Электрификация

Справочник домашнего мастера

Опреснитель морской воды

Содержание

Как можно из морской воды сделать пресную — варианты с описанием

Люди давно придумали, как опреснить морскую воду в отсутствие доступа к пригодной для питья, ведь питьевая влага — основа существования живого организма.

Сегодня получить из морской воды опреснённую можно разными способами и в разных условиях — промышленных, домашних и даже экстремальных. Такие навыки позволят утолить муки жажды, когда пресная питьевая вода недосягаема по какой-то причине.

Существующие методы опреснения воды

В некоторых регионах планеты дефицит пресной воды наиболее ощутим — обычно это засушливые ландшафты. В такой местности применяют промышленное опреснение.

В домашних условиях производить из соленой воды опреснённую заставляют тяжёлые бытовые условия, временные или постоянные, когда население испытывает острейшую нехватку пригодной для питья влаги.

Навыки, как сделать питьевую воду, имея только морскую, не единожды спасали жизнь в условиях природных катаклизмов, потерявшимся в море рыбакам, а также экстремальным путешественникам.

  • Методы промышленного опреснения — химический с помощью реагентов, промышленная перегонка в дистилляторе, ионный с помощью установки и ионита, обратный осмос через мембранные фильтры, электродиализ и промышленное вымораживание;
  • Методы домашнего опреснения — дистилляция и частичная заморозка;
  • Методы экстремального опреснения — сбор конденсата с помощью огня или солнца, а также растопка пресного льда.

Способы опреснения в промышленных масштабах не наша тема, а вот варианты, как дома или на природе получить вполне пригодную для питья влагу, опишем подробнее — они могут оказаться полезными.

Опреснение воды в домашних условиях

Дома всегда есть источник огня или тепла, посуда и приспособления, которые пригодятся для превращения морской воды в опреснённый дистиллят, в крайнем случае имеется морозилка.

Лучше всего перегоняет морскую воду в дистиллят бытовой самогонный аппарат, если имеется источник огня, но сработает и сделанный на скорую руку его аналог. Задача такая:

  • заставить морскую воду обильно испаряться от нагрева;
  • отводить собранный конденсат;
  • охлаждая капли пара, собирать их в отдельную ёмкость.

В качестве заменителя самогонного змеевика подойдёт любая посуда, которую можно поставить на огонь. В нее вливается морская жидкость, затем посудина накрывается крышкой с отверстием, в которое вставлена отводящая пар трубочка. Осталось на трубочку надеть пластиковый шланг, его кончик опустить в ту ёмкость, где будет скапливаться пресная водичка, а его накрыть мокрой тряпкой, чтобы пар скорее охлаждался.

Иногда при бедствии в уцелевшем жилье нет ни воды, ни газа, ни электроэнергии, но есть какая-то непригодная к питью вода. В таком случае есть 2 варианта не умереть от жажды.

Вариант №1.

  • Исходная жидкость наливается в пластиковую бутылку.
  • Её уровень должен быть таким, чтобы он не доходил до горлышка бутылки, если её положить плашмя.
  • Горлышко бутылки с исходной жидкостью соединяется с горлышком пустой бутылки с помощью скотча.
  • Конструкция помещается плашмя в самое тёплое место, какое найдётся в доме — к примеру, батарея или залитый солнцем подоконник.
  • Под пустую бутылку подкладывается любой предмет, чтобы она была немного выше, чем бутыль с жидкостью.
  • Вскоре наверху пустой бутыли будут скапливаться капли испаряемого конденсата и стекать вниз.
  • Останется разрезать скотч и разъединить ёмкости — в пустой окажется пригодная к питью вода.

Вариант №2.

  • Нам понадобится небольшой таз с высокими стенками.
  • По центру ставится небольшая емкость (подойдет простой стакан).
  • В таз наливается вода для опреснения, ее уровень должен быть ниже уровня стакана.
  • Сверху таза натягивается полиэтилен либо целлофановая плёнка.
  • На плёнку, прямо над стаканом, кладется небольшой груз.
  • Конструкция перемещается поближе к источнику тепла.
  • Вскоре на пленке будут скапливаться капли испаряемого конденсата и стекать вниз.

Останется снять целлофан с таза — в стакане окажется пригодная к питью вода.

Опреснитель воды

Обратите внимание! Эти способы замечательно работают и в природных условиях.

Третий вариант добыть питьевую воду — это частичное замораживание в морозильной камере.

  • Налейте в широкую ёмкость морскую водичку.
  • Поместите в морозилку.
  • Периодически следите за процессом заморозки.
  • Как только появился тонкий слой льда — аккуратно его соберите, это и будет пресная вода.
  • Снимайте всякий раз только небольшой слой льда — его кристаллы почти не содержат соли.

Обратите внимание! Полностью замороженная морская вода даст солёный лёд.

Опреснение воды в экстремальных условиях

Разжиться питьевой водой, имея в обилии морскую, в экстремальной обстановке, когда до естественного пресного источника километры, — это вопрос выживания.

Самый быстрый вариант — это соорудить на костре примитивный дистиллятор.

  • Для этого на огонь ставится наполненная морской водой ёмкость и сверху накрывается крышкой.
  • Желательно проделать в крышке отверстие и вставить туда отводящую пар трубочку.
  • Если отверстия нет и пробить его нечем, значит трубочка просто зажимается крышкой.
  • Другой кончик трубочки, по которой будут стекать капли конденсата, необходимо опустить в чистую посудину.
  • Чтобы отход пара ускорить, трубочка накрывается мокрой тканью или постоянно поливается холодной морской водой.
  • В отсутствие крышки из посуды сооружается «крыша» под наклоном из металла, к самому низкому краю подставляется чистая посудина, куда будет стекать дистиллят.

Если дело происходит в летнюю жару — есть очень простой вариант опреснить воду, но по времени он не будет такой быстрый, как с помощью огня. Для этого понадобится всего одна ёмкость, плёнка и вырытая яма.

  • Нужно вырыть ямку чуть глубже, чем высота вашей ёмкости.
  • Дно ямы обильно поливается морской водой.
  • В центр углубления ставится пустая ёмкость.
  • Яма полностью накрывается плёнкой, а её края плотно фиксируются песком, галькой, землёй.
  • На центр плёнки, прямо над посудиной, кладётся груз — камешек, палочка, ком почвы или пригоршня песка, чтобы покрытие стало вогнутым.
  • Вода, испаряясь, начнёт оседать на крыше из плёнки и по наклонной стекать прямиком в размещенную ёмкость.
  • На жаре за пару часов в посудине соберется достаточно воды, чтобы напиться.

Обратите внимание! Конденсат абсолютно лишён солей, поэтому чтобы быстрей утолить жажду, опытные экстремалы советуют добавить немного морской воды.

Еще один способ опреснения — замораживание, годится для суровых зимних условий. Его алгоритм аналогичен домашней заморозке, только в качестве морозильника здесь выступит уличный мороз. Нужно зачерпнуть морскую воду и подождать появления на поверхности кристаллов льда — они на вкус будут пресными, и такой водой вполне можно напиться.

Как сделать соленую морскую воду пригодной для питья: лайфхак выживания


Как сделать морскую воду пресной с помощью подручных средств

Жизнь может преподносить немало сюрпризов. И не всегда приятных. Надеемся, вам не придётся застрять на необитаемом острове или посреди африканской пустыни без доступа к питьевой воде. Но, всё же, советуем узнать, как опреснить морскую воду с помощью подручных средств. Вдруг пригодится?

Как сделать морскую воду пресной с помощью подручных средств

Метод, описанный ниже, пользуется большой популярностью среди поклонников лайфхаков для выживания. И не зря: процесс прост, требует не так много «инвентаря» и относительно немного времени. Если начать процесс дистилляции на рассвете, уже к полудню морская вода станет пригодной для питья.
Чтобы опреснить морскую воду и сделать её питьевой, вам понадобятся:

Как сделать морскую воду пресной с помощью подручных средств

1. Ведро, миска или кастрюля;
2. Тёмная ёмкость (чёрный цвет эффективнее притягивает солнечное тепло и нагревается);
3. Стакан или пластиковая бутылка без горла;
4. Плёнка, полиэтиленовый пакет или крышка;
5. Солнечный свет

Шаг 1


Как сделать морскую воду пресной с помощью подручных средств

В большую миску или ведро поместите тёмную ёмкость.

Шаг 2


Как сделать морскую воду пресной с помощью подручных средств

В середину конструкции поставьте стакан или пластиковую бутылку со срезанным горлом.

Шаг 3


Как сделать морскую воду пресной с помощью подручных средств

Чёрную ёмкость наполните морской водой. Следите, чтобы она не попала в стакан посередине.

Шаг 4


Как сделать морскую воду пресной с помощью подручных средств


Как сделать морскую воду пресной с помощью подручных средств

Накройте всю конструкцию плёнкой или плотной крышкой. Герметичность – наше всё. Если используете плёнку, по центру, прямо над стаканом для опреснённой воды, положите камень или другой грузик.

