал когда работал ноутбук ему не нужен был свой источник бесперебойного питания.
Также имеет смысл использовать микросхему для питания контакторов, которым нужно более высокое напряжение, чем другим частям схемы.
Хотя MC34063 выпускается давно, но возможность работы от 3 В, позволяет её использовать в стабилизаторах напряжения питающихся от литиевых аккумуляторов.
Рассмотрим пример повышающего преобразователя из документации. Эта схема рассчитана на входное напряжение 12 В, выходное — 28 В при токе 175мА.

  • C1 – 100 мкФ 25 В;
  • C2 – 1500 пФ;
  • C3 – 330 мкФ 50 В;
  • DA1 – MC34063A;
  • L1 – 180 мкГн;
  • R1 – 0,22 Ом;
  • R2 – 180 Ом;
  • R3 – 2,2 кОм;
  • R4 – 47 кОм;
  • VD1 – 1N5819.

В данной схеме ограничение входного тока задается резистором R1, выходное напряжение определяется соотношением резистором R4 и R3.

Понижающий преобразователь на МС34063

Понизить напряжение значительно проще – существует большое количество компенсационных стабилизаторов не требующих катушек индуктивности, требующих меньшего количества внешних элементов, но и для импульсного преобразователя находиться работа когда выходное напряжение в несколько раз меньше входного, либо просто важен КПД преобразования.
В технической документации приводиться пример схемы с входным напряжение 25 В и выходным 5 В при токе 500мА.

  • C1 – 100 мкФ 50 В;
  • C2 – 1500 пФ;
  • C3 – 470 мкФ 10 В;
  • DA1 – MC34063A;
  • L1 – 220 мкГн;
  • R1 – 0,33 Ом;
  • R2 – 1,3 кОм;
  • R3 – 3,9 кОм;
  • VD1 – 1N5819.

Данный преобразователь можно использовать для питания USB устройств. Кстати можно повысить ток отдаваемый в нагрузку, для этого потребуется увеличить емкости конденсаторов C1 и C3, уменьшить индуктивность L1 и сопротивление R1.

МС34063 схема инвертирующего преобразователя

Третья схема используется реже двух первых, но не менее актуальна. Для точного измерения напряжений или усиления аудио сигналов часто требуется двуполярное питание, и МС34063 может помочь в получении отрицательных напряжений.
В документации приводиться схема позволяющая преобразовать напряжение 4,5 .. 6.0 В в отрицательное напряжение -12 В с током 100 мА.

  • C1 – 100 мкФ 10 В;
  • C2 – 1500 пФ;
  • C3 – 1000 мкФ 16 В;
  • DA1 – MC34063A;
  • L1 – 88 мкГн;
  • R1 – 0,24 Ом;
  • R2 – 8,2 кОм;
  • R3 – 953 Ом;
  • VD1 – 1N5819.

Обратите внимание, что в данной схеме сумма входного и выходного напряжения не должна превышать 40 В.

Аналоги микросхемы MC34063

Если MC34063 предназначена для коммерческого применении и имеет диапазон рабочих температур 0 .. 70°C, то её полный аналог MC33063 может работать в коммерческом диапазоне -40 .. 85°C.
Несколько производителей выпускают MC34063, другие производители микросхем выпускают полные аналоги: AP34063, KS34063. Даже отечественная промышленность выпускала полный аналог К1156ЕУ5, и хотя эту микросхему купить сейчас большая проблема, но вот можно найти много схем методик расчетов именно на К1156ЕУ5, которые применимы к MC34063.

Если необходимо разработать новое устройство и какжется MC34063 подходит как нельзя лучше, то соит обратить внимание на более современные аналоги, например: NCP3063.

РадиоКот >Схемы >Питание >Преобразователи и UPS >

Теги статьи: Добавить тег

Преобразователь питания на MC34063

Поляников Игорь aka OldPol
Опубликовано 01.01.1970

Предлагаю вашему вниманию простой, но довольно мощный понижающий ИП.
Целью разработки было создать ИП для питания компьютера в автомобиле. Малогабаритный и с хорошими характеристиками. Простой в изготовлении, используя подручные средства, т.е. элементы от старых РС БП или мамок, от ненужной телефонной зарядки и т.д., и т.п. и возможностью вырезать плату за 20 минут бормашиной, В результате родилась такая схема.

