Электрификация

Справочник домашнего мастера

Омметр своими руками

Содержание

СХЕМА ПРИСТАВКИ МИЛЛИОММЕТРА

В повседневной практике радиолюбителя пожалуй ни одна из измеряемых электрических величин не бывает часто столь малой и не требует такого точного её измерения как сопротивление. Наименьший предел измерения сопротивления, имеющийся в большинстве цифровых мультиметров, составляет 200 ом. Отсюда естественным образом следует, что точное измерение сопротивлений с меньшими значениями практически невозможно. В качестве примера можно назвать измерение сопротивления обмоток трансформатора или подбор шунта для измерительной головоки. Выходом в создавшейся ситуации будет изготовление приставки к уже имеющемуся мультиметру.

Выбор пал на радиоконструктор (повторяемость схем в набор высокая + готовая печатная плата + стоимость деталей вполовину меньше чем в рознице) и на его основе была собрана вот такая приставка. Корпусом послужила подходящая коробочка из пластмассы.

Схема приставки миллиомметра

Работа схемы приставки миллиомметра основана на определении падения напряжения на предмете измерения, при протекании через него фиксированного тока. Ток формируется генератором на транзисторе. Работой транзистора управляет усилитель на микросхеме TL062, которая питается стабилизированным напряжением от микросхемы 78L05. Предел измерений изменяется при помощи переключателя SA1. Диод, подключённый параллельно объекту измерения предохраняет мультиметр при включении приставки без измеряемого компонента. Особо следует заметить, что кнопка SB1 включается только исключительно на время проведения измерений. От себя добавил в схему светодиод с ограничивающим резистором номиналом 1,2 кОм для индикации включения («оживил» конструкцию).

Печатная плата довольно компактная, но можно сделать её ещё меньше, особенно применив смд компоненты.

А на существующую плату дополнительно свободно поместились:

  • разъём подключения питания
  • радиаторы на транзистор и стабилизатор
  • основание под кнопку включения приставки

На нижней части корпуса были смонтированы штыри соединяющие приставку с гнёздами мультиметра.

Конструкция помещённая в корпус, имеет совсем уже другой вид…

Для настройки приставка присоединяется к гнёздам мультиметра «mA» и «СОМ», предел измерения ставиться на 200 mA постоянного тока, подводится питание (9 вольт) к разъёму, переключатель в положении «отжат» (измерение до 2 Ом) нажимается кнопка включения и отвёрткой, через отверстие в верхней части корпуса, устанавливается, регулировкой резистора R7, ток 100mA.

Затем переключатель переводиться в положение «нажат» (измерение до 20 Ом) и устанавливается, регулировкой резистора R4, ток 10mA.

Для производства измерений приставка присоединяется уже к гнёздам «СОМ» и «V», предел измерения ставиться 200 mV постоянного напряжения. На фото на пределе измерения приставки «до 2 Ом» 1% резистор сопротивлением 0,33 Ом.

А это 1% резистор сопротивлением 1 Ом на пределе «до 20 Ом». Точность измерения приставкой очень даже достаточная, что позволяет решать все вопросы по измерению малых сопротивлений возникающих в процессе занятий электроникой. Скачать архив с описанием можно . Собрал и опробовал приставку Babay.

Форум по измерительной схемотехнике

Схемы измерительных приборов

Миллиомметр — приставка к мультиметру

Измерительная техника

Главная Радиолюбителю Измерительная техника

Приставка совместно с цифровым мультиметром серий М-83х, DT-83x позволяет проводить измерения малых активных сопротивлений с дискретностью 0,001 Ом. Как и предыдущие приставки, разработанные автором, она питается от внутреннего стабилизатора АЦП мультиметра.

Известно, что мультиметры серий М-83х, DT-83x обладают малой погрешностью измерения напряжения постоянного тока. Причём эту погрешность всегда можно минимизировать, откалибровав прибор подстройкой образцового напряжения (100 мВ). Поэтому, по мнению автора, разработка и повторение приставок для мультиметра, преобразующих ту или иную измеряемую величину в постоянное напряжение на его входе «VΩmA», могут представлять интерес для определённой части радиолюбителей как с финансовой точки зрения, так и с творческой. При доступности элементной базы и её стоимости из таких приставок можно собрать неплохой измерительный комплекс для домашней лаборатории, не прибегая к покупке дорогих измерительных приборов, причём зачастую с погрешностью измерений, приближающейся к погрешности самого мультиметра. Очередная такая приставка — миллиомметр — представлена ниже. Она позволяет измерять малые активные сопротивления резисторов, что особенно важно при их самостоятельном изготовлении из отрезков проводов с высоким удельным сопротивлением, например, для различных шунтов.

Основные технические характеристики

Интервал измерения, Ом …………..0,001…1,999

Погрешность измерения сопротивления в интервале 0,2…1,999 Ом, %, не более * ……………………..2

Напряжение питания, В …………3

Ток потребления, мА, не более …………………..2,5

__________
* Погрешность измерения тщательно налаженного устройства в указанном выше интервале практически сводится к погрешности мультиметра в режиме измерения постоянного напряжения на пределе 200 мВ через 5…10 мин после включения приставки при замкнутых измерительных зажимах.

Существуют два простых способа измерения низкоомных резисторов. Первый — подавать через измеряемый резистор небольшой ток (единицы мА) с последующим усилением падения напряжения на измеряемом резисторе. Однако это потребует применения в усилителе постоянного тока дорогостоящих и не всем доступных прецизионных ОУ с малым напряжением смещения нуля и его уходом от изменения температуры. Второй — более простой и менее затратный — подавать больший ток (например, 100 мА) и непосредственно измерять падение напряжения на резисторе. В случае наличия соответствующего источника постоянного тока (ИТ) так и поступают. На первый взгляд, при питании миллиомметра от АЦП мультиметра такой возможности нет. Но существует ещё и импульсный метод, когда ток от ИТ для измерения подают короткими во времени импульсами по отношению к их периоду. При этом средний ток измерения, как известно, снижается пропорционально скважности импульсной последовательности.

Этот метод, как и в некоторых предыдущих разработках, например , использован для измерения малых сопротивлений.

Схема приставки приведена на рис. 1. Рассмотрим работу приставки при подключённом к зажимам ХТ3, ХТ4 измеряемом резисторе Rx.

Рис. 1. Схема приставки

На логическом элементе DD1.1 — триггере Шмитта (ТШ), элементах VD1, C1, R1, R2 собран генератор импульсов. Период повторения импульсов — 150…160 мкс, пауза — 3…4 мкс. При указанном на схеме включении диода VD1 генератор потребляет минимальный ток, что связано с особенностью разного потребления тока ТШ при его переходе из состояния логического нуля в логическую единицу и обратно . Когда напряжение на входе уменьшается от высокого уровня к низкому (на выходе уровень логического нуля), сквозной ток через выходные транзисторы ТШ в 2…4 раза больше, чем в обратном случае. Эта особенность, по наблюдениям автора, проявляется во всех ТШ буферизированной логики КМОП. Поэтому, если время разрядки конденсатора С1 сократить введением цепи VD1R2, средний ток потребления генератором импульсов при питании 3 В для серии 74НС будет равен 0,2 мА вместо 0,5…0,8 мА. Элементы DD1.2 и DD1.3 — инверторы, на выходе которых длительность импульсов равна 3…4 мкс, а пауза — 150…160 мкс. Они включены параллельно для повышения нагрузочной способности.

На транзисторе VT1 собран источник тока. Диод VD2 — термокомпенсирующий. Ток ИТ задан равным 100 мА. При таком токе на резисторе сопротивлением 2 Ом падение напряжения равно 200 мВ, что соответствует пределу измерения в мультиметре «200 mV». ИТ задаёт ток для измерения только при появлении паузы на выходе генератора импульсов на DD1.1, когда резистор R4 на время 3…4 мкс через этот выход подключён к общему проводу. «Ускоряющий» конденсатор С2 уменьшает время переключения транзистора VT1 для получения на измеряемом резисторе Rx прямоугольных импульсов. Инвертированные импульсы с выходов элементов DD1.2, DD1.3 поступают на затвор полевого транзистора VT2, включённого как синхронный детектор. На время действия импульса ток от ИТ проходит через измеряемый резистор, создавая на нём падение напряжения, которое через открытый транзистор VT2 синхронного детектора поступает на «запоминающий» конденсатор С4, заряжая его до падения напряжения на резисторе. Напряжение с конденсатора через клеммы XP2, XP3 поступает на вход «VΩmA» для измерения. По окончании импульса оба транзистора закрываются на время 150…160 мкс до появления следующего. Сглаживающий конденсатор С3 ёмкостью 220 мкФ устраняет в линии питания импульсный характер тока потребления приставкой, поддерживая его на уровне около 2,5 мА для встроенного стабилизатора напряжения +3 В АЦП мультиметра. Этот ток нетрудно определить, учитывая, что скважность импульсов на выходе инверторов DD1.2, DD1.3 равна 40…50 (100 мА/ (40…50)).

