Электрификация

Справочник домашнего мастера

Питание 6 вольт

Блок питания на низкие напряжения — 1.5, 1.8, 2.5 И 3.3 В

В этой статье мы рассмотрим простой, регулируемый низковольтный блок питания. Этот источник питания имеет переключатель для 4-х значений выходов: 1.5 В, 1.8 В, 2.5 В и 3.3 вольта. Такое напряжение питания нужно для устройств с низким вольтажом — микроконтроллеры, радиоприемники, электронные датчики, карманные плееры. И другие девайсы, которым нужно 1-2 батарейки АА (при домашнем использовании). Выбранные величины питания 1.8 В, 2.5 В И 3.3 В совместимы с большинством LVTTL/LVCMOS устройств. Кроме этого, здесь присутствует и 1.5 В, потому что есть немало схем и приборов под этот уровень напряжения.

Схема низковольтного БП



Этот блок питания основан на микросхемах LM1117 — миниатюрный регулятор напряжения серии AMS1117 и для этой конструкции мы используем AMS1117-1.5, AMS111-1.8, AMS1117-2.5 и AMS1117-3.3: фиксированные регуляторы напряжения. Кроме выше указанных регуляторов, эту схему можно использовать с AMS1117-2.85 и AMS1117-5.0.

Для питания от сети 220 В берём понижающий трансформатор 6 В (1 А). Все схемы подключения к трансформатору и поворотный переключатель снабжены схемы.

Данная конструкция задумывалась в виде отдельного корпуса, хотя можно применив малогабаритные компоненты встроить её в корпус сетевого адаптера. Рисунки печатной платы этого блока питания можно посмотреть ниже.

Низковольтный блок питания радиоприемника

Предлагается электронный БП, для питания 6-ти вольтового (4 пальчиковых батарейки) радиоприемника от одной батарейки напряжением 1,5 вольта.

Предлагаемый блок питания (БП) радиоприемника изготовлен на базе низковольтного преобразователя напряжения 1,5 … 6,0 вольт и предназначен для питания маломощных бытовых устройств (в частности, радиоприемника) от одной пальчиковой батарейкинапряжением 1,5 вольта.

Инвертор имеет хорошие выходные данные с минимумом входящих элементов.

Фото 2 Внешний вид кассеты питания радиоприемника до доработки.

Инструмент

Фото 3 Инструмент

Схемапреобразователя напряжения

Фото 4Схемапреобразователя напряжения 1,5в – 6,0в

На транзисторах VT1 и VT2 собран двухтактный высокочастотный генератор импульсов (блок А1) на базе схемы А.Чаплыгина, «Радио 11.2001г., стр.42». Ток положительной обратной связи протекает через вторичные обмотки трансформатора Т1 и нагрузку, подключенную между цепью +6в и общим проводом. За генератором импульсов следуют узлы стабилизации, регулировки и фильтрации выходного напряжения.

Преимущества устройства

  • Вместо выпрямителя ВЧ напряжения используются база-эмиттерные переходы транзисторов самого генератора, что позволяет исключить блок выпрямителя устройства.

  • Величина тока базы пропорциональна величине тока в нагрузке, что делает преобразователь весьма экономичным.

  • За счет пропорционального токового управления транзисторами уменьшены потери на их переключение и повышен КПД преобразователя до 80% .

  • При уменьшении нагрузки до нуля происходит срыв колебаний генератора, что автоматически может решить проблему управления питанием.

  • Ток от батареи, при отсутствии нагрузки, практически не потребляется. Преобразователь, будет сам включаться тогда, когда от него потребуется что-то запитать и выключаться, когда нагрузка будет отключена.

Изготовление трансформатора для генератора импульсов преобразователя

Магнитопроводом трансформатора Т1 генератора импульсов, служит кольцо К10х5х2 из феррита 2000НМ (Фото 5). Можно взять кольцо из старой материнской платы.

Шаг 1. Перед намоткой трансформатора подготовить ферритовое кольцо. Для того чтобы намоточный провод не повредил свою изоляцию, притупить острые кромки кольца мелкозернистой шкуркой или надфилем.