Управляющей микросхемой выбрана МС34063, за дешевизну доступность, удобный тип корпуса и главное наличие некоторого количества их у меня. Но можно было при должном подходе умощнить таким образом, любую микросхему с аналогичными функциями. Работу схемы рассказывать нет смысла, думаю, она очевидна, Остановлюсь только на важных, на мой взгляд, моментах.
Микросхему выпускают множество производителей, в моем распоряжении было три типа, выяснилось, что образец под гордым названием КА34063 склонен возбуждаться, визуально это выражалось в свисте дросселя, хотя свои параметры с незначительным ухудшением конструкция при этом сохраняла. Эффект был устранен установкой по питанию микросхемы дроссель. Это решение не принципиально, можно было обойтись и резистором или еще лучше кренкой вольт на 6-7-8-9.
Цепочка R3-VD1-R4 в базе КТ315, это попытка сэкономить несколько миллиампер, не открывая выходной транзистор микросхемы, используем только предвыходной. Для правильного понимания ситуации смотрите описание на микросхему.
Резистор R5 компромиссный вариант между хорошим фронтом на затворе полевого транзистора и потребляемым током в этой цепи, оптимально 1К. Резистор несколько греется, необходимая мощность 0,5Вт.
Для получения наилучшего КПД, необходимо максимально открыть полевой транзистор, для этого, в этом его включении, требуется подать на затвор импульс амплитудой выше, чем Uпит вольт на 10. Необходимое для этого напряжение снимается с дросселя дополнительной обмоткой. Такой вариант показал несколько лучшие результаты, чем традиционный способ, через емкость с истока полевого транзистора.
Отдельно остановлюсь на том, что с этой схемы, в дополнение к основному Uвых можно получить любые необходимые стабилизированные напряжения любой полярности. Идея заключается в том, что в дросселе DR3 присутствует импульс со стабилизированным действующим значением равным Uвых. Используя это, снимаем необходимые нам напряжения с дросселя вторичными обмотками. Направление намотки важно. Количество витков дополнительной обмотки рассчитывается довольно просто. Например, Uвых 5в, а намотано в основной обмотке, например 10 витков, следовательно, что бы получить 10в, на дополнительной обмотке нужно намотать 20витков.

Преобразователь предназначался, как я ранее говорил для питания компьютера в автомобиле. В одном из зксперементальных вариантов я с него получали 5В и дополнительно 12В 800ма для питания монитора по способу как на схеме >Uвых. Идея себя отлично оправдала. при Uвх от 6 до 29 вольт выходные напряжения оставались неизменными. Но решено было отказаться от такого питания монитора из соображений лишнего тепловыделения преобразователем. Стоит оговориться, что без нагрузки на Uвых идея не работает, в силу того, что микросхема выдает очень короткий импульс, годный только для зарядки выходного электролита до Uвых. Но при нагрузке уже в 0,1А все встает на свои места.
Фильтр по питанию в данный преобразователь сознательно не ставился. Для питания магнитолы монитора и компьютера у меня стоят дополнительный маленький аккумулятор выполняющий роль UPS и развязка с фильтрами на каждое из устройств, ставить еще один фильтр не было смысла.
Параметры схемы:
КПД 89%.
Uвх 6-40В (40в теоретически, реально пробовал до 29В, но не вижу причин схеме не работать и при напряжении до Vcc max микросхемы)
Uвых выбираем исходя из ваших потребностей. Задается делителем на резисторах R1 R2, они должны при вашем Uвых обеспечить на 5й ножке микросхемы 1.25В. И соответственно необходимо подобать число витков на дополнительной обмотке дросселя… Выходной ток, определятся только элементами VT2 VD3 DR3, и подходящим радиатором, для диода и транзистора. Конструкция рассчитывалась на ток нагрузки до 10А., но при экспериментах, в данном варианте преобразователь нагружался и до 20А, прекрасно выдерживал этот ток десятки минут. Правда, с падением КПД на пару процентов. Для долговременной работы с такой нагрузкой как минимум необходимо увеличить размер радиатора для силовых элементов.
Потребляемый ток без нагрузки менее 25мА
Конструкция:
Плата в зеркальном виде под ЛУТ. размер 34Х84 мм.