Шаг 5


Как сделать морскую воду пресной с помощью подручных средств

Оставляйте ваш дистилляционный аппарат на солнце и ждите. За 8-10 часов под плёнкой в условиях искусственной «жары» морская вода будет испаряться, превращаться в конденсат и в виде пресных «осадков» выпадать прямо в стакан.
А на случай экстренных ситуаций также советуем узнать, как сделать портативный фильтр для очистки воды, который можно взять в поход или путешествие.

Понравилась статья? Тогда поддержи нас, жми:

Как опресняют морскую воду?

Опреснение морской воды — отличный способ пополнить запасы пресной, особенно в засушливых, пустынных районах, где нет водоносных горизонтов.

Процесс подразумевает существенное уменьшение солей в составе: если соленость морской воды может составлять 35г/литр (среднее значение для мирового океана), то для питьевой эта величина не должна превышать 1 грамм на литр.

Методы опреснения морской воды

Ключевые технологии подразделяются на две основные группы. Первая — та, что не подразумевает изменения агрегатного состояния вода (она остается жидкостью на всех этапах обработки). Вторая предполагает переход жидкости в твердую или газообразную форму на определенном этапе.

Химический способ

В воду вводят реагенты, которые связывают ионы солей и способствуют их выпадению в осадок. В качестве реагентов используются соли серебра и бария, причем их нужно до 5% от общего количества опресняемой воды. Реакция проходит с выделением ядовитых веществ, поэтому этот метод практически не используется.

В ванну с рассолом устанавливают 2 электрода в виде электрохимических активных диафрагм (с пластмассовым или резиновым корпусом и наполнителем из смол), после чего пропускают постоянный ток.

Проходит химическая реакция с выделением в атмосферу хлора и кислорода. Вода скапливается в промежуточных камерах и отводится, а соляной раствор остается в емкости.

Такой метод еще называют ионообменное опреснение: он применяется там, где соленость морской воды изначально невысока. Также он часто используется для мобильных установок на рыболовецких судах, траулерах.

Ультрафильтрация (обратный осмос)

В этом случае солевой раствор подают под давлением через мембрану, которая проницаема для воды, но непроницаема для соли. Такие мембраны создают из ацетилцеллюлозного волокна и пропитывают перхлоратом магния, что позволяет увеличить водопроницаемость.

Поскольку давление значительное, до 150 кгс/см2, мембраны дополняются пористыми бронзовыми плитами. Управление процессом возможно в автоматическом и полуавтоматическом режиме, при этом главное здесь — контроль стабильного давления подачи воды. Выход пресной воды из соленой — до 70%.

Вымораживание

В природных условиях лед, покрывающий океаны и моря, — пресный. Искусственно проводят медленное замораживание. что позволяет получать лед с игольчатой кристаллической структурой. Рассол при этом оседает и не попадает в толщу льда.

Полученный лед растаивают, что позволяет получить воду с соленостью не выше 500-1000 мг/л. Для замораживания используют кристаллизаторы (контактные, вакуумные, с теплообменом через стенку), где обеспечивается контакт воды с газообразным или жидким хладагентом.

Термическое опреснение (дистилляция)

Такой метод часто используют на морских судах для получения пресной воды из забортной соленой. В этом случае морскую воду нагревают до кипения, а выходящий пар конденсируют. Так собирается дистиллят, представляющий собой пресную воду.

Дистилляционные установки включают в себя испарители, нагревательные элементы, конденсаторы и сборники дистиллята. Сам процесс испарения может быть, как одно-, так и многоступенчатым.

При этом из первичного пара получается до 90% пресной воды за одну ступень. В установках с многоступенчатым опреснением, когда не вскипевшая вода перетекает из одной камеры в другую, и так до 50-60 раз, выход воды увеличивается в 15-20 раз. Однако такие системы гораздо сложнее в работе из-за существенной концентрации солевого раствора на последних этапах и порчи оборудования из-за отложения солей на трубопроводах.

Технологии, активно используемые в странах-лидерах по опреснению

Лидером в этой отрасли считается Израиль, где расположены крупнейшие заводы по опреснению, обеспечивающие более 15% потребности в питьевой воде, и более 50% — в технической. Один из самых крупных местных заводов производит забор воды из Средиземного моря и фильтрует ее посредством специальных мембран. Дальше осуществляется перегонка, после чего чистая вода поступает в хранилища, а соляной раствор сбрасывается в море.

А французские заводы используют несколько другие способы опреснения воды: большинство установок работают на принципе обратного осмоса. Популярной в промышленных масштабах стоит назвать и технологию выпаривания.

Опреснители. Виды и устройство. Работа. Достоинства и недостатки

Ежедневно для человека требуется пресная вода для поддержания нормальной жизни, его организм большей частью состоит из воды. Возрастание численности населения способствует увеличению количества источников воды, которая пригодна для жизни. В результате возникает нехватка пресной воды, что заставляет людей искать различные искусственные способы.

Единственным таким источником стала морская вода, содержащая много солей, и не пригодная для употребления. Она проходит специальную технологию очистки, состоящую из нескольких этапов. Жидкость очищается от лишних и ненужных для человека солей. Для этого применяют специальное оборудование – опреснители.

Их использование дает возможность получать из соленой воды годную для жизни людей питьевую воду. В промышленности опреснение производится по разным технологиям. Большинство таких процессов основывается на применении громоздких энергозатратных установок. К ним относятся специальные дистилляторы и фильтры различных видов.

Виды опреснителей

В последнее время внедряются новые альтернативные разработки оборудования опреснения воды из моря. Многообразие способов опреснения можно объяснить тем, что они индивидуальны для определенных условий. Рассмотрим основные наиболее распространенные способы и виды оборудования.

Химический

В морскую воду добавляют специальные реагенты, взаимодействующие с ионами солей в виде сульфатов и хлоридов, и образующие нерастворимый осадок. В этой воде много растворенных солей, поэтому расход химических реагентов значительный, и может достигать 5% от объема полученной пресной воды. К таким реагентам, способным создавать нерастворимый осадок, относятся соли бария и серебра.

Недостатки химического способа:
  • Реагенты являются дорогостоящими химическими веществами.
  • Реакция выпадения осадка происходит медленно.
  • Опасность этого способа состоит в токсичности солей бария.

Ввиду этих недостатков, применение химических опреснителей в промышленности ограничено.

Дистилляторы

Эти устройства работают по принципу перегонки, которая основана на разнице состава водяного пара и воды. Перегонка проходит в специальных установках – дистилляторах, методом испарения воды и дальнейшей конденсации пара. Наиболее летучий компонент превращается в пар в большем объеме, по сравнению с менее летучим, что способствует конденсации в большей степени низкокипящих компонентов.

Если перегонка осуществляется с получением нескольких фракций, то такую дистилляцию называют дробной. Существует два вида перегонки – простая и молекулярная.

Новые виды дистилляторов делятся на:
  • 1-ступенчатые опреснители.
  • Многоступенчатые опреснители с ТЭНами, с быстрым закипанием.

Основным достоинством многоступенчатых опреснителей является значительно больший выход пресной воды, в отличие от одноступенчатых. Расходы при любом способе перегонки связаны с большим потреблением тепла, стоимость которого достигает 40% от стоимости полученной воды.

Источниками тепла служат тепловые электростанции. Эффективность дистилляторов часто ограничивается большим объемом накипи в оборудовании. Это снижает теплопроводность теплообменника, это способствует разрушению трубопроводов. Это в свою очередь требует использования специальных присадок против накипи, что повышает стоимость пресной воды. В последнее время больше используют другие методы.

Ионные опреснители

Этот способ заключается в использовании характеристик полимерных смол обмена ионами солей, содержащихся в воде. Процесс ионного опреснения происходит следующим образом: вода постепенно проходит через прослойку ионита. Ионы солей воды соединяются с ионитами. В итоге содержание солей уменьшается.

На быстродействие ионного опреснения влияет доступность ионов в ионите, величина гранул, рабочая температура. Основным фактором, влияющим на скорость процесса, является ионная диффузия.

Ионное очищение используется для получения пресной и мягкой воды в различных отраслях производства, атомной энергетике, металлургии, в пищевой промышленности. Для получения антибиотиков в медицинской промышленности также применяется ионный обмен.

Промышленное ионное оборудование делится на:
  • Смесители-отстойники.
  • Опреснители с подвижными и стационарными слоями ионита.

Первый вид применяется в гидрометаллургии. В устройствах со стационарным слоем ионита растворы поступают в одном или другом направлении. В зависимости от необходимой степени очистки воды создают установки с несколькими ступенями.

Преимущества ионной очистки
  • Простое устройство оборудования.
  • Небольшой расход воды.
  • Малое потребление электричества.
Недостатки
  • Большой расход химикатов.
  • Сложность процесса.
Устройства обратного осмоса

По этому способу очищаемая вода проходит по специальным мембранам под большим давлением. Эти полупроницаемые мембраны производятся из ацетата целлюлозы, упакованные в рулонах. По микроскопическим порам мембран могут пройти молекулы воды. Ионы соли и примеси, имеющие больший размер, не проходят через эти мембраны.

Этот способ применяется в России с 70-х годов прошлого века для опреснения воды. Производственное оборудование, очищающее воду обратным осмосом, состоит из фильтров, насоса, системы реагентов и устройства химической промывки. Трубы производят из пористого материала, который внутри имеет тонкую пленку, выполненную из ацетата целлюлозы. Она играет роль полупроницаемой мембраны.