Фото 5 Кольцо ферритовое и лента фторопластовая

Шаг 2. Намотать изоляционную прокладку на кольцо для исключения повреждения изоляции провода (Фото 6). Для этого можно использовать кальку, лавсановую или фторопластовую ленту.

Фото 6 Изоляция кольца

Шаг 3. Намотать обмотки трансформатора: первичные обмотки (I и II) – 2 х 4 витка, вторичные обмотки (III и IV) – 2 х 25 витков изолированного провода марок ПЭВ, ПЭТВ, диаметром 0,15-0,30 мм. Также можно применить провод марок ПЭЛШО, МГТФ (Фото 7,9) или другой изолированный провод. Это приведет к образованию второго слоя обмотки, но обеспечит надежную работу преобразователя напряжения.

Каждую пару обмоток наматывают сложенным вдвое проводом (Фото 7).

Фото 7 Намоткатрансформатора

Вначале мотаются вторичные обмотки lll и lV (2 х 25 витков) — (Фото 8).

Фото 8 Вид вторичных обмотоктрансформатора III и IV

Затем, так же в два провода, мотаются первичные обмотки l и ll (2 х 4 витка).

В итоге, у каждой из двойных обмоток будет 4 провода — по два с каждой стороны обмотки (Фото 9).

Фото 9 Видтрансформатора после намотки

При намотке всех катушек нужно строго соблюдать одно направление обмотки и отмечать начало и конец обмоток. При несоблюдении этих условий генератор не запустится.

Начало каждой обмотки помечено на схеме точкой у вывода. Чтобы не возникало путаницы, можно принять за начало всех обмоток провода выходящие снизу, а за конец всех обмоток — выводы сверху.

Шаг 4. Соединяем пайкой провод конца обмотки (III) и провод начала обмотки (IV). Получается вторичная катушка трансформатора Т1 с центральным выводом. Аналогично поступаем с обмотками l и ll первичной катушки.

Сборка преобразователя напряжения

Для работы в преобразователях небольшой мощности, как в нашем случае, подойдут транзисторы ВС548В, А562, КТ208, КТ209, КТ501, МП20, МП21.

Транзисторы следует выбирать, ориентируясь на допустимые значения тока базы транзистора (он должен превышать ток нагрузки) и обратного напряжения эмиттер-база (оно должно превышать выходное напряжение преобразователя).

Преобразователь собираем согласно схеме, на универсальной монтажной плате (Фото 10). Вход, выход и общая шина преобразователя выведены гибким многожильным проводом.

Фото 10 Преобразователь 1,5 – 6,0 вольт.

Фото 11 Преобразователь (вид сбоку)

Плата преобразователя и элемент питания АА (1,5в) установлены в батарейный отсек радиоприемника.

Фото 12 Размещение преобразователя с элементом питания в приемнике

Настройка преобразователя.

Проверяем правильность сборки преобразователя, подключаем батарею и проверяем прибором наличие и величину напряжения на выходе генератора (+8в) и (+6в) у преобразователя БП.

Фото 13 Тест преобразователя

Если генерация не возникает и напряжение на выходе генератора отсутствует, проверьте правильность подключения всех катушек и поменяйте местами концы одной из катушек трансформатора Т1.

Преобразователь способен работать и при уменьшении входного напряжения батарейки до 1,0 – 1,2 вольта.

Фото 14 Используемая при испытаниях батарейка.

Подготовил: Смирнов И.К.

РЕМОНТ РАДИОТОЧКИ

В наш век, когда передовые цифровые технологии достигли невероятного размаха — интернет, мобильники, спутниковое телевидение, не стоит забывать и про старую добрую советскую технику, которая хоть и не может похвастаться таким функционалом, зато по надёжности, сроку службы и эксплуатации уделает любой айфон в 10 раз! Люди старшего поколения не ведутся на новомодные игрушки, а по старинке пользуются простыми девайсами: дисковым телефоном, трансляционным радиоприёмником… О последнем и пойдёт здесь речь. Соседка пенсионерка принесла на ремонт трёхпрограммную радиоточку Закарпатье ПТ-301, которая случайно свалилась со стола и перестала работать. Помочь уважаемому человеку дело благородное, поэтому сразу отправляюсь на ремонт.