Сборочный чертеж:

Плата в сборе.

Конструктивно плата рассчитана для корпуса купленного в «Чип и Дип»: называется «G0123 корпус для РЭА 90х38х30мм

Транзистор VT3 и диод VD2 крепятся на боковую стенку корпуса через изолирующую теплопроводящую прокладку. Площадь внешней поверхности приблизительно 130см. Основное количества тепла выделяет диод VD3 и меньше транзистор VT2, приблизительно 3Вт на двоих при нагрузке 5А. Температура корпуса при этом 38-39С, после получаса работы..

Детали:
В моем варианте 5В 10А, стоят R1 1.2k, R2 3.6k, VT2 SUB70N03, VD2 SBL2040CT. Диод VD3 любой быстрый от КД522 до любых импортных, которые в избытке присутствуют в непригодном компьютерном железе, только конечно не те, что стоят в выпрямителе 220в 50Гц в БП.
Теперь про трансформатор DR3. В стремлении получить максимально возможный КПД я постарался сделать его с наименьшим количеством потерь.
Во-первых сердечник: Кольцо из пресспермалоя, желтого цвета. Взято из РС БП, встречаются два типоразмера 23мм и 27мм. У 23мм при этих токах и этой частоте маловата мощность, и как следствие сердечник сильно греется, поэтому выбрано 27мм.
Во-вторых, провод: Исходя из таблицы соответствия сечения провода и токов, следует, что при 25С на ток 6А необходимо иметь провод диаметром 2мм
Индуктивность: по всем расчетам необходима от 10мкГн, а для уменьшения пульсаций на выходе, хорошо бы иметь индуктивность побольше. В результате намотано провода диметром 1.9мм сколько влезло на кольцо, приблизительно 1.5 метра, получилось индуктивность 56мкГн. В конечном итоге при нагрузке 5А, трансформатор не греется и имеется огромный запас мощности на случай подключения дополнительных устройств. Вторичная обмотка любым тонким проводом какой есть (ну естественно не стоит связываться с 0.05 или 0.08мм, просто неудобно), реально использовался провод 0.18мм. Число витков в два раза больше чем в первичной обмотке.
Дросселя DR1 и DR2 намотаны на первых попавшихся 6мм гантельках, проводом, какой был: 0.18мм до заполнения, получилось где-то 300-500мкГн.
DR2 можно заменить на резистор ом на 100, следует учесть, что в этой точке большой импульсный ток, и без должного демпфера диоды КД522, к примеру, перегорают сразу, так что дроссель — лучший выход из положения
DR4 тоже необязательно ставить, но с точки зрения уменьшения пульсаций на выходе он полезен. Как элемент, был взят первый попавшийся от PC БП с приглянувшимся по толщине стержневым сердечником и проводом..
Для защиты на все случаи жизни на входе стоит самовосстанавливающийся предохранитель на 4А.

Вопросы, как обычно, складываем .

Как вам эта статья?

Заработало ли это устройство у вас?