Интенсивность потока воды, проходящей через мембрану, зависит от величины давления. Если создавать слишком большое давление, то мембрана может разрушиться, засориться примесями, и начать пропускать соли. Если давление низкое, то очистка воды будет происходить длительное время.

Этот способ опреснения имеет большие достоинства, в отличие от других способов:
  • Небольшое потребление электроэнергии.
  • Компактная и простая конструкция оборудования.
  • Возможность автоматизации.

Для снижения отложений в трубах используются специальные ингибиторы. Мембраны очищают от осадка солей путем химической очистки. Для проверки качества воды используют проточные индикаторы содержания соли.

Электродиализное оборудование

Способ электрического диализа заключается в протекании ионов солей через мембрану, под действием электрического поля. Катионы двигаются к катоду, а анионы в другом направлении. Эти частицы разделяют путем ионоселективных мембран. В итоге концентрация солей уменьшается.

Ионоселективные мембраны производят из полимерного пористого материала. Мембраны отличаются высокой прочностью, электропроводимостью и ионной проницаемостью. Срок эксплуатации таких мембран не более 5 лет.

Опреснители на основе электродиализа изготавливают в виде многокамерных устройств. Камеры ограничены катионной и анионной мембраной, которые делят объем устройства на несколько полостей. К аноду и катоду подключают постоянный ток.

Морская вода заходит в опреснительные емкости. Электрическое поле заставляет ионы солей двигаться в разных направлениях к соответствующим электродам. В конечном итоге осуществляется отделение ионов солей, скапливающихся в специальных рассольных камерах, очищаемых промывочной водой.

Процесс электрического диализа экономичнее, в отличие от других методов, например, обратного осмоса. Электродиализное оборудование позволяет концентрировать растворы, а также выделять из морской воды разные соли, например, хлористый натрий.

Достоинством этого способа является применение химически стойких и термостойких мембран, что дает возможность опреснять воду при высоких температурах.

Кристаллизаторы

Работа таких опреснителей заключается в эффекте пресного льда. При кристаллизации воды кристаллы льда могут образоваться только из молекул воды. Это явление называется криоскопией. При постепенной кристаллизации соленой воды пресный лед появляется вокруг центров кристаллизации, имеющих игольчатую структуру. В промежутках между иглами льда концентрация раствора возрастает. Этот более плотный и тяжелый раствор по мере замерзания оседает вниз.

При плавлении льда получается опресненная вода с небольшим содержанием солей, не превышающем допустимые нормы.

Замораживание производится в специальных устройствах – кристаллизаторах, воздействующих на воду жидким или газообразным охлаждающим веществом. Для более качественного опреснения льда используется его плавление при 20 градусах с сепарацией и очисткой кристаллов от маточного раствора с помощью фильтрации, прессования или вращения на центрифуге.

Этот способ применяется для очистки морской воды, отделения химических реагентов и других целей. Замораживание является простой технологией, однако для этого необходимо энергоемкое и сложное технологическое оснащение, поэтому применяется довольно редко.

Газогидратные устройства

Сравнительно недавно разработаны газогидратные опреснители, которые по конструкции аналогичны кристаллизаторам с хладагентом. Эта очистка заключается в возможности углеводородных газов при заданной температуре создавать при реакции с водой газогидраты, их очистки от соли и расплавления.

Газогидратный процесс протекает при более высокой температуре, что дает возможность снизить потребление электроэнергии и отдачи холода во внешнюю среду. Подвидом этого способа является очистка соленой воды природным газом. Производят заморозку соленой воды газом. Застывшую ледяную массу разделяют путем снижения давления и увеличения температуры. При этом углеводороды испаряются, а пресная вода остается на месте. Испарившиеся углеводороды улавливаются, и снова используются в рабочем процессе.

Способы опреснения морской воды

На нашей планете примерно 96,5% воды приходится на океаны, 1,7% мировых запасов составляют грунтовые воды, ещё 1,7% — ледники и ледяные шапки Антарктиды и Гренландии, небольшая часть находится в реках, озёрах и болотах, и 0,001% в облаках (образуются из взвешенных в воздухе частиц льда и жидкой воды). Большая часть земной воды — солёная, непригодная для сельского хозяйства и питья. Доля пресной составляет около 2,5%, причём 98,8% этой воды находится в ледниках и грунтовых водах. Менее 0,3% всей пресной воды содержится в реках, озёрах и атмосфере.

Постоянный рост потребления пресной воды приводит к повышению нагрузки на существующие источники, мощность которых во многих регионах Земли уже истощена, что приводит к нехватке водных ресурсов.

В аспекте решения данной задачи все более актуальным становится внедрение методов получения пресной воды из вод мирового океана и других сильно минерализованных источников, использование воды из которых без специальной обработки невозможно.

Большие объемы воды мирового океана, легкая доступность (для прибрежных территорий), а иногда и безальтернативность источника, уже достаточно длительное время привлекают ученых и конструкторов для создания новых и улучшения существующих способов опреснения.

Все способы получения пресной воды из морской можно разделить на два основных направления:

1. Методы, связанные с изменением агрегатного состояния вещества:

  • дистилляция
  • замораживание

2. Методы, в которых агрегатного изменения состояния не происходит:

  • химическое опреснение
  • ионный обмен
  • электродиализ
  • прямой осмос
  • обратный осмос

Далее рассмотрим эти методы более подробно. Начнем с методов, связанных с изменением агрегатного состояния вещества.

Дистилляция

В ходе дистилляции морская вода нагревается за счет различных видов энергии. Молекулы воды имеют большую подвижность, чем ионы растворенных солей, легче переходят в газовую фазу (испаряются), которая удаляется с последующим конденсированием из неё чистой воды.

В ходе данного процесса энергия затрачивается как на переход воды в газовую фазу, так и на переводы газовой фазы в жидкую.

Снижение необходимого для испарения количества подводимого тепла можно получить, используя метод вакуумной дистилляции, который отличается от классической схемы разряжением, создаваемым в испарителе. Температура закипания воды при понижении давления снижается, что обеспечивает снижение энергозатрат и повышение КПД установки в целом.

Для более полного использования тепловой энергии используют процесс многоступенчатой дистилляции (флеш дистилляции), в ходе которого испарение происходит в разряженной среде, а тепловая энергия используется максимально (утилизация тепла, уносимого потоком сконденсированной воды).

Данная технология позволяет более эффективно использовать энергию, т. к. при снижении давления газовой фазы над жидкой снижается температура кипения последней, а движение потоков продуктов противотоком позволяет минимизировать унос тепла как с очищенной водой, так и отводимым остатком.

Другим вариантом проведения процесса очистки при испарении/конденсации воды является термокомпрессионная дистилляция. При реализации данного метода очистки исходная вода переводится в газообразное состояние за счет энергии, выделяемой при конденсации воды очищенной. Для этого перешедшую в пар воду из испарителя откачивают специальным компрессором, который так же служит для создания повышенного давления пара в конденсаторе.

Благодаря разнице давлений в испарителе и конденсаторе выделяемой при конденсации (при повышенном давлении) энергии достаточно для перевода в газовую фазу исходной воды (при пониженном давлении) и практически не требуется расходовать стороннюю энергию для осуществления такого перехода.

Замораживание

Ещё одним направлением получения опресненной воды с использованием фазового перехода является процесс замораживания (вымораживания). Данный метод основан на процессе перехода пресной воды в твердую фазу с последующим плавлением полученного льда.

Разновидностью метода вымораживания можно считать метод опреснения с использованием газовых гидратов. Данный метод является разновидностью метода замораживания с использованием вторичного теплоносителя, в роли которого выступает газ, способный образовывать с водой соединения клатратного типа — газогидраты. В роли такого газа используют некоторые углеводороды (пропан, бутан и т.д.). Для получения опресненной воды полученные газогидраты сепарируют от рассола (отделяют) и подвергают плавлению, выделяемый при этом газ возвращается в процесс.

Следующие методы основаны на физико-химических методах без изменения агрегатного состояния вещества.

Химическое опреснение

Химическое опреснение основано на переводе растворенных солей в процессе химических реакций в твердые осадки, которые в последующем отфильтровываются. В связи с большим количеством солей в морской воде расход реагентов может достигать 5% от массы опресняемой воды, что не позволяет применять данный метод в серьезных масштабах.

Метод ионного обмена

Метод ионного обмена основан на использовании ионитов для удаления содержащихся в воде катионов (используются H-катионты) и анионов (используются ОН-аниониты). В ходе ионного обмена емкость ионитов (ионообменных смол) исчерпывается и для продолжения процесса очистки требуется проведение регенерации материала: раствором кислоты для катионита и раствором щелочи для анионита. Высокий расход агрессивных реагентов обуславливает узкое применение данного метода.

Электродиализ

При подаче электрического тока на электроды, помещенные в раствор солей в воде (в данном случае — морскую воду), можно наблюдать процесс электродиализа — перемещение зараженных частиц к соответствующим электродам: катионы направляются к отрицательному электроду — катоду, а анионы — к положительному — аноду. Между электродами со временем появляется область с пониженной концентрацией солей. Технически этот метод применен в электродиализаторах, в которых кроме катода и анода так же присутствуют камеры из катионообменных и анионообменных мембран, что позволяет значительно более эффективно вести процесс разделения.