Наша промышленность выпускала несколько десятков моделей похожих радиоточек. Все их схемы и конструктивные особенности довольно стандартны. Во всех моделях имеется 3-х кнопочный переключатель программ с зависимой фиксацией. Установлены три регулятора чувствительности программ на переменных резисторах. В большинстве моделей трёхпрограммных радиоточек есть маломощный блок питания на напряжение до 9 В, выполненный на трансформаторе со средним выводом вторичной обмотки и выпрямитель по двухфазной схеме на двух диодах типа КД105Д. Если в УНЧ применен усилитель типа К157, то выпрямитель двухполярный на диодном мосте типа КЦ402Б или 4-х КД105. Для фильтрации выпрямленного напряжения установлены электролитические конденсаторы небольшой емкости (имеет смысл увеличить).

Для звукоизлучения применены широкополосные динамические громкоговорители типа 1ГД-52 с мощностью 1 Вт. Было бы лучше заменить их динамическим громкоговорителем мощностью в 2…3 Вт с аналогичными размерами, но имеющим больший рабочий диапазон. Например громкоговорителем 3ГДШ-38Е с рабочим диапазоном 80…12500 Гц, который применялся в лампово-полупроводниковых телевизорах серии «Электрон”, но я немного отвлёкся — по привычке потянуло на HI-FI.

Учитывая падение приёмника, наиболее вероятный дефект — обрыв где-то чего-то. Прозваниваю мультиметром контакты вилки радиолинии — глухарь. Буду вскрывать корпус и мерять уже внутри.

Прозвонка провода линии показала норму, регулятор громкоти исправен, динамик тоже рабочий, а вот развязывающий трансформатор ТПТ-1 даёт проводимость только на вторичке. Первичная обмотка, подключаемая к радиосети не звонится. Как и предполагалось имеется обрыв тонкого провода 0,15мм при его падении и встряске.

Обрыв естественно возле ножки (2), которым трансформатор паяется на плату. Внимательное изучение с увеличительным стеклом это подтвердило. Теперь есть два варианта: заменить его на аналогичный (попробуй найди) или ремонтировать этот. Иду по второму пути. Аккуратно надрываю внешнюю картонную изоляцию трансформатора и тонкой иглой отгибаю оторванный от ножки проводок. Залуживаю на пару миллиметров и паяю его к куску полумиллимитрового провода, припаянного к плате с другой стороны. Для жесткости и надёжности можно залить термоклеем.

Вот и всё. Теперь прозвонка вилки показала сопротивление 860 Ом, что является нормой. Включаем в радиолинию — всё работает. На ремонт радиоточки понадобилось пол часа работы. Денег конечно брать не стал, а вот от чая с яблочными пирожками не отказался.
Форум по ремонту

Обсудить статью РЕМОНТ РАДИОТОЧКИ

Стабильный источник высокого напряжения для питания ФЭУ

Применение фотоэлектронного умножителя — это очень простой способ получить высочайшую чувствительность фотоприемника, вплоть до регистрации единичных фотонов при прекрасном быстродействии. А учитывая массу ФЭУ, выпущенных в СССР и до сих пор лежащих на складах, это еще и относительно недорого (современные «фирменные» ФЭУ все-таки неприлично дороги для любительского применения). Но для питания фотоэлектронного умножителя нужен источник напряжения в 1-3 киловольта, и притом очень стабильный.
Дело в том, что чувствительность ФЭУ зависит от анодного напряжения экспоненциально и очень резко: она увеличивается в 10 раз при увеличении напряжения на 80-300 В, в зависимости от типа ФЭУ. И если нужно обеспечить стабильность усиления на уровне процента, для некоторых ФЭУ необходимо, чтобы напряжение не менялось больше, чем на 0,1-0,3 В!
В данной статье я привожу схему источника высокого напряжения для ФЭУ, который хорошо зарекомендовал себя в лабораторных условиях. Он обеспечивает выходное напряжение от нескольких сотен до 1500 В при выходном токе до 1 мА и стабильности не хуже 0,2 В за час при неизменном потребляемом токе после прогрева. Несложная переделка увеличивает верхний предел напряжения до 3 кВ, правда, ценой меньшей стабильности.