Узел на полевом транзисторе VT3 и элементах R8, C5 служит для ограничения тока зарядки конденсатора С3 от стабилизатора напряжения АЦП на уровне не более 3 мА с момента подачи питания в течение 5 с. При подаче питания напряжение на конденсаторе С5 начинает расти за счёт протекания зарядного тока через резистор R8. Когда оно достигнет порогового для транзистора VT3, последний начинает плавно открываться, обеспечивая ток зарядки конденсатора С3 на безопасном для стабилизатора АЦП уровне. Резистор R7 и диод VD3 обеспечивают разрядку конденсатора С5 после отключения питания.

Приставка собрана на плате из фольгированного с одной стороны стеклотекстолита. Чертёж печатной платы и расположение на ней элементов показаны на рис. 2. Фотография собранной приставки представлена на рис. 3.

Рис. 2. Чертёж печатной платы и расположение на ней элементов

Рис. 3. Фотография собранной приставки

Конденсаторы, резисторы и диоды — поверхностно монтируемые. Конденсаторы С1, С2, С4 — керамические типоразмера 1206, С3, С5 — танталовые типоразмеров С и В. Все резисторы — 1206. Немного подробнее следует сказать о транзисторе 2SA1286 (VT1) . Он заменим, например, 2SA1282, 2SA1282А с коэффициентом передачи тока h21Э не менее 500 (дополнительный индекс G) . Возможна замена и на другие аналогичные с меньшим h21Э (до 300), при этом сопротивление резистора R4 следует уменьшить до 1,8…2 кОм. Главное — проверить в документации или экспериментально, чтобы пологая часть выходной характеристики транзистора при токе коллектора Iк 100 мА начиналась с напряжения Uкэ не более 0,5 В. В противном случае на указанную погрешность измерения рассчитывать не придётся — она может быть существенно больше. Полевой транзистор IRLML2402 (VT2) заменим, например, FDV303N, а IRLML6302 (VT3) — BSS84. При иной замене следует учесть, что пороговое напряжение транзисторов, сопротивление открытого канала и входная ёмкость (Ciss) должны быть сопоставимы заменяемым.

Штырь ХР1 «NPNc» — подходящий от разъёма или отрезок лужёного провода подходящего диаметра. Отверстие под него в плате сверлят «по месту» после установки штырей ХР2, ХР3. Штыри ХР2 «VΩmA» и ХР3 «СОМ» — от щупов для мультиметра. Неразъёмные соединения XT 1, XT2 — лужёные пустотелые медные заклёпки, пропаянные с предназначенными для них контактными площадками на печатной плате. В заклёпки вставлены и пропаяны облуженные концы гибкого провода МГШВ сечением 0,5…0,75 мм2, заканчивающиеся зажимами XT3, XT4 типа «крокодил». Длина каждого провода — 10…12 см. Нижние внутренние поверхности «пасти» зажимов облуживают. Концы проводов, идущих к ним, облуживают, затем протаскивают в нижние «пасти» зажимов и припаивают. Припой следует нанести с излишком, который затем опиливают надфилем до уровня зубьев «крокодила», как показано на фотографии рис. 4.

Рис. 4. Зажимы с припоем

Приставка требует налаживания. При работе с ней переключатель рода работ мультиметра устанавливают в положение измерения постоянного напряжения на пределе «200 mV». Показания с учётом высвечиваемой запятой следует делить на 100. Перед подключением приставки к мультиметру следует проконтролировать потребляемый ею ток от другого источника питания напряжением 3 В, имеющего защиту по току, чтобы не вывести из строя встроенный маломощный стабилизатор напряжения питания АЦП в случае неисправности какого-либо элемента или случайного замыкания токоведущих дорожек платы.

Подключите приставку к мультиметру и замкните зажимы XT3, XT4, «закусив» их «пасти» с напаянными площадками друг на друга. Дайте установиться тепловому режиму транзистора VT1 в течение 5…10 мин. Несмотря на то что корпус транзистора холодный на ощупь, кристалл внутри корпуса даже от коротких импульсов тока 100 мА за это время нагреется и его температура стабилизируется. Для облегчения налаживания резисторы R3 и R6 на плате составлены из двух, соединённых параллельно. На рис. 2 они обозначены как R3’, R3” и R6’, R6”. Через 5…10 мин подберите резистор R6’ так, чтобы показания индикатора мультиметра оказались в интервале 0.+0,5 мВ, а затем подбором дополнительного резистора R6” большего сопротивления установите «чистый» ноль (±0 мВ). Далее, подключив к зажимам XT3, XT4 заведомо измеренный резистор Rx, например, 1 Ом, резисторами R3’ и R3” установите соответствующие показания на индикаторе мультиметра. Для уменьшения погрешности измерений указанные операции следует повторить до получения нужного результата. На рис. 5 показана фотография приставки с мультиметром при измерении проволочного резистора С5-16МВ мощностью 2 Вт с номинальным сопротивлением 0,33 Ом и допуском ±5 %.

Рис. 5. фотография приставки с мультиметром

При изменении печатной платы свободные входы элементов микросхемы DD1 следует соединить с плюсовой линией питания или с общим проводом.

Чертёж печатной платы в формате Sprint LayOut 5.0 можно скачать .

Литература

1. Глибин С. Измеритель ЭПС — приставка к мультиметру. — Радио, 2011, № 8, с. 19, 20.

2. Глибин С. Замена микросхемы 74АС132 в измерителе ЭПС. — Радио, 2013, № 8, с. 24.

3. 74HC14, 74HCT14. Hex inverting Schmitt trigger. — URL: http://www.nxp.com/ documents/data_sheet/74HC_HCT14.pdf (6.04.15).

4. 2SA1286. — URL: http://pdf.datasheetcatalog.com/datasheets2/14/ 147003_1.pdf (6.04.15).

5. 2SA1282, 2SA1282A. — URL: http://pdf. datasheetcatalog.com/datasheets2/16/ 163185_2.pdf (6.04.15).

С. Глибин, г. Москва

Дата публикации: 29.10.2015

Рекомендуем к данному материалу …

  • Мегомметр — приставка к мультиметру | Измерительная техника

Мнения читателей
  • Юрий / 30.01.2018 — 08:37
    Меня заинтересовала,пиши мне на почту amper36@ya.ru
  • Александр / 17.05.2017 — 22:40
    Кого интересует разводка плат в тестер,-пишите -sasha77760@Rambler,RU
  • Александр / 17.05.2017 — 22:06
    Прекрасные схемы измеритель esr+ИЗМЕРИТЕЛЬ резисторов 0—1.999 ом, причем обе приставки умещаются внутри прибора, только нужно вывести разьемы и поставить 2 малогабаритных переключателя тоже внутри тестера!

Миллиомметр своими руками


Приветствую, Самоделкины!
У большинства радиолюбителей при работе с источниками питания, очень часто возникает необходимость измерить сопротивление токовых шунтов, как самодельных, так и промышленных. А как известно обычным мультиметром даже хорошим и достаточно дорогим невозможно измерить сопротивление менее 0,1 Ома.

Произвести замеры сопротивления любого резистора возможно при помощи лабораторного источника питания, который имеет функцию ограничения тока, мультиметра и, думаю, всем хорошо знакомого дедушки Ома, вернее его закона.



Но согласитесь, не плохо бы было иметь специализированное устройство, которое без дополнительных телодвижений способно измерить сопротивление нескольких резисторов и токовых шунтов. Поэтому AKA KASYAN, автор одноименного YouTube канала, решил изготовить такое устройство.

Само устройство получилось довольно компактным, обладает довольно высокой точностью и самое главное не зависит от сетей, так как имеет свой источник питания в лице батареи 6F22 (Крона) с напряжением 9В.