Прямой осмос для получения пресной воды

Еще один физический процесс широко применяющийся для получения пресной воды — процесс осмоса — движение молекул растворителя через полупроницаемую (проницаемую только для молекул растворителя) мембрану в сторону более концентрированного раствора. Учитывая, что морская вода является достаточно насыщенным солями раствором изначально, процесс осмоса — прямой осмос, используется редко, т. к. для получения опресненной воды из морской необходимо использовать концентрированный раствор специального вещества, которое должно впоследствии достаточно легко удаляться — например, при изменении температуры разлагаться (карбонат аммония) или выпадать в осадок.

Полученная вода характеризуется меньшим содержанием примесей, чем исходная, и может быть в дальнейшем очищена с использованием данного метода и другого специального вещества (с более низкой концентрацией), так и с использованием другого метода опреснения. При применении метода прямого осмоса часть энергии, необходимой для опреснения воды можно использовать в виде низкопотенциальной энергии (тепловой, солнечной) имеющей более низкую стоимость (по сравнению с электрической). Это позволяет использовать менее энергозатратные способы очистки на финишной стадии.

Обратный осмос для опреснения морской воды

Наиболее широко распространенном методом опреснения морской воды в настоящее время стал метод обратного осмоса. Данный метод основан на ранее описанном явлении осмоса, но направление движение растворителя (чистой воды) изменено на обратное — от более соленого раствора в сторону более чистого (концентрированного) за счет создания давления со стороны более «разбавленного» раствора (исходной воды). Давление, требуемое для проведения процесса обратного осмоса зависит от минерализации исходной воды и при опреснении воды с соленостью 35 г/л (соленость мирового океана) рабочее давление достигает значений 70-80 бар.

Производительность оборудования опреснения морской воды методом обратного осмоса зависит от типа и количества стандартизованных мембранных элементов. Наша компания в своем модельном ряде поддерживает модели производительностью от 50 до 1000 л/ч (опреснительные установки СОМ О 50-60 — СОМ О 1000-60). Простота конструкции и большой выбор доступных комплектующих позволяют использовать опреснительные мембранные установки практически на любых объектах, где требуется решение задачи получения пресной воды из воды минерализованной в максимально удобном исполнении оборудования.

Такие установки применяются как для опреснения воды на катерах и яхтах, судах и буровых платформах, так и для обеспечения питьевой водой поселений с солеными источниками воды (соленые скважины, морское побережье).

Опреснение морской воды: технологии современного мира

Вопросы, рассмотренные в материале:

  • Почему назрела необходимость в опреснении морской воды
  • Какие существуют способы опреснения морской воды
  • Как опреснить морскую воду в домашних условиях
  • Какие проблемы присущи процессу опреснения морской воды

Очищение и опреснение морской воды – это промышленный процесс, в результате которого из неё удаляются соли и получается продукт, пригодный для использования в быту и употребления. Наша статья расскажет о методах и технологиях опреснения морской воды.

Насколько актуально опреснение морской воды

Земная поверхность на 60 % состоит из территорий, где источников пресной воды или нет совсем, или есть, но очень небольшое количество. Поскольку во многих засушливых областях мало пресноводных водоемов, возникают проблемы с поливом почвы. Их можно было бы решить благодаря возможности использовать для этих целей опресненную морскую воду. На Земле присутствуют значительные запасы такой воды, но из-за высокого содержания солей ее невозможно применять в хозяйственных целях.

Чтобы выращивать сельскохозяйственные культуры, необходимо поливать их водой с очень низким содержанием солей. Если растения получат с влагой более 0,25 % солей, они просто не будут расти. Также на них отрицательно скажется присутствие в воде щелочей. Многие государства, в том числе и Россия, ищут пути опреснения соленых водных источников, что помогло бы справиться с проблемами засухи в областях, расположенных недалеко от моря.

В странах с хорошо развитой промышленностью все острее ощущается нехватка пресных водных запасов. В частности, это касается США и Японии, где требуемые для промышленности, сельского хозяйства и бытовых нужд объемы воды давно превысили имеющиеся.

Количество пресной воды не соответствует потребностям и в развитых странах с низким уровнем осадков, таких как Израиль и Кувейт.

Первое место в мире по наземным пресноводным ресурсам занимает Россия. Достаточно одного только Байкала, чтобы удовлетворить сегодняшнюю потребность российского населения и промышленности в пресной воде. Это озеро настолько глубокое, что если направить в его котловину потоки всех рек земного шара, то заполняться она будет почти 300 дней.

Однако большая часть водных ресурсов России сосредоточена в практически не заселенных и не освоенных районах Сибири, Севера и Дальнего Востока. На высокоразвитые центральные и южные регионы с высоким уровнем промышленности, сельского хозяйства и плотности населения приходится только 20 % пресноводных запасов.

Определенные страны Средней Азии (Туркмения, Казахстан), а также Кавказ, Донбасс и юго-восточная часть РФ обладают огромными минерально-сырьевыми ресурсами, а пресноводных источников не имеют.

Рекомендуемые статьи по данной теме:

  • Анализ питьевой воды: от сдачи проб до расшифровки результатов
  • Как проверить качество воды: самостоятельно и в лаборатории
  • Можно ли пить воду из-под крана, и чего стоит опасаться

В России есть большое количество подземных источников, уровень минерализации которых составляет от 1 до 35г/л. Они не могут применяться для нужд населения, так как содержат большое количество солей, но после опреснения их вполне можно будет использовать.

В процессе опреснения морской воды важным параметром является её соленость, под которой понимается масса сухих солей в граммах на 1 кг вещества. Количество солей в единице объема жидкости может существенно колебаться в зависимости от моря. Например, Черное, Каспийское и Азовское моря характеризуются как слабосоленые. Средний показатель солености Мирового океана составляет 35г/кг.

Морские водные запасы содержат в своем составе более 50 химических элементов. Концентрация каждого из них крайне мала, но их общая масса определяет соленость жидкости. Для пищи может быть пригодна только вода, в которой содержится не более 0,001г/мл солей. Для того чтобы достичь подобной концентрации, применяются различные технологии опреснения морской воды. Специалисты пытаются разработать такие системы опреснения, которые бы потребляли мало энергии, но при этом максимально очищали воду для использования населением.

Сегодня применяются следующие методы опреснения морской воды: дистилляция, обратный осмос, ионизация и электродиализ.

  • Обычная, или многостадийная дистилляция – наиболее популярный способ, в основе которого лежит использование свойства воды закипать и образовывать пар при высоких температурах. Более половины пресных водных ресурсов получают именно путём дистилляционного опреснения морской воды.
  • Мембранная дистилляция – метод, при котором производится нагрев воды с одной стороны мембраны, которая пропускает только пар и образует из него пресную воду.
  • Метод обратного осмоса – довольно дешевая технология: один вложенный доллар позволяет получить 16 тонн пресной воды.
    Технология обратного осмоса для опреснения морской воды заключается в том, что вода под давлением проходит через мельчайшие фильтры, в результате чего содержание солей становится очень низким. Степень очищения и производительность мембраны зависят от таких факторов как количество соли в исходном сырье, солевой состав, температура и давление.
  • Электродиализ – метод, при котором водный поток пропускают через камеру с электродами, в результате чего катионы и анионы распределяются на соответствующих электродах. Плюсом подобного способа опреснения морской воды является использование химически и термически стойких мембран, что дает возможность осуществлять очистку при высокой температуре.
  • Газогидратный метод основывается на способности углеродных газов при определенном давлении и температуре создавать с участием воды соединения клатратного типа. Соленую воду замораживают, затем обрабатывают газом, вследствие чего формируются кристаллы. Эти кристаллы отделяют от рассола, промывают, плавят и в итоге получают чистую пресную воду.

В южных регионах активно используют солнечные опреснители, в которых происходит нагрев и испарение морской воды. Существует и противоположный способ, при котором солёную воду замораживают, а затем отделяют от нее пресную, поскольку она замерзает быстрее.

Вас также может заинтересовать: Как определить жесткость воды и смягчить её

По какому принципу работают установки для опреснения морской воды

Опреснитель морской воды – устройство, которое может удалить из воды соли, растворенные в ней. После процедуры очистки получают воду, которую можно использовать не только для хозяйственных нужд, но и для питья. Конструкцию аппарата отличает удобство и практичность в эксплуатации.

Однако опреснённая вода не является вместе с этим чистой, ведь в ней сохраняются и другие компоненты, от плотности которых и зависит область ее применения. Так, на морских судах требуются разные виды водных запасов:

  • питьевая, которая используется только для готовки и питья;
  • вода для личной гигиены и мытья палубы;
  • вода для парогенераторов, или питательная;
  • техническая вода, которая применяется в качестве охлаждающей жидкости для двигателей;
  • дистиллированная вода.

Для получения всех этих видов используют разные судовые опреснители.