Схема

Основой источника является двухтактный инвертор, работающий на трансформатор для CCFL-ламп. Инвертор выполнен на основе отечественной микросхемы для ЭПРА — КФ1211ЕУ1. Равных этой микросхеме мне в продаже найти не удалось: она может управлять затворами полевых транзисторов непосредственно и для работы ей нужно лишь два внешних элемента (времязадающие резистор и конденсатор), при этом она штатно работает от 5 В и стоит недорого. К сожалению, НПО «Дельта» давно не производит эту микросхему, но она до сих пор есть в продаже и добыть ее не составляет труда. Никаких средств регулирования коэффициента заполнения у этой микросхемы нет, но нам это не нужно — регулирование выходного напряжения осуществляется изменением напряжения питания выходного каскада инвертора. Ключевым элементом является сдвоенный n-МОП-транзистор VT1 типа IRF7341. Резисторы R2 и R3 ограничивают броски тока при перезарядке емкостей затворов.
Инвертор работает на частоте 40 кГц. Опытным путем установлено, что на этой частоте примененный трансформатор работает лучше всего и имеет наилучший КПД. Частота эта задается цепочкой R1C1.

Трансформатор я использовал из серии TMS91429CT, имеющий две одинаковые первичные и две одинаковые изолированные друг от друга вторичные обмотки. Это дает возможность исключить умножитель напряжения с большими потерями, заменив его двумя однотактными выпрямителями, выходные напряжения которых складываются, образуя не совсем обычный на вид, но по сути такой же двухтактный выпрямитель. Нарисованная на схеме конфигурация работает с данным трансформатором несколько лучше, чем классическая «с отводом от середины». Если нужны более высокие напряжения, в каждой из «половинок» можно собрать удвоитель.
Резистор R8 и конденсатор C9 образуют фильтр, уменьшающий пульсации высокого напряжения. Резистор R10 снижает опасность смертельного поражения электрическим током: несмотря на то, что сила постоянного тока, вырабатываемого данным источником, не представляет никакой серьезной опасности, энергия, запасаемая в конденсаторе C9 вполне достаточна для того, чтобы убить, и ограничение пикового тока его разряда до ~ 60 мА при максимальном напряжении эту возможность снижает (при кратковременном — сотые доли секунды — воздействии такой ток обычно не является смертельным). Вместе с тем, при токе 1 мА на этом резисторе падает 22 В, что, скорее всего, недопустимо. Поэтому если нужны токи больше сотни микроампер, его придется убрать, но в этом случае — помнить, что выходное напряжение источника — смертельно опасно. С резистором R10, впрочем, тоже, но опасность не столь высока.
Выходное напряжение, поделенное делителем R7R9 в 500 раз, подается на вход усилителя ошибки на ОУ DA1.2. На второй его вход подается опорное напряжение (через повторитель на DA1.1), которое задает выходное напряжение, которое в соответствии с коэффициентом деления делителя R7R9 будет в 500 раз больше (например, при опорном напряжении 3 В выходное составит 1,5 кВ). Коэффициент усиления усилителя ошибки подобран экспериментально. Его увеличение повышает точность стабилизации, но снижает устойчивость. Конденсатор C8 компенсирует задержку в петле обратной связи и обеспечивает устойчивость регулирования. Соотношение коэффициента усиления усилителя ошибки и постоянной времени цепи R6C8 — вопрос компромисса между точностью поддержания выходного напряжения и временем его установления.
Выходное напряжение усилителя ошибки подается на регулирующий элемент — p-МОП транзистор VT2. Транзистор полностью закрыт, когда напряжение на выходе DA1.2 близко к напряжению питания (то есть если высокое напряжение сильно превышает заданное), и полностью открывается при снижении его до нуля (при сильно заниженном высоком напряжении), что обеспечивает его поддержание на уровне несколько выше опорного напряжения, помноженного на коэффициент деления. Далеко не все МОП-транзисторы хорошо работают в линейном режиме, и указанный на схеме делает это вполне приемлемо. Резистор R4 предотвращает неустойчивость ОУ при работе на емкостную нагрузку, которой является затвор транзистора.
В качестве источника опорного напряжения может быть использован многооборотный потенциометр, питающийся от стабилизированного источника напряжения, но при повышенных требованиях к стабильности его может оказаться недостаточно, так как даже самые лучшие из таких переменных резисторов в той или иной степени «шумят», хаотически меняя сопротивление в небольших пределах, даже если ручку регулировки не трогают. Для ее повышения желательно ограничить диапазон плавной перестройки до 100-200 В и ввести переключатель для дискретной грубой установки напряжения. Другой вариант — сделать цифровой ИОН на основе какого-нибудь ЦАП.
Данная схема выдает высокое напряжение положительного знака. Для питания ФЭУ удобно использовать отрицательное напряжение питания с заземленным анодом. Для этого схему придется скорректировать — во-первых, изменив полярности диодов в высоковольтной части. Во-вторых, придется ввести в схему еще один операционный усилитель. Вместо делителя R9R7 у нас появляется инвертирующий усилитель с коэффициентом усиления минус 1/500 на ОУ DA2, и резисторы R9 и R7 оказываются в его цепи ООС.
Чтобы получить 3 киловольта, придется заменить выпрямители во вторичных цепях на удвоители напряжения и увеличить R9 до 100 МОм. Стабильность при этом ухудшится примерно в те же два раза.