Такой батарейки хватит на довольно длительное время. Основа работы устройства — закон Ома.
В качестве подопытного возьмем резистор с не известным сопротивлением, которое нужно измерить.
Данное устройство имеет систему стабилизации тока на 100 мА и измерительный вольтметр, который измеряет падение напряжения на подопытном резисторе. А зная падение напряжения и ток протекающий в цепи, не составит особого труда понять, какое сопротивление имеет наш испытуемый резистор.
Конкретно в данном примере нет необходимости производить какие-либо дополнительные расчеты, так как выбран ток 100 мА (или 0,1 А), следовательно, 100 мВ (или 0,1В) на вольтметре будет означать, что сопротивление испытуемого резистора 1 Ом. При показаниях 10 мВ – значение сопротивления 0,1Ом, 1 мВ — сопротивление соответственно 0,01 Ом. Как видите все просто, привыкнуть можно достаточно быстро.
Для точной работы нашего самодельного устройства нам необходим вольтметр, который способен корректно измерять очень низкие напряжения. Изначально автор планировал сделать устройство аналоговым, но измерительные головки, которые были испытаны, увы, не могли отображать такие низкие напряжения, и требовалась установка усилитель, чего делать не хотелось, так как в наличии имелся прецизионный цифровой вольтметр, его автор приобрел на широко известной китайской торговой площадке Алиэкспресс.
Данный экземпляр, по словам продавца, имеет довольно малую погрешность, которая составляет всего 0,3 процента. Но не будем доверять продавцу и произведем дополнительную калибровку именно в диапазоне до 100 мВ. Погрешность эталонного мультиметра 1%.
Для калибровки вольтметра на его плате предусмотрен крохотный подстроечный резистор.
Сам вольтметр имеет 3 провода. Черный – это масса, желтый — измерительный плюс, красный провод — плюс питания вольтметра.
Такой вольтметр можно запитать от любого источника постоянного тока с напряжением от 3,5В до 28В.
Данный вольтметр пятиразрядный и теоретически способен измерять напряжение начиная от 100 мкВ. Но последние цифры на дисплее не стоит воспринимать всерьез, ну разве что для округления значений.
Минимальное напряжение, которое вольтметр может отображать более-менее корректно начинается от 1 мВ. Из этого следует, что минимальное сопротивление, которое может измерять наш прибор составляет 0,01 Ом, или 10 мОм.
Стабилизатор тока состоит построен всего на двух компонентах, а именно из токозадающего резистора и микросхемы lm317, которая в свою очередь подключена по схеме стабилизатора тока.
Для тока 100 мА необходим резистор с сопротивлением около 13 Ом. В данном примере автором был использован подстроечный многооборотный резистор СП5-1 родом из далекого СССР.
Данный резистор на 60 оборотов, благодаря чему можно с довольно большой точностью выставить необходимое сопротивление.
Вся схема выполнена на довольно компактной печатной плате. Хотя тут запросто можно обойтись и вовсе без платы из-за минимального количества компонентов.
Прибор собран, теперь необходимо произвести калибровку схемы. Для этого нам понадобится эталонный измеритель тока. В данном случае воспользуемся все тем же мультиметром в режиме амперметра, погрешность прибора в этом режиме около 1-го процента.
Подключаем все по схеме.

Питание — батарея 6F22, вращаем ползунок подстроечного резистора до тех пор, пока на экране прибора не увидим значения тока равное 100 мА.
Этим вся наладка завершена, остается только зафиксировать винт подстроечного резистора.
Корпус для данной самоделки автор решил напечатать на 3d принтере. Как видим получилось не очень аккуратно, ну ладно.
Теперь можно все устанавливать в корпус на свои места.
Ну а теперь переходим непосредственно к испытаниям нашего устройства в деле.
Согласитесь, неплохо правда. В итоге у нас получился компактный и к тому же портативный миллиомметр.
Точность прибора. Погрешность показаний вольтметра составляет 1%, добавляем к этому еще 1% погрешности системы ограничения тока, ну и добавим еще около процента на всякие потери в проводах и соединениях. В идеале получаем погрешность, не превышающую 3%. Но при измерении сопротивлений менее 0,01 Ома и выше 0,5 Ом погрешность возрастает поскольку калибровку устройства мы производили именно на этот диапазон, но и это, согласитесь, неплохо, с учетом того, что стоимость сборки не превышает 5-6 долларов.
Ну а на этом, пожалуй, пора заканчивать. Благодарю за внимание. До новых встреч!
Видеоролик автора:

Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. .

Микроомметры, Миллиомметры, Омметры

Микроомметр — это разновидность измерительного устройства, омметра, служащего для определения активного электрического сопротивления. Предназначение микроомметра — измерения сопротивлений величиной менее чем 1 мОм.

Назначение

Микроомметры разнообразных марок служат для определения параметров электрических цепей, сопротивлений контактов на выключателях различного типа — болтовых, паяных и др. на объектах электрохозяйства. При помощи этих устройств проводится тестирование двигателей, моторов, трансформаторов, выключателей, разъединителей.

Устройства используются на предприятиях, связанных с энергетикой, электростанциях и подстанциях и в сфере электротранспорта. Применение этих устройств дает возможность не только определить качество соединений в электрических цепях, но и выявить дефекты и посторонний металл, которые имеются в слитках (к примеру, разница в сопротивлении золота и вольфрама).

По принципу применения эти устройства разделяются на следующие типы:

  • щитового типа;
  • лабораторного применения;
  • переносные приборы.

Принцип работы

По своему устройству микроомметры разделяются на два типа:

  • магнитоэлектрического принципа: действие таких приборов, основывается на измерениях с использованием магнитоэлектрического амперметра;
  • электронного принципа действия: аналоговые, которые используют для работы операционный усилитель и цифровые, в которых информация, попадающая с измерительного моста на устройство управления, передается на блок индикации.

Цифровые микроомметры, позволяющие с высокой точностью измерять малые значения сопротивлений, имеют жидкокристаллический экран, индикацию, позволяющую определить уровень зарядки. Их преимущества:

  • есть возможность проверки непрерывности заземления и качества всех соединительных контактов;
  • предусмотрен автоматический, непрерывный и нормальный запуск;
  • высокая память;
  • устойчивость к помехам;
  • определение разряда индуктивности, который осуществляется в автоматическом режиме по окончании измерений;
  • способность передачи данных на компьютер.

Своим клиентам мы предлагаем различные виды микроомметров. В карточках наших товаров вы всегда сможете получить детальную информацию о характеристиках приборов и их стоимости.

Как пользоваться омметром

Приборы для измерения сопротивления

Стоит открыть любой учебник по электротехнике и сразу выясняется, что практически все электротехнические величины названы в честь великих физиков прошлого: Вольт, Ампер, Генри, Ом, Фарада, Тесла, Герц. Конечно, обидно, что российских физиков в этом списке нет.

Немецкий физик Георг Ом первый ввёл понятие сопротивления. В его честь единицу измерения сопротивления стали называть «Ом». Эта величина изображается греческой буквой омега – Ω.

Раньше радиоэлементы так и назывались «сопротивление» и лишь много позже в обиход вошло слово резистор. До введения маркировки с помощью цветных полосок все необходимые данные наносились непосредственно на корпус резистора. В технической литературе можно встретить такие обозначения: килоом и мегаом, что означает соответственно тысяча ом и миллион ом. На принципиальных схемах рядом с обозначением резистора можно встерить надписи: 4К7 – четыре и семь килоома (4,7 кОм) или 1М2 – один и два мегаома (1,2 МОм). На зарубежных схемах «Ом» пишется как «Ohm».

Для измерения сопротивлений используется прибор, который называется Омметр. Приборы, измеряющие только сопротивление, в радиолюбительской практике обычно не используются. Такие высокоточные приборы применяются на заводах выпускающих резисторы для определения номинала с определённой погрешностью или в научно-исследовательских лабораториях.

Зато все знают такое понятие как тестер или мультиметр. Такие приборы объединяют в себе вольтметр, амперметр и омметр + ещё функционал дополняется возможностью проверки диодов или же измерения температуры. Всё зависит от стоимости и исполнения прибора. Мультиметры бывают стрелочные и цифровые. Каждый из них имеет свои особенности, достоинства и недостатки.

На принципиальных схемах омметр обозначается следующим условным графическим обозначением.

Стоит понимать, что так обозначается прибор целиком. В реальности же омметр также собран из достаточно большого количества радиодеталей, и его принципиальная схема включает в себя немалое количество элементов. Данное условное обозначение применяется в основном для того, чтобы показать, на каком участке схемы и каким прибором необходимо проводить измерение. Вот пример.

Здесь на схеме показано, как нужно замерять сопротивление звуковой катушки динамика. Из схемы видно, что кроме омметра (измерительного прибора) и самого динамика ничего не нужно.

Как уже говорилось, омметр, как правило, входит в состав мультиметра. Исключение составляют только узкоспециализированные и высокоточные приборы для измерения сопротивления. Они стоят довольно дорого и их могут позволить себе только крупные фирмы и исследовательские лаборатории.