84 4 1
15 6 2

Power Bank Tomo T4 — доработка устройства

В прошлом году я делал обзор Power Bank Tomo T4, где рассказал о его существенных недостатках, таких как достаточно быстрый саморазряд, невозможность полного использования энергии аккумуляторов и большое паразитное падение напряжения на элементах схемы, снижающее КПД устройства. Мне удалось доработать Power Bank и полностью устранить описанные проблемы. Если вам интересны детали моей доработки, добро пожаловать под кат.
Начнем с получившихся характеристик устройства:
1. Ток потребления в выключенном состоянии – 2 мкА (было 3.5 мА).
2. Напряжение отключения устройства: 2.65 В – 2.8 В, в зависимости от нагрузки (было 3.1 В без нагрузки и 3.4 В при нагрузке 1 А).
3. Паразитное падение на элементах схемы при работе от одного аккумулятора на максимальный выходной ток – 0.15 В (было 1 В).
Так же дополнительно были сделаны следующие модификации:
1. При работе Power Bank отображает напряжение на аккумуляторах вместо выходного.
2. Выходное напряжение было поднято с 5.1 В до 5.25 В, что позволяет получать более близкие значения к 5 В под нагрузкой.
Но, к сожалению, законы физики не обманешь, поэтому пришлось пожертвовать следующим функционалом:
1. Раздельными каналами для аккумуляторов – теперь они все соединены параллельно. Т.е. если вставить в ПБ заряженные и разряженные аккумуляторы сразу, то первые будут заряжать вторые до тех пор, пока напряжение на них не выровняется.
2. Защитой от вставки аккумуляторов в обратной полярности. Теперь она есть, но при неправильном включении аккумулятора через него (и схему) идет очень большой ток, который приводит к нагреву (и, возможно, выходу из строя) аккумулятора и/или выходу из строя защитного резистора 0 Ом на плате.
Итак, рассмотрим произведенные модификации.
Первое, что я сделал – это припаял медный провод параллельно пружинам, т.к. на них было максимальное падение напряжения. Если вы совершенно не хотите модернизировать электронику устройства, но вам хочется сделать его лучше, выполните эту доработку, она даст значительный результат. Выглядит это следующим образом:
Ко второму витку, начиная от узкой стороны пружины, изнутри аккуратно припаивается медный провод подходящего сечения, который пропускается через всю пружину и подпаивается к её выводу на плате. Лучше всего использовать провод, которым подсоединяются катушки динамиков к контактам на их корпусе, но у меня такого под рукой не нашлось, поэтому я взял обычный многожильный провод – скорее всего, при частом использовании он быстро сломается и его придется заменять. Для залуживания стальной пружины отлично походит флюс ЛТИ-120, только помните, что его желательно все же потом смыть. Подпайка ко второму, а не первому витку позволяет не вносить изменений в контакт между пружиной и отрицательной клеммой аккумулятора.
Для избавления от высокого потребления в выключенном состоянии необходимо каким-либо образом разрывать питание микроконтроллера и выходного преобразователя. Самый простой вариант – это установить механический выключатель. Однако через него будет проходить весь разрядный ток (а это до 4 А), на нем (и соединительных проводах) будет падать наше драгоценное напряжение, ну и в корпусе устройства придется вырезать под него окно, что вряд ли получится сделать красиво. Также, если оставить в Power Bank четыре отдельных канала, выключатель этот должен быть счетверенным.
Поэтому было принято решение отказаться от отдельных каналов для аккумуляторов и соединить их параллельно, что позволит коммутировать только один провод. Также 4 отдельных зарядных микросхемы ТР4055 теперь оказываются соединенными параллельно и позволяют заряжать даже один аккумулятор «учетверенным» током 1600 мА. Но при вставке заряженных и разряженных аккумуляторов одновременно первые теперь будут заряжать вторые до тех пор, пока напряжение на них не выровняется. Лично у меня это дискомфорта не вызывает, т.к. на повседневной работе совсем не скажется (li-ion всегда просто соединяют параллельно там, где это необходимо).