Компоненты и монтаж

В низковольтных и слаботочных цепях можно использовать конденсаторы и резисторы типоразмера 0805 или даже 0603. Конденсатор C2 — танталовый. Конденсатор С4 — пленочный, так как через него протекает заметный импульсный ток и керамический SMD конденсатор здесь будет греться и быстро выйдет из строя.
Со стороны высокого напряжения необходимо монтировать все цепи переменного тока настолько короткими соединениями, насколько возможно, так как иначе они сильно излучают (однако, не забывая соблюдать изоляционные зазоры). Диоды набраны каждый из двух последовательно соединенных диодов на 1000 В. В связи с отсутствием в магазинах быстрых диодов на 1000 В в SMD-исполнении применены выводные диоды HER1008, установленные по два последовательно. Для уменьшения длины выводов они загнуты под корпус диода и обрезаны, и таким образом, диод переделан в SMD. При этом анод одного диода в паре спаивается с катодом второго непосредственно и максимально близко к выходу вывода из корпуса, а не через печатный проводник. Конденсаторы С6 и С7 также набраны из четырех конденсаторов 0,015 мкФ х 1000 В типоразмера 1812, соединенных последовательно-параллельно и спаянных «этажеркой» друг на друге. Конденсатор C9 произвольного типа — я использовал батарею из отечественных К15-4, для надежности залитую компаундом.
Резистор R8 — типоразмера 2512. R10 набран из десяти таких резисторов, соединенных последовательно на отдельной маленькой плате и залитых изоляционным компаундом. Аналогично можно поступить и с R9, либо применить резистор серии FHV-100. А совсем идеально поставить делитель фирмы Caddock серии THV10. От термостабильности данного резистора (а он нагревается проходящим через него током) зависит дрейф напряжения. Теплоизоляция его, увеличивая время установления стабильного напряжения, тем не менее, резко уменьшает его хаотичные колебания, поэтому настоятельно рекомендуется. Также при монтаже следует обратить внимание на возможные пути утечки, которые также резко снизят стабильность. На печатной плате следует предусмотреть прорези и окна, отделяющие высоковольтные цепи от низковольтных и между близко расположенными проводниками с резко различающимися потенциалами. И не жалейте спирта — малейшая влага, следы канифоли или палтцев — и напряжение будет скакать, как дикий мустанг. Само собой разумеется, что вся высоковольтная часть должна быть залита компаундом, так как иначе зазоры пришлось бы делать очень большими. А большие зазоры — это большая длина проводников и сильное излучение. При работе первоначального макета, где я использовал конденсаторы К78-1, выводные диоды со слегка укороченными выводами и зазоры, рекомендуемые при печатном монтаже на воздухе — на холостом ходу схема потребляла почти 200 мА при 1500 В, а неонка горела в 10 см от конструкции. Невозможно было даже посмотреть форму напряжения на первичных обмотках трансформатора — на щуп осциллографа наводилась помеха размахом под сотню вольт. Ни о каком практическом использовании столь сильно излучающей помехи схемы не могло идти речи. После перехода на SMD и максимально компактный монтаж (потребовавший заливки — на воздухе все тут же пробивается), потребляемый на холостом ходу ток упал до пары десятков миллиампер, а неоновая лампочка горела только вплотную к обмотке трансформатора. Разумеется, готовый прибор нужно поместить в металлический корпус, снабженный хорошим высоковольтным разъемом (например, типа LEMO).