Омметр в составе тестера-мультиметра используется как вспомогательный. Прежде всего, им можно проверять исправность транзисторов и диодов, а при небольшом навыке стабилитронов и тиристоров. Омметр незаменим при поиске самых главных неисправностей электронных схем:

Короткое замыкание, где его быть не должно.

Обрыв там, где должна быть замкнутая цепь.

Конечно, омметром проверяются обмотки трансформаторов, электродвигателей. Несложно проверить электролитические конденсаторы большой ёмкости, но только на исправность. На утечку проверить электролит не удастся.

О стрелочных измерительных приборах…

Стрелочные приборы в настоящее время применяются редко ввиду большой погрешности, ограниченной функциональности и необходимости расчёта результатов показаний. Кроме того, стрелочные приборы время от времени требуют калибровки.

Стоит отметить, что стрелочные омметры устроены проще своих цифровых собратьев. Ранее, ещё до широкого распространения цифровых мультиметров, в ходу у радиолюбителей были так называемые авометры. Авометр – это стрелочный многофункциональный прибор, который в одном корпусе объединяет три прибора для измерения основных электрических величин: амперметр – измеряет силу тока, вольтметр – измеряет напряжение и омметр – измеряет сопротивление. Как видим, название авометра происходит от названий тех приборов, которые входят в его состав.

Стоит отметить, что для стрелочных приборов, таких как амперметр и вольтметр не нужен источник питания (батарейка), а омметр обязательно требует наличие батареи питания.

Дело тут в том, что стрелочные приборы амперметр и вольтметр измеряют такие величины, как ток и напряжение на рабочих, включенных приборах. И именно поэтому им не нужен свой собственный источник питания, так как энергию для отклонения указательной стрелки они получают от участка схемы, на котором проводится замер электрических величин.

С омметром другая история. Омметр замеряет сопротивление. Но замерить сопротивление участка цепи, которое находиться под рабочим напряжением нельзя. Можно лишь замерить ток и напряжение на участке цепи и с помощью закона ома вычислить сопротивление этого участка. Думаю, с этим понятно.

Поэтому омметр используют лишь в тех случаях, когда нужно измерить сопротивление участка цепи или радиодетали при выключенном рабочем электропитании. А для того, чтобы определить сопротивление какого-либо участка цепи или радиодетали, нужно пропустить через него пусть и небольшой ток, которого достаточно для отклонения стрелки стрелочного прибора. Именно поэтому стрелочные вольтметры и амперметры могут работать и без батареи питания, но вот даже стрелочный омметр без батарейки работать не будет.

К недостаткам стрелочных приборов можно отнести достаточно большие габариты, необходимости калибровки, трудоёмкость при считывании показаний. Но, несмотря на это, и у стрелочных приборов есть свои преимущества.

Преимущество стрелочных приборов.

Что можно сказать в пользу стрелочных измерительных приборов? А вот что. Как уже говорилось, стрелочный амперметр и вольтметр не нуждаются в источнике питания. Об этом весомом преимуществе вспоминаешь регулярно, когда в цифровом мультиметре наглухо садится батарейка

Современный мультиметр в обязательном порядке требует наличия батареи питания. Она нужна для того, чтобы питать микросхемы контроллера и дисплея, на котором отображаются результаты измерений.

В пользу стрелочных приборов можно отнести и то, что они имеют достаточно простое устройство. Это напрямую сказывается на ремонтопригодности таких приборов. Восстановить работу стрелочного прибора порой не так уж и сложно и дорого, в то время как восстановить современный цифровой мультиметр иногда просто невозможно.

Взглянем на внутренности цифрового мультиметра.

Прибор питается от батарейки типа «Крона» напряжением 9 вольт. Её, предохранитель и контроллер прибора видно при снятой задней стенке. Также видны контактные участки многопозиционного переключателя и другие элементы схемы.

Рассмотрим основные практические измерения с помощью популярного прибора DT-830B. Прибор представляет собой компактный универсальный мультиметр, позволяющий измерять постоянное и переменное напряжение, силу тока и сопротивление. Кроме того на панели прибора есть специальный разъём для проверки коэффициента усиления h21Э (hFE) маломощных транзисторов.

Практическая работа с мультиметром DT-830B.

Прежде чем приступать к работе следует твёрдо запомнить одно правило. Независимо от того, что вы собираетесь мерить: ток, напряжение или сопротивление всегда необходимо начинать с максимального предела и поэтапно переходить на более низкие пределы измерения.

Пределы измерения омметра выглядят вот так.

На панели мультиметра DT-830B они ограничены зелёной линией. Прибор имеет 5 пределов измерений:

200 – на этом пределе измеряются сопротивления величиной до 200 Ом;

2000 – на этом пределе измеряются сопротивления до 2 килоом (2 кОм = 2000 Ом);

20k – на этом пределе измеряются сопротивления, величина которых не превышает 20 килоом (20 кОм = 20 000 Ом);

200k – предел для измерения сопротивлений до 200 килоом (200 кОм = 200 000 Ом);

Ну, и наконец, 2000k – предел для измерения сопротивлений до 2 мегаом.

Если вы запутались в килоомах и мегаомах, и не знаете как определить, сколько это будет в омах, то добро пожаловать сюда. Там подробно рассказано о сокращённой записи численных величин.

Когда в режиме измерения сопротивления оба щупа разомкнуты, на индикаторе в старшем разряде высвечивается цифра 1, что означает бесконечно большое сопротивление.

А при замкнутых накоротко щупах на индикаторе высвечиваются три нуля. Это значить, что измерительная цепь коротко замкнута. Иногда самая правая цифра может быть 1 или 2 (на дисплее типа вот так 001 или 002). Это величина погрешности самого прибора. Она настолько незначительна, что ей можно пренебречь.

У профессиональных мультиметров, например В-38, которые используются в лабораториях, имеется потенциометр калибровки, с помощью которого можно установить > 0 of your page –>

kolobok100500 › Блог › Как пользоваться мультиметром

Мультиметр также часто называют “мультитестером”, потому что он предназначен для снятия довольно широкого спектра показателей: измерение постоянного и переменного напряжения, сопротивления и силы тока. Во многих мультиметрах также присутствует возможность измерения коэффициента усиления транзисторов и предусмотрен специальный режим для тестирования диодов, прозвонка цепи на короткое замыкание и т.д. Одним словом — “мульти” (для многого) “тестер”.

Дорогие модели подобных измерительных устройств включают в себя и дополнительные функции: замера температуры (с помощью щупа-термопары), индуктивности катушек, емкости конденсаторов.

Учиться пользоваться мультиметром мы будем на примере бюджетного устройства китайского производства стоимостью в 10-15 долларов «XL830L», каким пользуюсь я.

В комплект его поставки входит набор простеньких “щупов” (красный и черный провода на фото выше), при помощи которых и производятся измерения. Их, по необходимости, можно заменить на более качественные или — удобные.

Примечание: будьте готовы сразу же чем-то (скотчем, изолентой) зафиксировать места входа обеих проводов в полые пластмассовые трубки-держатели. Дело в том, что проводники в трубках жестко не зафиксированы и при поворотах и изгибах “щупа” могут запросто оторваться (в силу крайне хлипкого припоя) возле основания измерительного наконечника.

Перед тем, как начать пользоваться мультиметром по полной программе — посмотрим на наш цифровой тестер поближе.
В его верхней части мы видим семисегментное цифровое табло, которое может отображать до четырех цифр (9999 — максимальное значение). При разряде питающей батареи на нем появляется соответствующая надпись: «bat».

Под табло находятся две кнопки. Слева кнопка «Hold» — удержание показаний последнего значения (чтобы не держать в памяти при переписывании в блокнот). И справа — «Back Light» — подсветка экрана синим цветом (при замерах в условиях плохого освещения). С тыльной стороны на корпусе мультиметра имеется откидная ножка-подставка (для удобного размещения тестера на столе).

Питается цифровой мультиметр 9-ти вольтовой батарейкой типа «Крона». Правда чтобы добраться до нее нам придется снять резиновый защитный чехол и заднюю крышку тестера.
Внизу красным обведен наш элемент питания, а вверху — плавкий предохранитель, который (я надеюсь) защитит наш измеритель от выхода из строя в случае перегрузки.

Итак, перед тем, как начать пользоваться мультиметром надо правильно подсоединить к нему измерительные “щупы”. Общий принцип здесь следующий:
Черный провод (его называют по разному: общий, com, common, масса) это — минус. Мы подсоединяем его к соответствующему гнезду мультитестера с подписью «COM». Красный — в гнездо справа от него, это — наш “плюс”.