Среди технологий опреснения выделяют следующие:

  1. Дистилляционная, при которой опреснитель нагревает и испаряет морскую воду. Полученный пар «ловится» и доводится до необходимой температуры.
  2. Фильтрационная, при которой устройство работает по принципу обратного осмоса. Соленая вода очищается без перехода из одного состояния в другое. Работа такого аппарата основывается на доведении концентрации растворенных примесей до оптимальной. Очень высокое давление позволяет «выдавить» лишние частицы солей.

В израильском городе Хадере находится самый большой на планете опреснитель. Этот агрегат по размеру соизмерим с целым заводом. Каждый год он опресняет около тридцати трех миллиардов галлонов морской воды. Работает опреснитель по принципу обратного осмоса, вследствие чего средиземноморские воды не подвергаются тепловой обработке.

Установка полностью герметична, в ней создается эффект парника, при этом не допускается утечка испарений наружу. В итоге чистый водный остаток сохраняется в большем объеме. В конце откручивается пробка, и очищенная жидкость сливается в какую-либо емкость.

Подобные аппараты применяются в морском флоте. Они используют тепло жидкости, которая служит для охлаждения главных и вспомогательных дизелей. Очищенная вода, подогретая до 60 °С, на входе поступает через трубы батареи нагрева. При выходе температура жидкости снижается примерно до 10 °С.

Вакуумный опреснитель вырабатывает в час порядка 800 литров дистиллированной воды. Он может удовлетворить всю потребность в пресном водном запасе без излишних трат на топливную энергию, а полная автоматизация позволяет сэкономить на сервисном обслуживании. Поскольку температура испарений довольно низкая, водоопреснитель может работать от шести до двенадцати месяцев, не требуя очистки.

Известно, что население Израиля страдает от серьезной нехватки питьевых запасов. Работа описанного выше аппарата позволяет покрыть почти две трети потребности в воде целой страны.

Сегодня для опреснения морской воды используется самое разное оборудование, в том числе уникальные опреснители, работающие на солнечной энергии. В них заливается вода, которая под воздействием солнечного тепла превращается в пар, конденсируется на стенках корпуса и затем оседает в нижней части прибора.

Вас также может заинтересовать: Чем опасен хлор в воде: факты, мифы и способы защиты

Какие технологии используются в промышленном опреснении морской воды

На сегодняшний день в промышленности широко применяются два метода опреснения: мембранный (механический) и термальный (дистилляционный). В первом случае используется технология обратного осмоса. Морская вода пропускается через полунепроницаемые мембраны под давлением, существенно превышающим разницу давления пресной и морской воды (для последней это 25-50 атм.).

Микроскопические поры фильтров свободно пропускают только небольшие водные молекулы, задерживая более крупные ионы соли и других примесей. Материалом для таких мембран служит полиамид или ацетат целлюлозы, выпускают их в виде полых волокон или рулонов.

Метод глубокого обратноосмического опреснения воды обладает рядом плюсов по сравнению с другими способами. Во-первых, аппараты просты и компактны, а во-вторых, не требуют больших затрат энергии. К тому же, управление системой обратного осмоса происходит в полуавтоматическом и автоматическом режиме.

Но все же данный способ имеет и свои минусы. Качество очистки здесь зависит от того, насколько эффективной была предварительная обработка. Помимо этого, полученная питьевая вода всё равно содержит достаточно большое количество соли (500 мг/м3 общей концентрации солей). Также этот способ требует повышенных эксплуатационных расходов, поскольку необходима регулярная закупка сопутствующих химикатов и смена мембранных фильтров.

Wonthaggi Desalination Plant – самый большой в мире завод по опреснению воды с помощью мембранных фильтров, расположенный в Мельбурне. Он способен перерабатывать в день 440 тысяч кубометров воды. В израильском городе Ашкелоне располагается завод, где воду очищают от солей методом обратного осмоса. Он обрабатывает в день 330 тысяч кубометров воды.

Суть термального способа (дистилляции) в том, что на станции опреснения морской воды жидкость кипятят, а полученный в итоге пар аккумулируют и конденсируют. Так образуется дистиллят – пресная вода. Выпаривать воду можно и не доводя до кипения. В этом случае её нагревают при более высоком давлении, чем в камере испарения. Для образования пара используют теплоту самой воды. При этом она охлаждается до температуры насыщения оставшегося рассола. Минусы этого способа – затратность, высокая энергоемкость, наличие внешнего источника пара. Однако именно он дает самый большой объем пресной воды за единицу времени. К примеру, завод Shoaiba 3 (Саудовская Аравия) производит дистилляционным методом до 880 тысяч кубометров пресной воды в день.

Эти два метода можно сравнить по нескольким ключевым параметрам:

Параметры

Обратный осмос

Термальный метод

Физико-химический принцип

Мембранная диффузия

Термальное испарение и конденсация

Потребление энергии (с учетом потребления вспомогательных устройств)

Электроэнергия: 3,5-4,5 кВ-ч/м3

Электроэнергия: 2,5-5 кВ-ч/м3, термальная 40-120 кВ-ч/м3

Наивысшая температура в процессе опреснения

Температура морской воды

До 120ºC

Качество воды (содержание солей мг/л)

от 1 до 50

Средняя производительность одного модуля опреснения

6000-24000 м3/день

120000 м3/день

Основные устройства

Насосы, мембраны

Насосы, клапаны, вакуумные установки

Общая стоимость

Низкая

Высокая

Уровень автоматизации производства

Высокий

Высокий

Возможность изменения состава морской воды

Не рекомендуется

Средне-высокая

Требования к техническому обслуживания

Высокие

Средние

Потенциал масштабирования

Высокий

Средне-низкий

Требования к занимаемой площади

Низкие

Средние

Наиболее необходимые усовершенствования

Улучшение предварительной обработки воды, улучшение свойств мембран

Более дешевые материалы и способы теплопередачи

Российские технологии опреснения морской воды

Трудности с пресным водоснабжением возникли в Крыму после известных событий в 2014 году. Тогда Украина перекрыла канал, по которому на полуостров поступала пресная вода, вследствие чего образовался дефицит технического и питьевого водного запаса.

Есть сведения о планируемой установке в Керчи системы для опреснения, которая будет производить около 50 тонн воды в час. Очищенные от солей водные ресурсы будут использоваться в основном для технических нужд: подпитки теплосетей и паровых котлов. Это поможет снизить нагрузку на общее водоснабжение.

Очищение воды на этой установке будет проходить в несколько этапов. Для осветления предполагается использовать комбинированную мембранную технологию, для очищения от солей – метод обратного осмоса, для полировочного умягчения – ионообменный.

Система будет работать в автоматическом режиме, понадобится лишь один оператор для контроля процесса.

Сегодня рентабельность полива культур опресненной морской водой стоит под большим вопросом: к сожалению, существующие технологии не позволяют получить одновременно и качественную, и дешевую пресную воду из соленой. Но разные страны мира постоянно ведут работу в этом направлении, потому что экологические проблемы опреснения морской воды касаются всего человечества и требуют разрешения.

Ученые возлагают большие надежды на использование для очистки водных ресурсов атомной энергии, что позволило бы сделать опреснительные технологии значительно дешевле.

Вас также может заинтересовать: Технология очистки воды: разновидности и особенности

Опреснение морской воды своими руками в домашних и экстремальных условиях

1. Экстремальные условия

Если вам понадобится очистить от солей морскую воду в условиях похода, для этого лучше всего подойдет самодельный дистиллятор, по устройству похожий на всем известные перегонные аппараты.

Сущность процесса в обычном опреснителе заключается следующем: соленая жидкость нагревается до кипения, затем образовавшийся пар аккумулируется в емкости и охлаждается. После процедуры на стенках камеры оседают охлажденные капельки воды, очищенной от солевых примесей.

Соли выделяются из смеси потому, что точка кипения у соляного раствора немного выше, чем у чистой воды. Поэтому пресная составляющая испаряется быстрее и оседает в емкость для сбора.

Для опреснения морской воды в походных условиях вам понадобятся:

  • в первую очередь – сама вода, которая всегда в избытке на берегу моря или солёного озера;
  • котелок или чайник в качестве ёмкости для нагрева;
  • трубка из алюминия, которую следует приготовить еще до начала похода;
  • вырытая в песке глубокая яма: она будет выполнять функцию охлаждающего устройства;
  • еще одна емкость (стеклянная бутылка, банка из нержавейки и т.п.), куда будет собираться очищенная от примесей вода.

На берегу озера или моря следует выкопать яму глубиной до метра, под небольшим углом поместить в нее емкость (бутылку), в горлышко которой необходимо вставить трубку.

Заранее припасите прокладку из резины: с ее помощью вы надежно уплотните место соединения алюминиевой трубки с горлышком бутылки.

Затем конструкцию следует засыпать песком таким образом, чтобы открытой осталась лишь верхняя часть горлышка со вставленной трубкой. Конец трубки нужно будет расположить над котелком или открытым чайником с морской водой. При этом костёр разводят в небольшом удалении от бутыли с трубкой.

После того, как огонь разгорится, вода в емкости разогреется и начнет бурлить, а пар – постепенно распространяться по трубке в бутыль, зарытую в песке, где и осядет как конденсат. Постепенно на дне емкости образуется до 200-300 граммов чистой пресной жидкости.