Разводка печатной платы (свою не привожу, так как она оказалась не слишком удачной и в финальной конструкции покрылась, как плесенью, очагами навесного монтажа, исправляющего ошибки первоначального замысла) должна быть сделана с учетом того, что VT2 греется и отводит тепло через выводы (рассеиваемая мощность может достигать 2 Вт). VT1 остается при работе практически холодным. Кроме того, уделите внимание земле, особенно в окрестностях ключевых транзисторов. Последние вместе с DD1 удобно разместить под брюхом трансформатора, вокруг которого можно отделить земляной полигон зазором, соединив его с остальной землей в единственной точке около разъема питания.
И о заменах. Трансформатор может быть заменен практически любым аналогичным трансформатором с такой же конфигурацией обмоток (то есть две одинаковые первичные обмотки и две раздельные высоковольтные) и такой же габаритной мощностью, при этом может потребоваться подбор частоты коммутации и емкости конденсатора C4. Транзисторную сборку VT1 можно заменить на аналогичные отдельные n-МОП транзисторы с напряжением исток-сток не менее 20 В и током стока не менее 3 А, способные работать с 5 В на затворе. VT2 заменять нежелательно.

Немного о безопасности

Как я уже говорил, данный прибор смертельно опасен для жизни. Несмотря на то, что ток в несколько миллиампер, обеспечиваемый данным устройством, не опасен даже при прохождении по пути «язык-рука», разряд емкости на выходе, пусть не гарантированно убьет, но вполне может это сделать, так как ток при этом достигает нескольких ампер (!), а энергия разряда при максимальном напряжении составляет около 0,1 Дж, чего вполне достаточно для вызывания фибрилляции желудочков в уязвимую фазу. Так что будьте осторожны — особенно в процессе наладки. На это время рекомендую заменить конденсатор С9 на менее емкий.
Рисунок 1 — Низковольтный источник питания

Чтобы уменьшить тепловыделение на стабилизаторе, применена микросхема интегрального стабилизатора работающая при малом падении напряжения (1,1 В) между входом и выходом КР142ЕН22

Управление работой БП осуществляется при помощи двух кнопок SB1, SB2. Кратковременное нажатие на SB1 подает питание на первичную обмотку трансформатора. При этом, за счет тока через резистор R7 и светодиод оптронного ключа VS1, он срабатывает, и цепь кнопки SB1 блокируется. Свечение светодиода HL1 будет напоминать, что источник подключен к сети. В этом состоянии схема будет находиться до того момента, пока не нажмем вторую кнопку SB2 или же не откроется транзистор VT1. Для срабатывания транзистора необходимо, чтобы напряжение на R3 превысило 0,6 В, что происходит при выходном токе выше заданной этим резистором величины.

При правильном монтаже схема начинает работать сразу и требует только установки выходного напряжения 2,8…2,9 В резистором R6, а при помощи R3 — тока срабатывания защиты.

Регулировку тока срабатывания защиты удобнее выполнять при подключенном к выходу стабилизатора переменном резисторе около 50 Ом (эквиваленте нагрузки), соединенным последовательно с амперметром. Этим резистором устанавливаем ток в цепи нагрузки, при котором должна сработать защита, и подстройкой R3 добиваемся выключения источника питания (светодиод HL1 гаснет).

Диоды VD1…VD4 подойдут любые малогабаритные, у которых допустимый прямой ток не меньше 1 А. Светодиод лучше использовать из серии КИПД. Транзистор может применяться с аналогичной проводимостью любого типа, но с большим коэффициентом усиления. Оптронный ключ VS1 можно заменить на 5П19Т1.