Оставшееся свободным гнездо слева — для измерения постоянного тока с пределом до 10-ти ампер (большие токи) и — без предохранителя, о чем свидетельствует предупреждающая надпись «unfused». Так что будьте внимательны — не сожгите устройство!

Также обратите внимание на знак предупреждения (красный треугольник). Под ним написано: MAX 600V. Это — максимально допустимый предел измерений напряжения для данного мультиметра (600 Вольт).

Предупреждение ! Запомните следующее правило: если измеряемые значения напряжения (Вольты) или силы тока (Амперы) заранее неизвестны, то для предотвращения выхода мультитестера из строя устанавливайте его переключатель на максимально возможный предел измерений. И только после этого (если показания слишком малы или — не точны) переключайте прибор на предел, ниже текущего.

Теперь, собственно, — как пользоваться мультиметром и как переключать эти самые “пределы”?

Работать с мультиметром надо с помощью кругового переключателя с указывающей стрелкой. По умолчанию она выставлена в положение «OFF» (прибор выключен). Стрелку мы можем вращать в любом направлении и таким образом “говорим” мультитестеру что именно хотим измерить или — с каким максимальным пределом будем работать.

Тут есть один очень важный момент! Работая с цифровым мультиметром, мы имеем возможность измерять значения как переменного, так и постоянного тока и напряжения. Сейчас в промышленности и быту в подавляющем большинстве используется переменный ток. Именно он “течет” по высоковольтным линиям проводов от генераторов электростанций в наши дома, “зажигает” наши лампы освещения и “питает” различные бытовые электроприборы.

Переменный ток, по сравнению с постоянным, намного легче преобразовывать (с помощью трансформаторов) в ток другого (нужного нам) напряжения. Например: 10 000 Вольт могут быть с легкостью превращены в 220 и совершенно спокойно направлены для нужд жилого дома. Переменный ток (по сравнению с постоянным) также намного проще “добывать” в промышленных масштабах и передавать его (с меньшими потерями) на большие расстояния.

Пользоваться мультиметром надо, учитывая все сказанное выше. Поэтому, запомните наизусть следующие сокращения:

DCV = DC Voltage — (анг. Direct Current Voltage) — постоянное напряжение
ACV = AC Voltage — (анг. Alternating Current Voltage) — переменное напряжение
DCA — (анг. Direct Current Amperage) — сила тока постоянного напряжения (в амперах)
ACA — (анг. Alternating Current Amperage) — сила тока переменного напряжения (в амперах)

Теперь, — можем учиться пользоваться мультиметром дальше. Приглядитесь к циферблату своего измерителя и Вы обязательно увидите, что он делится строго на две части: одна для измерения постоянного и вторая — переменного напряжений.
Видите — две буквы «DC» в левом нижнем углу на фото выше? Это значит что левее (относительно положения «OFF») мы будем работать с мультиметром, измеряя постоянные значения напряжения и силы тока. Соответственно правая часть мультитестера отвечает за измерения тока переменного.

Теперь предлагаю Вам сразу закрепить полученные знания на практике. Покажем пример использования мультиметра для замера емкости обычной батарейки для биоса «CR 2032» номиналом 3,3 Вольта.Помните наше предупреждение красного цвета? Всегда выставлять предел выше, чем измеряемые значения. Мы знаем, что в батарейке — 3,3V и это — ток постоянный. Соответственно — выставляем на круговом переключателе “предел” измерений по шкале постоянного тока в 20 Вольт.

Обратите внимание на отмеченный красным знак «+» на батарейке. К этой ее стороне мы прикладываем “плюс” (красный щуп), а к обратной стороне — “землю” (черный).

Примечание: если перепутать полярность (к плюсу — минус, а к минусу — плюс) т.е. — поменять “щупы” местами — ничего страшного не произойдет, просто перед результатом на цифровом табло Вы увидите знак “минус”. Сами значения измерений останутся верными.

Итак, мы воспользовались мультиметром и каков результат? Посмотрите (фото выше) на цифровое табло тестера. Там отображаются цифры «1.42». Значит в нашей батарейке сейчас 1.42 Вольта (вместо положенных трех). С размаху ее — в мусорное ведро ! Сбрасывать настройки биоса с такой батарейкой компьютер будет автоматически при каждом включении.

Чтобы научиться пользоваться мультиметром и эффективно с ним работать, нам надо знать (запомнить, записать, вызубрить, вытатуировать) следующие обозначения, которые мы наверняка встретим на аналогичных измерителях, не зависимо от их модели.
Более совершенные образцы мультиметров показывают еще и емкость элементов — «F» (она измеряется в Фарадах) и индуктивность — «L» (вычисляется в Генри — “Гн”).

Следующая позиция переключателя — 600 Вольт по шкале переменного тока. Она как нельзя лучше подходит для измерения напряжения в бытовой электросети (ток — переменный и значение шкалы — в несколько раз выше необходимого — 220-ти V.).
Порядок “щупов” в розетке роли не играет.

Следующая позиция — 200 Вольт (вот на ней напряжение в розетке мерить не нужно — сгорит мультиметр !). Правее у нас — цифра «200» со значком «µ» (микроампер — миллионная часть ампера). Подобные значения величин могут использоваться в разного рода электрических схемах.

Следующим на шкале — «2m» (два миллиампера — две тысячных Ампера). Показатель встречается преимущественно в транзисторах. Далее — «200m» — аналогично, но отсчет начинается с двухсот миллиампер. Следующее положение переключателя — «10A» (максимальная сила тока — десять Ампер). Это — территория больших токов, будьте внимательны ! Здесь нам нужно будет красный “щуп” включить в специальное гнездо, обозначенное на фото как «10ADC».

Значок акустической волны (прозвонка) линии на короткое замыкание. Какая нам от этого польза? Давайте разберем на примере.

Представьте себе такую ситуацию (как оказалось — весьма реальную), что часть кабелей забыли подписать. Получается следующее: на другом крыле здания (у компьютерной розетки пользователя) мы не можем сказать, какому именно кабелю из ста принадлежит данное конкретное окончание и поиск «счастливого конца» автоматически превращается в отдельную задачу

Вот тут-то нам на выручку и придет режим использования мультитестера в качестве “звонилки” кабеля на короткое замыкание. Поскольку в самом названии заключена подсказка, то нам остается следующее — организовать это самое КЗ (короткое замыкание).

В слаботочных сетях (к которым относятся компьютерные ЛВС) это — совсем не страшно. На концах кабелей с обеих сторон снимаем защитное покрытие, выбираем один конкретный кабель (который мы хотим найти (прозвонить)) и также очищаем от изоляции любую пару его проводников. А затем — просто скручиваем их между собой, создавая в линии “петлю”. Ей богу, это быстрее показать на фото, чем описывать словами.

AlexVi
Опубликовано 20.09.2017
Создано при помощи КотоРед.

Здравствуй, РадиоКот! С днюхой! Здравствуйте все!

Как-то мне подарили замечательную беспаечную плату, и это стало большим шагом в моем освоении мира электроники. Не надо теперь паять макеты «на весу», на проткнутых шилом картонках и замызганных перегретых монтажных платках. Собрать какую-то схемку стало быстрее в разы. Разобрать – тоже.

Но вот проблема: почти все имеющиеся у меня выводные резисторы имеют цветовую маркировку, и чтобы разложить их по своим местам после разборки макета приходилось или открывать справочник, или брать в руки мультиметр. На то, чтобы определить цвета колец на резисторе и сличить их со справочником уходит куча времени! Не слишком помогут и имеющиеся в сети многочисленные калькуляторы. Никакой уверенности, что не ошибся в определении колец. Поэтому, если под рукой мой верный М830-й, я брал мультиметр. Прибор показывает реальное сопротивление, я соображаю, к какому значению стандартного ряда сопротивлений оно относится, и кладу резистор в нужную коробочку. Неудобство в том, что приходится соображать, а самое большое неудобство в том, что приходится без конца крутить переключатель диапазонов на приборе.

Вот если бы прибор сам определял диапазон и показывал значение из ряда Е24! То есть те значения, что написаны у меня на коробочках, в которых разложены резисторы! Тогда только – измеряй и клади!

Эта идея совпала с давним желанием начать осваивать микроконтроллеры. Понятно же, что цифровую индикацию, автоматический выбор предела измерения и анализ измеренных значений надо делать с помощью микроконтроллера.