2. Опреснение в домашних условиях

Самым простым способом очистить воду от соли в домашних условиях считается применение системы, состоящей из ряда фильтров, соединенных в определенной последовательности. Но даже сложная многоступенчатая комбинация не может удалить из воды абсолютно все вредные примеси. Поэтому большой популярностью в народе пользуются давно известные домашние методы опреснения.

Например, воду наливают в бутыль и помещают в морозилку, где через некоторое время замерзает чистая составляющая. Та часть, которая не замерзнет, как раз и содержит все вредные примеси, поэтому ее сливают. Замороженный водный остаток, когда тот растает при комнатной температуре, можно будет употреблять для питья и других нужд.

Есть еще два способа очистки воды от соли, которые можно легко реализовать в домашних условиях. Первый – долгое кипячение, в результате которого соль оседает на стенках в виде накипи. Второй – фильтрация с помощью активированного угля. В данном случае количество используемого материала будет зависеть от концентрации соли.

Вас также может заинтересовать: Какую воду пить: кипяченую или сырую?

С какими проблемами опреснения морской воды сталкивается человечество

Сегодня из всех способов опреснения наиболее востребована технология обратного осмоса. Но для ее использования необходимы большие затраты на производство и эксплуатацию мембран, а также существенные энергетические мощности. Кроме того, после опреснения подобным способом остается высококонцентрированный солевой раствор, который возвращают в море или океан, что повышает соленость водных ресурсов. Из-за этого процесс очистки становится ещё более сложным, а себестоимость опреснения морской воды с каждым годом только возрастает.

Кроме того, в почве находится лишь 1/3 мировых пресноводных запасов (2/3 заморожены в снежных покровах и ледниках). И они используются человеком настолько быстро, что природа не успевает восполнить утраченное.

В связи с этим дефицит пресной воды возрастает в мировом масштабе.

По прогнозам экспертов, нехватку водных ресурсов к 2030 году будут испытывать более двух миллиардов человек. Эта проблема усугубляется еще и тем, что в каждой стране используют разные объемы пресной воды.

К примеру, американец в среднем расходует в день около 400 литров, в то время как житель малоразвитой страны – всего лишь 19 литров. У половины населения планеты в доме вообще нет водопровода. Все это однажды приведет к тому, что люди обратят особенное внимание на океаны как на источники воды.

Главная задача при опреснении морской воды – свести к минимуму энергетические затраты и расходы на оборудование. Это особенно важно, поскольку страна, которая больше нуждается в очищенной воде, должна при этом выдержать экономическую конкуренцию с государствами, имеющими более дешевые и многочисленные пресноводные источники.

По результатам проектных разработок выходит, что только для небольшого количества потребителей транспортировать воду из естественного водоема на расстояние до 400-500 км будет дешевле, чем опреснить её. Оценивая подземные запасы различной степени солености в засушливых районах, можно сделать вывод, что опреснение является для них единственным экономически оправданным способом водообеспечения, учитывая их удаленность от пресноводных источников естественного происхождения.

Применяемые сегодня методы опреснения могут быть продуктивно использованы для того, чтобы вернуть природе использованные водные ресурсы, не ухудшив при этом состояние пресных водоемов.

Если качество воды оставляет желать лучшего…

Проблему грязной воды в доме можно частично решить установкой качественного фильтра, но в таких системах периодически возникает необходимость замены комплектующих, ведь от этого напрямую зависит, насколько хорошо будет очищена жидкость для питья.

В то же время остается нерешенным вопрос: как добиться того, чтобы на нашем рабочем месте или у ребенка в школе была вода наилучшего качества? Лучшее решение – купить ее с доставкой.

Компания «Айсберг» предлагает выгодные условия для обслуживания своих клиентов:

  • бесплатная доставка воды на дом или в офис: покупатели оплачивают только стоимость товара;
  • скважины, из которых набирается наша вода, имеют документы регистрации в Государственном водном кадастре РФ;
  • для добычи и бутилирования воды используются передовые технологии, что помогает сохранять и преумножать ее качество и природную чистоту;
  • мы также реализуем современные кулеры для воды и другое оборудование, изготовленное известными европейскими брендами с учетом существующих стандартов качества. Размеры помп и стеллажей для бутылей варьируются, позволяя установить приборы даже в небольших помещениях;
  • доставка питьевой воды на дом или в офис осуществляется по минимальной цене, благодаря постоянным акциям от нашей компании;
  • вместе с водой вы можете приобрести одноразовую посуду, чай, кофе и прочую вспомогательную продукцию.

Наша компания производит быструю и выгодную доставку питьевой воды по Самаре и Тольятти. Оформить заявку можно как в телефонном режиме, так и через онлайн-форму на сайте фирмы.

Чистая вода – это ценность, но она не должна быть на вес золота. Наша миссия – обеспечить каждый дом и рабочее место качественной питьевой водой, поэтому мы приготовили для наших клиентов самые выгодные условия.

Опреснение воды обратным осмосом: интересная технология

Из содержания этой статьи вы узнаете:

1. Сущность метода опреснения воды обратным осмосом.

1.1. Техническое описание.

1.2. Области применения.

2. Обратный осмос – интересная технология.
3. Преимущества и недостатки метода.

Вода — важнейший элемент жизни, которая составляет 71% поверхности планеты. К 2030 году почти половина населения мира, или четыре миллиарда человек, будут испытывать нехватку пресной воды. Как ни парадоксально, только 3,5% этой воды пригодно для потребления человеком, которое можно найти в озерах, реках и родниках для удовлетворения наших физических и гигиенических потребностей. Остальные 96,5%, расположенные в морях и океанах, не пригодны для питья из-за высокого уровня солей. Поэтому соленая вода является незаменимым природным ресурсом для производства питьевой воды.

Вы ищете инновационные решения для обеспечения долгосрочного снабжения питьевой водой? — Опреснение воды путем обратного осмоса отвечает требованиям к экономическим и экологическим характеристикам.

Одним из направлений нашей компании является производство опреснительных установок на заказ. На протяжении 11 лет работы мы произвели и ввели в эксплуатацию по всей территории РФ наше оборудование, обеспечив около 5 млн. жителей качественной водой.

Рис. 1 Установка опреснения морской воды в блочно-модульной станции очистки воды

Каждое оборудование спроектировано как уникальное и оригинальное решение для отдельных проблем, но все они имеют одинаковые стремления к экономическим и экологическим показателям благодаря использованию высокоточных технологий. Ваш проект ждет Вас! Звоните прямо сейчас!

ТПФ «Вагнер-Екатеринбург» использует свой опыт как конструктор-оператор, чтобы предложить конкурентоспособные решения, которые разработаны и построены для удовлетворения ваших конкретных потребностей и для каждого типа воды.

Наши идеально спроектированные опреснительные установки:

  • Опреснительные установки, которые производят питьевую, поливную или промышленную воду – Блочно-модульные станции водоподготовки Вагнер;
  • Стандартизированные малые или большие объекты – Промышленные системы обратного осмоса Вагнер;
  • И многие другие.

1. Сущность метода опреснения воды обратным осмосом.

«Рассол хорош в определенных случаях» – слова простого человека. А что с водой, в которой избыток солей? — Разберемся.

Обессоливание — это процесс разделения, используемый для снижения содержания растворенных солей в соленой воде до приемлемого уровня. Во всех процессах опреснения воды используются три потока жидкости: соленая питательная вода (солоноватая вода, либо морская вода), вода с низким содержанием солей и очень солевой концентрат (рассол, либо отбракованная вода).

Соленая вода обратного осмоса относится к опреснению воды с более низким содержанием соли, чем морская вода, обычно из устьев рек или соленых скважин. Процесс, в принципе такой же, как обратный осмос морской воды, но требует более низкого давления и, следовательно, меньше энергии.

Как использовать этот неиссякаемый источник жизни?

Технология опреснения воды делает это возможным. Человек разработал множество систем для преобразования морской воды в питьевую. Такие методы, как электродиализ, обратный электродиализ, многостадийная флэш-перегонка или многоэтапная перегонка, работают на опреснительных установках, действующих по всему миру. Однако наиболее распространенной и наиболее совершенной системой является опреснение воды методом обратного осмоса, внедрение которого составляет 61% по сравнению с другими системами.

Соленая питательная вода берется из океанических или подземных источников. Процесс обессоливания разделяется на два выходных потока: низко соленую воду и очень концентрированный солевой поток. Использование опреснения воды преодолевает парадокс, с которым сталкиваются многие, — доступ к практически неисчерпаемым запасам соленой воды, но нет возможности ее использовать. Хотя некоторые вещества, растворенные в воде, такие как карбонат кальция, могут быть удалены химической обработкой, другие распространенные компоненты, такие как хлорид натрия, требуют более технически сложных методов, которые в совокупности известны как опреснение.

Продуктовая вода процесса опреснения, как правило, представляет собой воду с менее чем 500 мг/л растворенных твердых веществ, которая подходит для большинства бытовых, промышленных и сельскохозяйственных целей.

Побочным продуктом опреснения является рассол. Рассол представляет собой концентрированный солевой раствор (с более чем 35000 мг/л растворенных твердых веществ), который необходимо утилизировать, как правило, путем сброса в глубокие соленые водоносные горизонты или поверхностные воды с более высоким содержанием соли.