Коммутацию силового провода было решено делать на мощном Р-канальном MOSFET’те, а управление им осуществлять с помощью отдельной схемы, использующей существующую кнопку включения устройства и какой-либо сигнал с микроконтроллера (чтобы не модифицировать корпус устройства). После более детального анализа было выяснено, что в качестве такого сигнала удобно брать сигнал включения/выключения выходного преобразователя, подающегося на его вывод 4. Когда преобразователь должен быть включен, там присутствует высокий логический уровень (2.8 В), когда преобразователь должен быть выключен, микроконтроллер подает туда логический ноль. К сожалению, для управления Р-канальным полевиком нужны обратные напряжения (низкий уровень открывает его, а высокий – закрывает), поэтому в схему управления придется включить инвертор на транзисторе. Также задачу усложняет тот факт, что найти Р-канальный полевик с низким сопротивлением канала в открытом состоянии при управлении небольшим (2.5 В) напряжением достаточно сложно. У меня были в наличии сборки Si4931DY, включающие в себя два Р-канальных транзистора с сопротивлением 22 мОм при напряжении на затворе -2.5 В, которые я и собирался использовать.
И тут я вовремя еще раз заглянул в даташит преобразователя G5177C, где обнаружил, что в режиме Stand-by он потребляет ток меньше одного микроампера! Т.е. можно осуществлять выключение только самого микроконтроллера и никак не выключать выходной преобразователь. А это означает, что можно использовать любой маломощный Р-канальный полевик с практически любым сопротивлением канала, т.к. ток потребления микроконтроллера – 10 мА. В итоге выбор пал на неизвестный smd транзистор, маркированный WA8A и выпаянный в свое время из какой-то материнской платы. То, что это Р-канальный MOSFET показал китайский транзистор-тестер, а вот найти какую-либо документацию по этому обозначению в интернете не удалось. Забегая вперед скажу, что практическая проверка показала, что данный транзистор идеально подходит для своей роли – при напряжении на затворе -2.5 В на нем падает всего только около 2 мВ при токе 10 мА.
В итоге получилась вот такая схема управления:
Открыть «силовой» транзистор Q2 можно двумя способами: с помощью кнопки Power Button, которая замыкает затвор транзистора на землю, и с помощью транзистора Q1, который открывается положительным напряжением, разрешающим работу выходного преобразователя.
Таким образом, общая логика включения устройства становится следующей: нажимается кнопка включения, открывается ключевой транзистор, питание подается на микроконтроллер. Через небольшой интервал времени (пока микроконтроллер инициализируется – кнопку в это время надо держать нажатой) микроконтроллер подает разрешающий сигнал на включение выходного преобразователя, который открывает транзистор Q1 и обеспечивает работу устройства после отпускания кнопки. Когда микроконтроллер решает отключить устройство (а это происходит, если он не обнаруживает какой-либо нагрузки на выходе), он снимает сигнал, разрешающий работу выходного преобразователя, Q1 и Q2 закрываются и микроконтроллер обесточивается. Весьма элегантное решение, позволяющее не добавлять никаких дополнительных элементов управления и не модифицировать корпус устройства.
В качестве Q1 был также использован транзистор, выпаянный из материнской платы. Им оказался PMSS3904 (маркировка W04). В качестве диодной сборки D1, защищающей затвор транзистора Q2 от возможной электростатики (которая может попасть на него через кнопку включения) была использована BAV99 (маркировка А7), тоже выпаянная из материнской платы – там она применялась для защиты data-выводов USB портов. Резисторы R5 и R3 взяты типоразмера 1206 (т.к. один был использован еще при макетировании, а через второй на печатной плате идет дорожка), остальные – 0805.
Для данных компонентов в программе DipTrace (которая бесплатна для радиолюбителей) была разработана печатная плата размером 17.6 х 12.7 мм (толщина дорожки: 0.4/0.4 мм):
Затем плата была изготовлена методом фоторезиста. Лично для меня метод пленочного фоторезиста оказался значительно проще и более повторяем, чем ЛУТ. Процесс состоит из следующих шагов – печатаю негатив платы на прозрачной пленке Lomond для лазерных принтеров (т.к. принтер покупал изначально для ЛУТ, поэтому лазерный), наношу фоторезист Ordyl Alpha 350 на заранее подготовленную (очищенную) плату, накладываю распечатанный рисунок и экспонирую УФ лампой Black Light формата КЛЛ мощностью 30 Вт с расстояния 15 – 20 см в течение 2-х минут. Преимуществом негативного фоторезиста является то, что защищенные от УФ излучения места платы смываются щелочным раствором, а незащищенные остаются. Таким образом, если принтер оставит небольшие непропечатанные точки на заливке между дорожек, они скорее всего смоются и плату не придется даже корректировать перед травлением. А при таких относительно «толстых» дорожках проблем не возникает вообще. Результат можно видеть на следующей фотографии:
Собранная плата выглядит так:
На фото видно, насколько у платы кривые края – при размере 17.6 х 12.7 мм выпилить её ровно электролобзиком из куска гетинакса – весьма непростая задача, особенно если хочется сделать это быстро, т.к. на часах 23:00. Хорошо, что это не скажется на её эксплуатационных характеристиках 🙂
Все дальнейшие модификации производятся на плате Tomo T4. Детали на плате пронумерованы, поэтому я буду ссылаться на их обозначенные номера. Внешний вид оригинальной платы:
Первым делом выпаиваются транзисторные сборки Q5, Q6, операционные усилители U9, U10, резисторы R13, R15 – R20 (R14 оставляем), R53, R54. Резисторы R13 – R20 представляют собой делители напряжения на 2, с которых микроконтроллер получает информацию о напряжении на каждом аккумуляторе. Именно за счет них он определяет, что аккумуляторы разрядились и выключает устройство. Поскольку каналы было решено объединить в один, эти входы также надо соединить, а делитель напряжения изменить так, чтобы МК отключал устройство при напряжение пониже, чем 3.1 В, чтобы обеспечить более полный разряд аккумуляторов. К счастью МК использует эти входы только для определения степени разряда аккумуляторов, а контроль заряда он отдает ТР4055.
Оставив нижний резистор делителя без изменений (33 КОм), я подобрал, что сопротивление верхнего резистора должно быть 24 КОм, чтобы МК выключал устройство при 2.7 В. А чтобы ток через делитель не разряжал аккумуляторы, когда устройство выключено, делитель необходимо также подключать после ключевого транзистора (т.е. к тому месту, откуда берет напряжение стабилизатор питания микроконтроллера). Поэтому целесообразно поместить этот резистор на дополнительной плате – по схеме это R5, подключенный к контакту «Measure».
Далее необходимо выпаять предохранитель F1 (так как на нем тоже падает достаточно большое напряжение) и заменить его перемычкой. После этого роль предохранителей будут играть резисторы R61 – R64 сопротивлением 0 Ом. Кстати говоря, видел фотографию предыдущих версий ПБ от Tomo, там этого предохранителя нет вообще.
Также необходимо выпаять диод D2, через который входное напряжение подается на выходной преобразователь. Общая идея этого схемного решения такая – если на Power Bank подать внешнее питание, то оно через диод D2 поступит на общую точку соединения аккумуляторов (после выхода схем балансировки каналов) и, если оно окажется выше напряжения аккумуляторов, то схемы балансировки закроются и питаться выходной преобразователь будет только от входного напряжения. Это позволяет использовать Power Bank как «бесперебойник» — если есть входное напряжение, преобразователь работает от него, аккумуляторы не разряжаются. Если входное напряжение исчезает, преобразователь продолжает работать на аккумуляторах. На практике же реализация от Tomo имеет два существенных недостатка. Во-первых, перед диодом стоит резистор R66 сопротивлением 0.5 Ома, поэтому напряжение после диода не может достичь какого-либо серьезного значения даже при небольшой нагрузке. Допустим, преобразователь потребляет 1 А, тогда на диоде будет падать 0.8 В, на резисторе – 0.5 В и еще где-то 0.5 В на входной схеме и кабеле. Т.е. на выходе будет только 3.6 В. Это означает, что пока напряжение на аккумуляторах не снизится до 3.6 + 0.15 (падение на схеме балансировки каналов) = 3.75 В, преобразователь будет продолжать питаться от них. А что такое 3.75 В? Это напряжение аккумуляторов, которые уже наполовину разряжены. Но самое веселое то, что производитель выбрал резистор R66 настолько маленького типоразмера (и, соответственно, мощности), что при токе чуть более 1 А он нагревается так, что сам выпаивается из платы.
Второй существенный недостаток данного решения заключается в том, что если вставить в устройство разряженные аккумуляторы и одновременно подключить нагрузку, устройство будет пытаться заряжать аккумуляторы (ток до 1.6 А) и питать выходной преобразователь от внешнего источника (+1 А), что даст суммарный ток потребления 2.6 А и больше. Такой ток выдержит далеко не каждый USB порт. Кто-то может назвать это преимуществом, но я склонен считать недостатком, т.к. USB-источников с током более 2А почти не встречал.
Но диод D2 надо выпаивать не из-за описанных проблем. Поскольку я отказался от схемы балансировки каналов, если этот диод оставить, при подаче внешнего питания аккумуляторы будут неконтролируемо заряжаться через него. Кстати, без диода мы все равно не лишаемся функции «бесперебойника» – ведь четыре ТР4055 будут пытаться заряжать аккумуляторы суммарным током до 1.6 А. Вот этот ток может пойти как на заряд аккумуляторов, так и на питание выходного преобразователя, в зависимости от тока потребления и степени разряда аккумуляторов. Только теперь устройство не сможет потреблять более 1.6 А ни при каких условиях (ну, ладно, я наблюдал потребление по 450 мА на ТР4055, что дает 1.8 А в сумме), что гарантирует лучшую совместимость с USB-источниками питания.