Так как все уже придумано до нас, посмотрел в Интернете что-нибудь похожее. Из наиболее подходящего нашел здесь же на РадиоКоте простой измеритель CLR и собранный на его основе сортировщик резисторов . Второе устройство хоть и в тему, но показалось мне каким-то монстрообразным и предназначенным для раскладки резисторов, ну, наверное, в промышленных масштабах с привлечением дешевой китайской рабочей силы или других гастарбайтеров 🙂 Мне же надо было простое устройство для десятка – другого резисторов от случая к случаю. И я решил упростить «монстра», выкинув оттуда все мне ненужное, доработав программу, и использовать при этом достоинства оригинального измерителя CLR и простой контроллер ATtiny2313.

Целью работы было: начать осваивать программирование для микроконтроллеров и сделать свое первое небесполезное устройство на МК – не копипаст и не моргалку светодиодом. То, что у меня получилось, я и предлагаю вашему вниманию.

Общий вид устройства

Устройство предназначено для раскладки резисторов по номиналам и представляет собой цифровой омметр с автоматическим выбором диапазона измерения, отображающий сопротивление тестируемого резистора на трехразрядном LED-индикаторе в виде, приведенном к стандартному ряду Е24. Диапазон измерений – от единиц ом до десятков мегаом. Прибор можно переключить и в режим обычного омметра. Размеры – 85х55х18мм.

Схема состоит из генератора на триггере Шмитта (U3.1) с частотозадающей цепью (R2+Rx)C6, микроконтроллера U4, тактируемого от кварцевого резонатора, трехразрядного светодиодного индикатора HL1, отдельных светодиодов D3, D4, D5 для индикации диапазонов измерения (Ом, кОм, Мом) и двух стабилизаторов напряжения, один из которых питает контроллер с индикатором (U2), а второй (U1) – микросхему триггера Шмитта. Отдельное питание генератора от хорошего стабилизатора должно повысить точность измерений, хотя здесь, возможно, это избыточно. Как вариант, можно не запаивать U1 и соединить на плате 14 вывод триггера U3 с выходом стабилизатора U2(pin 3).

В устройстве предусмотрен также переключатель S2 с фиксацией для выбора режима работы: Е24-омметра или обычного омметра. Включенный режим Е24 индицируется светодиодом D2. Кнопкой без фиксации S1 производится установка «нуля» перед началом измерений. Применен LED-индикатор с общим анодом. Индикация динамическая, аноды управляются через p-n-p ключи. Схема нарисована для индикатора CA56-11 с раздельными выводами сегментов для каждого знакоместа, но можно использовать любой другой с соединенными одноименными сегментами, это упростит разводку платы. Просто у меня был только такой. Размерность измеренного значения индицируется светодиодами разного цвета (D3, D4, D5), и подписана на корпусе. Для питания использован внешний источник 12В (сетевой адаптер от какого-то модема).

Если кратко, то принцип измерения сопротивления основан на фиксации относительного изменения частоты измерительного генератора при подключении неизвестного Rx. С помощью калибровочных констант рассчитывается его значение. Детальное описание способа измерения и расчета можно найти по приведенной выше ссылке и в соответствующей ветке форума . Полученное значение сопротивления сравнивается с таблицей для ряда Е24 и при попадании в какой-то номинал ряда, этот номинал отображается на индикаторе. Метод может обеспечить и большую точность, чем 3 разряда, но для раскладки резисторов по Е24 это не нужно.

Устройство содержит только широко распространенные недорогие детали. Я применил индикаторы с общим анодом, можно взять и с общим катодом, изменив таблицу формирования знаков и управления анодами в исходном тексте программы. Для ОК придется также изменить проводимость ключей Q1…Q4, подключив их эмиттеры к общему проводу. Для индикации размерности взяты обычные 3-мм светодиоды зеленого (Ом), красного (кОм) и желтого (Мом) цветов.

Печатная плата разрабатывалась под те детали, что у меня были: часть из них – выводные, часть – smd, снятые с разных плат. ATtiny2313 и индикатор пришлось купить. Важно, чтобы элементы времязадающей цепочки С6 и R2 были возможно стабильнее. В первоисточниках рекомендуют взять конденсаторы К73-9, К73-16, К73-17 (полиэтилентерефталатные) или слюдяные. Емкость его может отличаться от указанной на схеме и быть в диапазоне 5…10nF. Резистор R2 тоже надо взять из числа стабильных (с малым допуском по отклонению) в диапазоне величин 1…3кОм. С учетом этого я разводил плату под выводные С6 и R2. Частота кварцевого резонатора может быть в диапазоне 6…10Мгц. Все эти отклонения от указанных на схеме номиналов будут позже учтены калибровкой.

Плата получилась двухсторонняя, и делал я такую первый раз. Технология народная – ЛУТ. Оказалось, ничего сложного в двухсторонней печати нет. Делал за один прием, совмещая распечатки на просвет в конверт. Не сразу удалось добиться совпадения отверстий обеих сторон. Я рисую платки в DipTrace, а эта программа не печатает обе стороны на одном листе. Поэтому пришлось печатать на разных. Виновником брака оказался принтер, а точнее, неравномерная протяжка бумаги с ручного лотка. После перехода на основной лоток и с предварительным прогревом печки принтера все стало хорошо.

«Земли» генератора и остальной схемы разведены отдельно для соединения их у разъема питания в целях уменьшения возможных помех от цифровой части устройства. Надо сказать, что такая мера предосторожности оказалась излишней, и показания оставались стабильными при произвольном соединении этих «земляных» полигонов. Одно соединение («земля» разъема для программирования) не развелось, пришлось выполнить его проводком.

Фото платы устройства сверху. . и снизу

Плата подгонялась под корпус от какого-то мелкого устройства, купленного на барахолке за 20р. Все отлично влезло. Правда, переключатель S2 оказался чуть высоковат, и в плате пришлось сделать для него квадратное отверстие. S2 вставлен в него, выводы отогнуты снизу платы и распаяны на площадки. Входные клеммы сделаны на парном винтовом зажиме. К нему можно подключать как щупы, так и что-нибудь поудобнее. К сожалению, пока я так и не нашел какого-нибудь практичного способа нанесения надписей на пластиковый корпус, поэтому надписи на корпусе сделаны позорно. Конечно, это временно:). Плата разводилась под стабилизатор 78М05, однако, когда дело дошло до пайки, его в наличии не оказалось. Так бывает, и пришлось экспромтом заменить его на 78L05, которого вполне достаточно по току. На плате заметны и пара проводков – небольшая ошибка в разводке. В прилагаемых файлах она исправлена.

Перед использованием омметр надо откалибровать. Процесс калибровки детально разбирался в и , но думаю, что основные моменты можно повторить и здесь. В связи с недостатком свободной памяти программ калибровку измерителя придется сделать вручную. Для калибровки понадобится один резистор с точно известным номиналом. Номинал некритичен, например, несколько кОм.

Понятно, что при замкнутом входе (Rx=0) откалиброванный омметр должен показывать «0», а при присоединении «образцового» точного резистора, например, 5,67кОм – точно 5,67кОм. В программе за это отвечают 2 четырехбайтовые константы E_CONST_R и COEFF_R (смещение и масштаб), которые хранятся в EEPROM. Изначально там вписаны какие-то «стартовые» значения, не соответствующие конкретным примененным номиналам С и R. Мы увидим эти константы, открыв текст программы или считав программатором содержимое EEPROM. При калибровке нужно получить «правильные» константы и вписать их вместо первоначальных в EEPROM. Тогда при включении прибора всегда будет загружаться «правильная» шкала.

Итак, сама калибровка. Устройство надо включить в режиме обычного омметра, дать установиться тепловому режиму – погреть минут пять-десять.

  1. Ставим на вход перемычку (Rx=0). Индикатор отобразит какое-то значение.
  2. Нажимаем кнопку «установка нуля» и держим до момента обнуления значения на индикаторе. При этом в EEPROM запишется правильная E_CONST_R, и шкала прибора теперь будет проходить через ноль.
  3. Далее надо установить масштаб шкалы (COEFF_R). Подключим наш «образцовый» резистор 5,67кОм ко входу. Индикатор отобразит какое-то значение, например, 2,34кОм. Это значит, что масштабирующий коэффициент, изначально записанный в EEPROM (пусть, например, там 01DB9A39), необходимо увеличить в 5,67/2,34= 2,4230769230769230769230769230769 раза.
  4. Пользуясь калькулятором Windows, текущий COEFF_R переводим в десятичный вид, умножаем на 2,42307… и переводим результат снова в шестнадцатиричный вид (проверьте: 01DB9A39 * 2,42307…. = 04806BD8). Заменяем в исходнике значение COEFF_R на только что полученное.
  5. Считываем программатором значение E_CONST_R из EEPROM контроллера с адреса $54 и тоже заменяем им старое значение в исходнике.
  6. Компилируем исходник с новыми константами. Программируем контроллер (*.hex и *.eep).
  7. Снова включаем. Проверяем «ноль» на замкнутом входе и 5,67кОм на присоединенном «образцовом» резисторе. Может, быть, придется повторить всю процедуру еще раз. Мне хватило всего 2-х раз.