1.1. Техническое описание

Существует два типа мембранных процессов, используемых для опреснения:

  • обратный осмос (RO)
  • электродиализ (ED)

Нас, конечно же, интересует RO. Технология обратного осмоса заключается в том, что вода из солевого раствора под давлением отделяется от растворенных солей путем протекания через водопроницаемую мембрану. Пермеат (жидкость, протекающая сквозь мембрану) стимулируется протекать через мембрану за счет разности давлений, создаваемой между находящейся под давлением питательной водой и продуктовой водой, которая находится под давлением, близким к атмосферному. Оставшаяся питательная вода проникает через находящуюся под давлением сторону реактора в виде рассола. Никакого нагрева или изменения фазы не происходит. Обязательным требованием к энергии является начальное повышение давления питательной воды.

Рис. 2 Схема мембранного процесса на основе обратного осмоса

1.2. Области применения

В настоящее время технологии RO используются в каждом уголке земного шара для опреснения грунтовых вод. Новые мембраны разрабатываются для работы при более высоких давлениях и с большей эффективностью (удаление от 60% до 75% соли и почти все органические вещества, вирусы, бактерии и другие химические загрязнители).

  • Промышленное использование: Промышленные применения, где требуется чистая вода, например, производство электронных деталей, специальных пищевых продуктов и фармацевтических препаратов, используют обратный осмос как элемент производственного процесса, где необходимо концентрирование и фракционирование влажного технологического потока.
  • Использование в сельском хозяйстве: фермеры, работающие в теплицах, начинают использовать обратный осмос для опреснения и очистки поливной воды для использования в теплицах, так как в продуктах RO содержится меньше бактерий, что также предотвращает болезни растений. Технология обратного осмоса была использована для этого типа применения фермером из штата Флорида, США, чье производство европейских огурцов в 22 га. Теплица увеличилась с примерно 4000 дюжин огурцов в день до 7000 дюжин, когда фермер изменил подачу оросительной воды с источника загрязненного поверхностного водного канала на источник солоноватых подземных вод, опресненный RO. Использовали систему обратного осмоса с 300 литров/день, производящую воду с содержанием натрия менее 15 мг/л.

2. Обратный осмос – интересная технология.

Ключевым моментом в процессе опреснения воды является обратный осмос. В этом процессе морская вода прижимается к полупроницаемым мембранам под давлением в условиях непрерывного потока. Высокое содержание соли в морской воде требует, чтобы рабочее давление для обратного осмоса было в пределах 60-70 бар. По мере того как вода проникает через мембрану, большая часть растворенных примесей удаляется, и удаляется 99,5% всей соли. Примеси остаются в текущей воде, и концентрированный поток из мембран сбрасывается. Конструкция сей системы — должна оптимизировать потоки, площадь мембран и другие условия, чтобы поддерживать работу системы с максимально возможной эффективностью.

Рис. 3 Технология обратного осмоса

Прикладные мембраны установили ряд систем обратного осмоса для опреснения морской воды. Типичная система состоит из фильтрации, ультрафиолета, химического впрыска с последующим обратным осмосом мембран. В таблице ниже приведены типичные характеристики системы морской воды:

Система обратного осмоса состоит из четырех основных компонентов или процессов:

  • Предварительная обработка. Поступающая питательная вода предварительно обрабатывается для совместимости с мембранами путем удаления взвешенных веществ, корректировки pH и добавления порогового ингибитора для контроля образования отложений, вызванных такими компонентами, как сульфат кальция.
  • Повышение давления: насос поднимает давление предварительно обработанной питательной воды до рабочего давления, соответствующего мембране и солености питательной воды.
  • Мембранное разделение: проницаемые мембраны препятствуют прохождению растворенных солей, в то же время, пропуская через них опресненную воду. Подача питательной воды на мембранный узел приводит к получению потока пресной воды и отработанного потока концентрированного рассола. Поскольку ни одна мембрана не является идеальной в своем отводе растворенных солей, небольшой процент соли проходит через мембрану и остается в воде продукта. Мембраны обычно изготавливаются из ацетата целлюлозы, ароматических полиамидов или, на сегодняшний день, тонкопленочных полимерных композитов. Оба типа используются для соленой воды и опреснения морской воды
  • Стабилизация после обработки. Продуктовая вода из мембранного узла обычно требует регулировки pH и дегазации перед передачей в систему распределения для использования в качестве питьевой воды. Продукт проникает через аэрационную колонну, в которой pH повышается со значения приблизительно от 5 до значения, близкого к 7. Во многих случаях эта вода сбрасывается в резервуар для хранения для последующего использования.

3. Преимущества и недостатки метода.

Опыт работы с технологией опреснения путем обратного осмоса намного улучшился за последние 15 лет. Наблюдается, что у меньшего количества заводов и промышленных предприятий были долгосрочные эксплуатационные проблемы. Если предположить, что правильно спроектированный и сконструированный блок установлен, основными эксплуатационными элементами, связанными с использованием технологии RO, будут ежедневный мониторинг системы и систематическая программа профилактического обслуживания. Профилактическое обслуживание включает калибровку прибора, регулировку насоса, проверку и регулировку подачи химических веществ, обнаружение и устранение утечек, а также структурный ремонт системы в соответствии с запланированным графиком.

Преимущества:

  • Эффективность технологии
  • Годность
  • Срок службы
  • Стоимость установки и монтаж

Недостатки:

Система обработки проста; единственным осложняющим фактором является поиск или производство чистой подачи питательной воды, чтобы минимизировать необходимость частой очистки мембраны. Загрязнение происходит, когда поры мембраны забиты солями или заблокированы взвешенными частицами. Это ограничивает количество воды, которую можно обработать перед очисткой. Загрязнение мембраны можно исправить путем обратной промывки или очистки (примерно каждые 4 месяца) и замены фильтрующих элементов картриджа (примерно каждые 8 недель). Срок службы мембраны примерно составляет от 2 до 3 лет.

Дальнейшее развитие технологии

Мы не стоим на месте и постоянно совершенствуем наше оборудование. Процесс опреснения воды путем обратного осмоса будет дополнительно улучшен благодаря следующим достижениям:

  • разработка мембран, которые менее подвержены загрязнению, работают при более низких давлениях и требуют меньшей предварительной обработки питательной воды.
  • разработка более энергоэффективных технологий, которые проще в эксплуатации, чем существующие технологии.

Культурная приемлемость

Технология опреснения путем обратного осмоса воспринимается как дорогостоящая и сложная. Стоимость и масштабы установок настолько велики, что только государственные водопроводные компании с большим количеством потребителей, а также промышленные предприятия или курортные отели рассматривают эту технологию как вариант. Но нет. На самом деле были созданы специальные небольшие установки, где нет другого варианта водоснабжения. Если же у вас частный дом и своя скважина, не обязательно тратить бешеные деньги на технологии опреснения, достаточно обратиться к специалистам ТПФ «Вагнер» — они то уж точно подберут именно Ваш вариант.

Ниже представленно видео демонстрации системы обратного осмоса «Вагнер», аналогично установке опреснения воды

Как проще всего опреснить морскую воду

Один из наиважнейших показателей качества питьевой воды – это содержание растворенных в ней соляных примесей. При завышенном показателе минерализации она приобретает не очень приятный горько-соленый привкус.

Особо опасны ситуации, когда процент соли в воде превышает допустимые нормы, что крайне негативно сказывается на состоянии людей, употребляющих ее регулярно.

Последний пример характерен для морской воды, имеющей повышенное содержание различных солевых добавок. Есть несколько способов опреснения такой жидкости.

Опасность использования

Соленую воду не рекомендуется применять и в чисто практических или в бытовых целях, заливая ее в бак стиральной машины, например, или в посудную мойку. Любая техника (точнее, входящие в ее состав металлические детали) под воздействием сильных растворов очень быстро разрушаются, вследствие чего сама она со временем приходит в негодность.

Выходом из данной ситуации является опреснение морской воды, которое должно проводиться с соблюдением определенных правил. Ознакомимся с некоторыми из них более подробно.

Способы опреснения

При рассмотрении возможности превращения морской воды в свой пресный аналог следует исходить из того, что этот процесс и прост, и сложен одновременно. В разработку основных его принципов с давних пор вкладывались значительные средства, но положительные результаты были получены совсем не сразу.

Дело в том, что для его успешной реализации в промышленных масштабах требуются огромные затраты энергоресурсов. Лишь на государственном уровне удалось добиться сравнительно неплохих результатов в получении больших объемов пресной воды из неиссякаемых морских источников.

Используемые в промышленных установках методы изменения состава воды принято подразделять на следующие виды:

  • в первую очередь – это дистилляция (или попросту – выпаривание);
  • затем следует опреснение с помощью вымораживания;
  • далее идет процесс, известный под названием «обратный осмос»;
  • замыкает перечень также знакомый многим электродиализ.

В основу второго способа заложено замораживание воды до кристаллического состояния, после чего из кристаллов по известным технологиям выделяется пресная ее составляющая. Наиболее популярными среди всех перечисленных процедур являются методы обратноосмотической очистки, а также дистилляции.