Теперь необходимо соединить параллельно все 4 аккумулятора. Делается это после резисторов R61 – R64 сопротивлением 0 Ом (которые служат в данной схеме предохранителями) и подключить получившуюся точку к «выходу» выпаянного ключа Q5 (вывод 1).
Следующее изменение, которое я сделал – это отключил от МК управление зарядом аккумуляторов, предоставив этот процесс полностью ТР4055. Для этого резисторы R3 – R6 выпаиваются из платы и напаиваются сверху на микросхемы U1 – U4 между выводами 2 и 5. Если этого не сделать, по окончанию заряда аккумуляторов (когда об этом сигнализирует ТР4055), МК выключает зарядку, а через несколько секунд включает её снова. ТР4055 снова сигнализирует о том, что аккумуляторы заряжены, МК выключает зарядку и процесс повторяется. Теперь за заряд будет отвечать только ТР4055, которая вполне неплохо справляется с полным циклом заряда и сама.
Далее я решил сделать, чтобы Power Bank при работе на нагрузку отображал не выходное напряжение преобразователя (которое очень неплохо держится на уровне 5.1 В), а напряжение на аккумуляторах, т.к. это намного более информативно. Для этого я разорвал дорожку от правого (по фото печатной платы) вывода резистора R25 и подключил резистор к входу стабилизатора питания МК U5. К счастью, МК использует эту информацию только для отображения на экране, и модификация никак не повлияла на работу устройства.
После этого я впаял недостающие конденсаторы С23 — С25 (взял 10 мкФ типоразмера 1206), параллельно С23 припаял защитный диод Шоттки (в обратную сторону, катодом к плюсу питания), а сверху на R41 и R42 напаял корректирующие резисторы 1.2 и 2.4 Ома, чтобы устройство показывало выходной ток более точно (номиналы подобрал опытным путем). Также сверху на R52 припаял резистор сопротивлением 75 КОм, чтобы поднять выходное напряжение преобразователя на 0.15 В. Это позволяет получить на выходе значения более близкие к 5 В даже при больших токах нагрузки. Для повышения стабильности работы МК также припаял конденсатор 10 мкФ типоразмера 0805 параллельно его питанию (параллельно конденсатору С15).
Теперь пришло время для установки и подключения дополнительной платы. Место под неё есть только с обратной стороны платы устройства, в небольшом отсеке между пружинами и задней стенкой корпуса. Для закрепления платы я изогнул одножильный медный провод подходящего диаметра в форму буквы Т, после чего припаял плоскую грань к нижней дорожке (общий провод) разработанной платы. Оставшийся торчащий провод я припаял к контакту крайней пружины (в корпусе пришлось вырезать проем для этого провода). Для подключения проводов к плате я рассверлил небольшое отверстие около USB разъемов до подходящего диаметра, чтобы через него можно было вывести провода на другую сторону платы. На фото это выглядит так:
Также тут виден провод, которые идет от дополнительной платы к кнопке управления (единственный провод, который подключается с этой стороны платы). Теперь еще две поясняющих фотографии. Детали, которые необходимо выпаять из основной платы:
Точки, которые необходимо соединить (синие линии), дорожки, которые необходимо перерезать (красные крестики) и точки подключения дополнительной платы (желтые стрелки):
В результате должно получиться нечто похожее на это:
Проверяем. Питание от внешнего блока, ток нагрузки – 2А. При 2.8 В – уверенная работа в течение долгого времени. Неплохо:
Собираем устройство и еще раз проверяем. Теперь уже от аккумуляторов:

Выводы

Для меня цель доработки достигнута полностью – устройство обеспечивает достойный разряд аккумуляторов (до 2.7 В) и отличный ток покоя в выключенном состоянии – 2 мкА (кстати, половина идет через защитный диод Шоттки). Также индикация стала более информативной, а ток заряда – независящим от количества аккумуляторов.
Стал бы я покупать сейчас данное устройство, если бы знал все это? Скорее всего, все равно нет. На доработку было потрачено достаточно много времени, на мой взгляд, лучше поискать более качественное готовое решение, пусть оно и будет несколько дороже. Тем не менее, сейчас у меня появился Power Bank, готовый дать моим старым 18650 «вторую жизнь» — по тестам в них около 1 Ач при разряде током 1 А, т.е. используя таких 4 штуки можно будет один раз зарядить телефон.
p.s. поздравляю всех с Новым Годом!

admin

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Наверх