Трансформатор унифицированный из серии ТП121-2-6 В и потом доработал: он имеет удобную конструкцию (легкий доступ для удаления лишних витков с вторичной обмотки — это можно сделать, не разбирая железо). Конструкция трансформатора предусматривает его установку прямо на плату.

По материалом книги «Полезные схемы» И.П. Шелестов

tibirium ›
Блог ›
Самодельный импульсный блок питания с регулировкой напряжения и тока.

Такой тип источников питания ещё называют лабораторными, и не зря!Он подойдет не только для питания различных устройств, но и как универсальное зарядное устройство для абсолютно любых аккумуляторов.

Как мне кажется блок питания мега простой и отлично подойдет для начинающего радиолюбителя.Блок питания может быть построен на различные диапазоны напряжения и тока все зависит от конкретных задач.Сегодня мы рассмотрим блок питания на самый популярный диапазон 0-30 вольт/0-10 амер. Выбор такого диапазона также обусловлен применением китайского вольтамперметра с диапазоном по току до 10а.
Условно блок питания можно разделить на 3 части:

1 Внутренний источник питания.

Представляет из себя любой компактный источник напряжение 12 вольт и током не менее 300 мА.Предназначен для питания шим контроллера, вентилятора охлаждения и вольтамперметра.Можно использовать абсолютно любой адаптер на 12 вольт. Рассказывать как собрать такой в этой статье не буду, будем использовать готовый AC-DC преобразователь с китая вот такого типа:

2 Модуль управления.

Представляет из себя микросхему TL494 c небольшим драйвером на 4-х транзисторах:

Благодаря использованию встроенных операционных усилителей обвязка TL494 получается очень простая, такое включение широко распространено у радиолюбителей.Резистором R4 задаём желаемое максимальное напряжение, R2- ток.R11 и R12 для удобства могут быть многооборотные, но я использую обычные.
При использовании ЛУТ плату управления я как правило собираю на отдельной платке:

3 Силовая часть.
Основную часть компонентов можно использовать из старого компьютерного блока питания, главное чтобы он был соответствующей топологии.

Входной фильтр, выпрямитель, конденсаторы из компьютерного блока питания.
Начинающего радиолюбителя может испугать трансформатор управления силовыми ключами, его придётся изготовить самостоятельно.Но не спешите с выводами, уверяю вас сделать его очень просто.
Понадобится ферритовое колечко R16*10*4.5 и три отрезка по 1 метру провода МГТФ 0.07кв.мм. Просто наматываем на кольце 30 витков в 3 провода.

Дроссель L1 мотается на ферритовом кольце из того же компьютерного бп, предварительно сматываем с него все обмотки и наматываем медный провод длинной 1.5-2м сечением 2мм, это позволит уложится в указанные параметры(это для тех у кого нечем промерять индуктивность).
Также в большинстве нормальных компьютерных бп есть второй дроссель на ферритовом стержне, его в большинстве случаев можно оставить как есть в качестве L2.
Силовой трансформатор тоже можно использовать как есть, но тогда выходное напряжение будет около 20 вольт.Для 30 вольт вторичную обмотку придется перемотать.
Когда мне нужно снять большие токи я предпочитаю использовать ферритовые кольца.
Расчет для нашего блока питания 30 вольт 10 ампер.Трансформатор-донор из компьютерного бп оказался 39/20/12:
Все основные компоненты размещаются на пп стандартных размеров под корпус компьютерного блока питания:
Кстати после сборки платы управления и намотки трансформатора GDT их можно проверить даже если у вас нет осциллографа.

При отсутствии ошибок при монтаже и исправных компонентах схема практически не нуждается в настройке.
Для управления вентилятором я как правило использую схему управление по температуре на lm317
или термостаты KCD 9700.Иногда и то и другое сразу.

Лицевая панель нарисована в frontdesigner 3.0 и распечатана на самоклеящейся фотобумаге, затем заламинирована самоклеящаяся пленкой для учебников и книг(есть в любом офис маге).

Вот и корпус будущего бп уже практически готов:

Необходимые файлы для повторения

admin

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Наверх