Экстремальные условия

А что делать, если потребовалось опреснять морскую воду в походных условиях? Как показал опыт, для этих целей оптимально подходит самодельный дистиллятор, по принципу своей работы схожий с известными перегонными аппаратами.

Обратите внимание! Суть происходящих процессов в простом опреснителе заключается в нагревании соленой воды до кипения. После чего образовавшийся над ней пар сначала аккумулируется (собирается в одном месте), а затем тут же охлаждается.

В результате всех этих процедур на стенках сборной камеры оседают выпавшие в конденсат (охлажденные) капельки очищенной от соляных примесей воды.

Возможность выделения солей из смеси объясняется тем, что точка кипения у соляных растворов несколько выше, чем у чистой воды. Именно поэтому последняя испаряется раньше и отдельно оседает в сборную емкость.

Для реализации этого метода опреснения в походных условиях обязательно нужно будет запастись следующими предметами и ресурсами:

  • прежде всего, это сама морская вода, которой хватает на берегу моря или соленого озера;
  • далее, берется котелок или чайник, всегда имеющиеся в распоряжении туристов и служащие емкостью под нее;
  • потребуется алюминиевая трубка, заранее приготовленная еще до отправления в поход;
  • основной элемент системы – охлаждающее устройство, функцию которого в данном случае выполняет вырытая в песке на берегу моря глубокая яма;
  • и, наконец, нужна будет еще одна емкость, предназначенная для сбора очищенной от примесей воды (стеклянная бутыль, банка из нержавейки и так далее).

Для дистилляции воды прямо на месте ее забора на берегу моря или озера выкапывается яма глубиной до метра, а затем в нее под небольшим углом помещается сборная емкость (бутылка) со вставленной в ее горлышко трубкой.

Важно! Место их соединения должно быть надежно уплотнено посредством заранее припасенной резиновой прокладки.

Далее эта конструкция присыпается песком так, чтобы наверху оставалась лишь часть горлышка с трубкой. Ее ответный конец располагается над котелком или открытым чайником, наполненным морской водой. Место для разведения костра выбирается на небольшом удалении от бутыли с трубкой.

После разведения огня вода в походной емкости начинает бурлить, пар постепенно распространяется по трубке в зарытую бутыль и оседает в виде конденсата. А из него через определенное время на дне емкости набирается до 200–300 граммов чистейшей пресной воды.

Опреснение в домашних условиях

Наиболее простым и доступным в условиях дома методом очистки соленой воды считается применение системы, состоящей из ряда последовательно соединенных фильтров. Однако даже самые сложные фильтрующие комбинации не способны удалить из нее все имеющиеся примеси вредных веществ. Именно поэтому большой популярностью в народе пользуются знакомые большинству хозяек домашние методы опреснения.

Один из них предполагает помещение бутыли с неочищенной жидкостью в морозилку, где спустя некоторое время происходит замерзание чистой составляющей. Оставшаяся (незамерзшая) часть как раз и является вредной примесью и сливается из бутыли в раковину. Дальше остается лишь дождаться, пока остатки льда не растают при комнатной температуре, после чего талая вода будет готова к употреблению.

В заключение отметим, что известны еще два простых способа очистки и опреснения воды, легко реализуемые в домашних условиях. Первый из них заключается в элементарном ее кипячении, которое продлевается достаточно долго, после чего соль в виде накипи оседает на стенках. А второй – в использовании для фильтрации активированного угля, имеющегося в аптечке у любой хозяйки. Но здесь степень опреснения будет зависеть от концентрации соли.

Опреснитель на яхте

Опреснитель на яхте. Размышления о целесообразности. Выбор модели. Покупка и установка. Опреснитель в работе.

Что нужно знать

Опреснитель, он же ватермэйкер (watermaker) с точки зрения экономической целесообразности – абсолютно невыгодное вложение денег.

Не окупится НИКОГДА!

Несколько тысяч евро за покупку, плюс – немалые, думаю (пока не столкнулись), суммы на обслуживание-ремонт. На эти деньги можно водой всю жизнь заправляться, благо, она есть практически везде. Где-то совсем недорого, а где-то бесплатно.

Наш первый Океан – Атлантический – мы шли без опреснителя. Переход от Кабо-Верде (Острова Зеленого Мыса) до Французской Гвианы (северо-восток Южной Америки) занял 23 дня. За это время экипаж из четырех человек (двое взрослых и двое детей) потратил 500 литров пресной воды.

Режиму потребления пресной воды посвящен отдельный пост, но вкратце – мы не экономили воду на питье и приготовление пищи, один-два раза в день ополаскивались пресной водой из полуторалитровых бутылок.

Штатные танки «Lady Mary» вмещают 600 литров воды, еще 200 хранилось в канистрах. Внушительный запас, относительно текущего потребления.

По Карибским островам и в Средиземном море сложно найти место, где нет возможности заправиться водой.

Так зачем же покупать опреснитель?

Мы идем в Тихий Океан. И идем не в гоночном режиме, а в довольно неторопливом. Наличие опреснителя на борту дает автономию в части пресной воды, избытка которой на многих атоллах не наблюдается. Нам не нужно планировать маршрут, принимая во внимание места, где можно залить водяные баки.

Итак, покупаем!

После изучения рынка выбрали опреснитель итальянского бренда Schenker Watermakers.

Опреснитель Schenker Watermaker

Описание модели и первые впечатления.

Модель

выбрали самую простую – Smart 30. Питание от 12 вольт.

Число «30» в названии говорит о теоретически возможном (в идеальных условиях) количестве производимой пресной воды в час. В переписке дилер сообщил, что реальная выработка – 25 литров в час, при напряжении бортовой сети не меньше 12,5 Вольт. Потребляет 8 Ампер в час.

Что и подтвердилось после запуска системы.

.

Дилер

Это был британский дилер Schenker Watermakers, несмотря на то, что мы находились в Панаме и логичнее было заказать доставку из Флориды.

Американский дилер не подавал признаков жизни ни по телефону, ни по емейлу.

Доставка итальянского опреснителя откуда-то из под Лондона нам обошлась в дополнительные пару сотен долларов. Стоимость вместе с доставкой – около 5 тысяч фунтов стерлингов.

Пришлось отправлять двумя посылками, так как выяснилось, что панамский Fedex не доставляет посылки весом свыше 35 кг, и ехать за таковыми в аэропорт (в таможню) придется самостоятельно.

Все детали обговорены, оплата произведена, неделя на доставку – и курьер привозит вожделенные коробки прямо в марину Шелтер Бэй, где мы стоим в ожидании прохождения Панамского канала.

Система

Система состоит из двух блоков – мембрана и насос высокого давления с фильтром.

Это удобно:

  • блоки можно разнести в удобные места, где они не будут занимать лишнего места и к ним можно легко добраться для сервисного обслуживания.

Рис. 1 – Блок с мембраной

Рис. 2 – Помпа высокого давления

Ограничения по установке:

  • Насос должен стоять как можно ниже, лучше даже ниже ватерлинии и быть не дальше, чем 1,5 метра от кингстона забортной воды.
  • Мембрану можно ставить практически в любое место, где к ней будет легкий доступ для сервиса.
  • Требуется подключение к системе пресного водоснабжения для промывки мембраны до и после работы опреснителя.
  • Напряжение 12 Вольт. Блок управления устанавливается в любое удобное место и имеет всего два переключателя:
    • режим работы опреснителя
    • промывка мембраны пресной водой.

Все необходимые соединительные элементы для электрической и водяной части были в комплекте. Необходимо докупить лишь шланги и провода нужной длины.

Установка системы

Насос высокого давления установили в моторный отсек, рядом с выделенным кингстоном забортной воды. Мембрану – в рундук под сиденьем дивана в рубке. Пульт управления вывели на камбуз.

Оба блока готовы к установке

Как работает опреснитель

Забортная вода всасывается, проходя через два фильтра – грубой очистки (металлическая сетка) и тонкой очистки (5 микрон) в помпу высокого давления, откуда поступает на мембрану.

Теоретически, мембрана – это очень тонкий фильтр, пропускающий молекулы воды и ничего больше. Но здесь мембрана пропускает чуть больше, чем просто молекулы воды – еще и пару процентов солей.

Из опреснителя выходит не дистиллят – без минеральных солей и вкуса, а отличная питьевая вода. Как написано в рекламном буклете производителя – “не уступающая по качеству лучшим сортам минеральной бутилированной воды“. Сущая правда!

Остальное вместе с избыточными солями выливается за борт через специальное отверстие в корпусе выше ватерлинии. Пришлось дырявить корпус для выделенного слива этой суперпересоленой воды.

Левое – самое новое отверстие – слив для пересоленой воды, после отделения пресной

Пресная же вода, проходя систему шлангов и клапанов, льется в специальный кран на камбузе. Через пару минут после включения опреснителя пробуем на вкус готовый продукт и, убедившись, что он не соленый, переключаем слив вместо крана на один из пресноводных баков.

Переключатели, установленные на камбузе

Побочный эффект наличия опреснителя: экипаж расслабился и потребляет больше воды, чем прежде :).

Режим потребления пресной воды на борту отдельно взятой яхты будет здесь >>

admin

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Наверх