Можно обойтись без редактирования исходника и его перекомпиляции, если средствами программатора отредактировать константы в EEPROM по адресам $50 (COEFF_R) и $54 (E_CONST_R) и прошить их заново.

Перед началом измерений надо замкнуть вход и проверить нулевое показание на индикаторе. Если это не так, установить ноль нажатием кнопки «>0 Ссылки и литература:

Высокочастотный магнитоуправляемый ферровариометр

ОПИСАНИЕ

ИЗОБРЕТЕН ИЯ

К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

Союз Советских

Социалистических

Республик

Зависимое от авт. свидетельства №вЂ”

Кл. 21а», 8/О!

Заявлено 22.1!.1963 (№ 821171/26-9}

«. присоединением заявки №вЂ”

П риоритет—

Опубликовано 10.Х1.1970. Бюллетень № 34

Дата опубликования описания 1.VI.1971

Комитет по делам изобретеиий и открытий при Совете Мииистрое

СССР

МПК Н ОЗЪ

Авториt изобретения

-. 1Г.

Ю. Б, Несвижский, С. В. Павлов и Г. К. Бороничее 1т-;, „. — :;;

Заявитель Ленинградский электротехнический институт связи имени профессора

М. А. Бонч-Бруевича

ВЫСОКОЧАСТОТНЫЙ МАГНИТОУПРАВЛЯЕМЫЙ

ФЕРРОВАРИОМЕТР

Известны конструкции высокочастотных магнитоуправляемых ферровариометров, в когорых величина индуктивности управляется изменением постоянного подмагничивания ферритового сердечника. Метод получения в этих вариометрах величины конечной магнитной проницаемости, близкой к единице, приводит к большим потерям в цепи электромагнита, что снижает их экономичность. Кроме того, секционирование обмотки увеличивают паразипные емкости феррова|риометров, а тороидальная их форма усложняет технологию изготовления.

Предлагаемое устройство отличается от известных тем, что высокочастотная обмотка ооразована из четного числа равновеликих секций, которые размещены на одинаковых ферритовых пластинах прямоугольного сечения.

Причем пластины примыкают одна к другой сторонами с наибольшей площадью. Секции соединены так, что направление высокочастотного магнитного потока в каждой из двух соседних пластин противоположно. Наружные поверхности прямоугольного параллелепипеда образованы ферритовыми пластинами с высокочастотной обмоткой, которые полностью перекрываются примыкающими к ним ферритовыми пластинами прямоугольного сечения.

Ферритовый сердечник полностью размещен в пространстве втежду плоскими полюсными,наконечниками управляющего электромагнита, форма которых совпадает с формой поперечного сечения ферритового сердечника.

Предлагаемый вариометр позволит персстраивать радиопередающие устройства в более широком диапазоне частот или применять с меньшими потерями при,заданном коэффициенте перекрытия. Технология,и зготовлсния ферритовых сердечников и высокочастотной

10 обмотки, используемых для ферровариомстра. а также сопряжение сердечника с полюсами электромагнита значительно упрощаются.

На фиг. 1 изображен торедлагаемый ферровариометр; на фиг. 2 — Ip33ipGç епо сердечника.

15 Ферровариометр 1 .включает системы подмагничивания 2 и 3. Секции высокочастотной обмотки 4 и 5 размещены на двух ферритовых пластинах б и 7 прямоугольной формы. Коммутация секций обмотки произведена таким

20 образом, что магнитные потоки, проходящие по сердечникам, направлены навстречу один другому. Пластины 8, 9, 10 и 11,склеены между собой и предназначены для получения практически сплошной ферритовой среды, 2G внутри которой размещена высокочастотная обмотка. Сердечник находится между плоскими полюсами электромагнита, где напряжение .постоянного магнита поля максимальное, При этом почти весь поток подмагнпчивания

З0 замыкается непосредственно через феррпто285989

Предмет изобретения г » !

Редактор В. Ф. Смирягииа Тсхред А. А. Камышиикова Корректор T. А. Китаева

Заказ В!09 Тирани 480 Подписное

ЦН1!ИПИ Комитета по делам изобретений и открытий при Совете Министров СССР

Москва, Ж-35, Раушская наб., д, 4/5

Областная типография Костромского управления по печати вый сердечник, что позволяет наиболее эффективно использовать намагничивающую силу электромагнита.

1. Высокочастотный магнитоуправляемый ферровариометр, величина индуктивности которого управляется изменением постоянного подмагничивания ферритового сердечника, отличаюи1ийся тем, что, с целью повышения коэффициента перекрытия по индуктивности и упрощения технологии изготовления, высокочастотная обмотка образована из четного числа равновеликих секций, которые размещены на одинаковых ферритовых пластинах прямоугольного сечения, примыкающих одна к дру.гой сторонами с наибольшей площадью, а секции соединены таким образом, что нап ра вление высокочастотного магнитного потока в каждой из двух, соседних пластин противоположно.

2. Ферровариометр по п. 1, отлича>ощийся

5 тем, ITO ко всем наружным поверхностям прямоугольного параллелепипеда, образованного ферритовыми пластинами с высокочастотной обмоткой, примыкают ферритовые пластины прямоугольного сечения, полностью,перекрыl0 вающие пластины с высокочастотной обмоткой.

3. Ферровариометр по пп. 1 и 2, отличаюи1ийся тем, что ферритовый сердечник полностью размещен в пространстве между плоски-!

5 ми полюсными наконечниками управляющего электромагнита, форма которых совпадает с формой поперечного сечения ферритового сердечника.

Простой омметр

Более десяти лет назад в журнале «Радио» была опубликована схема весьма простого омметра (см. рисунок), которым можно измерять сопротивление различных деталей в диапазоне от нескольких омов до двух мегаом.

Вот уже несколько лет я пользуюсь этим прибором и доволен его работой. Простой омметр Основная деталь омметра, конечно, стрелочный индикатор РА1. Я использовал индикатор М2003-М1 стоком полного отклонения стрелки 100 мкА. Подойдет и другой индикатор, но пределы измерения будут иные. Индикатор подключен к измерительной цепи, составленной из резисторов R1, R2, батареи GB1, выключателя SA1 и гнезд Х1-ХЗ, к которым подключают проверяемые детали.

Когда контакты выключателя разомкнуты, детали, например резисторы, подключают к гнездам Х2 и Х3. Но вначале эти гнезда замыкают и устанавливают стрелку индикатора переменным резистором R1 на конечное деление шкалы — условный нуль отсчета. После размыкания гнезд к ним можно подключать проверяемый резистор. Это первый поддиапазон, на котором можно отсчитывать сопротивления примерно от 0,9 кОм до 2 МОм. Чем больше сопротивление, тем меньший ток протекает через индикатор и меньше отклонение его стрелки. Установив выключатель в положение замкнутых контактов, устанавливают стрелку индикатора на нуль отсчета, после чего подключают резистор к гнездам Х1, Х2 второго поддиапазона.

Теперь проверяемый резистор будет шунтировать индикатор, стрелка отклонится на меньший угол при меньшем сопротивлении резистора. Пределы измерения на этом поддиапазоне — примерно от 9 Ом до 22 кОм.

А.Федоткин, п.Майский Пермской обл.

Упрощенный авометр своими руками для начинающего радиолюбителя

Начинающим радиолюбителя можно рекомендовать изготовить не сложный прибор, наиболее часто используемым при ремонте или настройки радиотехнических устройств. Авометр объединяет в себе много­предельные амперметр и вольтметр по­стоянного и переменного тока, омметр, а иногда еще и испытатель маломощ­ных транзисторов.

Принципиальная схема подобного упрощенного измерительного при­бора показана на рис. ниже. Он позволя­ет измерять постоянные токи до 100мА, постоянные напряжения до 30 В и со­противления от 50 Ом до 50 кОм. Пе­реключение видов и пределов измере­ния осуществляется включением одного из щупов в гнезда Гн1—Гн10. Второй щуп, вставленный в гнездо Гн11 «Общ.», общий для всех видов и пре­делов измерения.

Омметр однопредельный. В него вхо­дят: микроамперметр ИП1, источник питания Э1 напряжением 1,5 В и добавочные рези­сторы R1 «Уст. 0» и R2. Перед изме­рением щупы прибора соединяют, и пе­ременным резистором R1 стрелку мик­роамперметра устанавливают на конеч­ную отметку шкалы, являющуюся ну­лем омметра. Затем щупами касаются выводов резистора, обмотки трансформа­тора или проводников участка цепи, сопротивление которых надо измерить, и по шкале омметра определяют ре­зультат измерения.

Четырехпредельный вольтметр обра­зуют тот же микроамперметр ИП1 и добавочные резисторы R3—R6. С ре­зистором R3 (при включении второго Щупа в гнездо Гн2) отклонение стрел­ки микроамперметра на всю шкалу соответствует напряжению 1 В, с ре­зистором R4—3 В, с резистором R5— 10 В, с резистором R6—30 В.

Миллиамперметр пятипредельный: 0—1, 0—3, 0—10, 0—30 и 0—100 мА. Его образует универсальный шунт составленный из резисторов R7—R11, к которому кнопкой Кн1 подключают микроамперметр ИП1. Так сделано для того, чтобы при измерении микро­амперметр подключался к шунту, через который течет большая часть измеряе­мого тока, а не наоборот.

Конструкция рекомендуемого комби­нированного измерительного прибора показана на рис. Микроамперметр типа М49 на ток полного отклонена стрелки 300 мкА с сопротивлением рам­ки 300 Ом. Переменный резистор R1 (СПО-0,5), кнопка КН (КМ1-1) и все гнезда прибора укреплены непосредст­венно на лицевой панели, выпиленной из листового текстолита толщиной 2 мм. Роль гнезд Гн1—Гн11 выполняет гнездовая часть десятиконтактного разъема. Низкоомные резисторы R9-R11 типа МОИ (или проволочные), остальные МЛТ на мощность рассеяния 0,5 или 0,25 Вт. Необходимые сопро­тивления резисторов подбирают при налаживании путем их замены, параллельным или последовательным соеди­нением нескольких резисторов. В опи­сываемом приборе каждый из резисто­ров R3 и R6, например, составлен из двух последовательно соединенных ре­зисторов, каждый из резисторов R5 и R11 также из двух резисторов, но со­единенных параллельно.

Калибровка вольтметра и миллиам­перметра заключается в подгонке со­противлений добавочных резисторов и универсального шунта под максималь­ные напряжения и токи соответствую­щих пределов измерения, а омметра — к разметке шкалы по образцовым ре­зисторам.

Калибровку вольтметра производите по схеме, показанной на рис. Па­раллельно батарее Б1 напряжением 13,5 В (или от БП) подключите пе­ременный резистор Rp сопротивлением 2—3 кОм, который будет выполнять роль регулировочного, а между его движком и нижним (по схеме) выво­дом,— параллельно соединенные само­дельный калибруемый (VK) и образ­цовый (V0) вольтметры. Образцовым может быть вольтметр заводского аво­метра. Предварительно движок регу­лировочного резистора поставьте в край­нее нижнее (по схеме) положение, а калибруемый вольтметр включите на первый предел измерений — до 1 В. Постепенно увеличивая напряжение, по­даваемое от батареи на вольтметры, установите на них по образцовому вольтметру напряжение, точно равное 1 В. Если при этом стрелка калибруе­мого вольтметра не доходит до ко­нечной отметки шкалы, это укажет на то, что сопротивление добавочного ре­зистора R3 оказалось больше, чем на­до, а если уходит за пределы шкалы, то — меньше. Подбирая этот резистор, добейтесь, чтобы при напряжении 1 В стрелка вольтметра устанавливалась точно против конечной отметки шкалы.

Точно так же, но при напряжениях 3 и 10 В, фиксируемых образцовым вольтметром, подгоняйте добавочные резисторы R4 и R5 следующих двух пределов измерений. Для калибровки четвертого предела измерений не обя­зательно подавать на вольтметры на­пряжение 30 В. Можно подать 10 В и подбором резистора R6 установить стрелку калибруемого вольтметра на отметку, соответствующую первой третьей части шкалы. При этом откло­нение его стрелки на всю шкалу будет соответствовать напряжению 30 В.

Для калибровки миллиамперметра потребуются: миллиамперметр на ток до 100 мА, свежий элемент 343 или 373 и два переменных резистора — пленочный (СП, СПО) сопротивлением 5—10 кОм и проволочный сопротивле­нием 50—100 Ом. Первый из этих ре­гулировочных резисторов будете ис­пользовать при подгонке резисторов R7—R9, второй — при подгонке рези-, сторов R10 и R11 универсального шунта.

Первым подгоняйте резистор R7 шунта. Для этого соедините последо­вательно (рис. б): образцовый мил­лиамперметр мА0, калибруемый мАк, включенный на первый предел изме­рений (до 1 мА), элемент Э1 и пере­менный резистор Rp. Нажмите кнопку Кн1 «/» (см. рис. 17) авометра и, плавно уменьшая вводимое сопротивле­ние регулировочного резистора Rv, ус­тановите в цепи ток, равный 1 мА. Сопротивление резистора R7 должно быть таким, чтобы при таком токе в цепи стрелка калибруемого миллиам­перметра была против конечной отмет­ки шкалы.

Аналогично подгоняйте: резистор R8 — на пределе 3 мА, резистор R9— на пределе 10 мА, а затем, заменив пленочный регулировочный резистор проволочным, резистор R10 — на пре­деле 30 мА и, наконец, резистор R11— на пределе 100 мА. Подбирая сопро­тивление очередного резистора шунта, уже подогнанные не трогайте — можно сбить калибровку прибора на первых пределах измерения.

Разметить шкалу омметра проще всего с помощью постоянных резисто­ров с допуском от номинала ±5%. Делайте это так. Сначала замкните Щупы и регулировочным резистором R1 «Уст. О» установите стрелку микро­амперметра на конечную отметку шкалы, соответствующую нулю омметра. За­тем разомкните щупы и подключайте к ним резисторы с номинальными со­противлениями: 50, 100, 200, 300, 400, 500 Ом, 1 «Ом и т. д. примерно до 50—60 кОм, замечая всякий раз на шкале точку, до которой отклоняется стрелка прибора. И в этом случае ре­зисторы нужных сопротивлений со­ставляйте из резисторов других номи­налов. Например, резистор сопротивле­нием 40 Ом можно составить из двух резисторов по 20 Ом, резистор на 50 кОм из резисторов сопротивлением 20 и 30 кОм. По точкам отклонений стрелки, соответствующим разным со­противлениям образцовых резисторов, размечайте (градуируйте) шкалу ом­метра.

Шкалы самодельного комбинирован­ного измерительного прибора должны иметь вид, показанный на рис.

Верхняя из них — шкала омметра, нижняя — общая шкала вольтметра и миллиамперметра. Их надо возможно точнее начертить на плотной лакиро­ванной бумаге по форме шкалы микро­амперметра. Затем осторожно извлечь магнитоэлектрическую систему прибора из корпуса и наклеить новую шкалу, точно совместив дугу шкалы омметра с прежней шкалой. Чтобы не разби­рать микроамперметр, шкалы самодель­ного прибора можно начертить на плотной бумаге в соответствующем масштабе прямолинейными и наклеить ее на лицевую или переднюю боковую стенку ящика прибора.

В описанном комбинированном при­боре использован микроамперметр на ток Iи=300 мкА с сопротивлением рамки Rи, равным 300 Ом. При таких параметрах микроамперметра относи­тельное входное сопротивление вольт­метра не превышает 3,5 кОм/В. Увели­чить относительное входное сопротив­ление и тем самым уменьшить влияние вольтметра на режим в измеряемой це­пи можно только использованием бо­лее чувствительного микроамперметра. Так, например, с микроамперметром на ток I=200 мкА относительное вход­ное сопротивление вольтметра будет 5, а с микроамперметром на ток I =100мка — 10кОм/В. С такими приборами расширится и предел измерения омметром. Но при замене микроамперметра более чувствительным надо с учетом его параметров I и К пересчитать сопротивление всех сопротивлений авометра.

Таким способом можно проверить или откалибровать любой стрелочный или цифровой вольтметр (амперметр). В качестве образцового рекомендуется использовать цифровой прибор заводского исполнения.

Такой прибор можно также положить в бардачок автомобиля. В поездке он может пригодиться для отыскания повреждений электропроводки, не годных ламп, соответствия бортового напряжения автомобиля.

Литература: В.Г.Борисов. Радиотехнический кружок и его работа.

А.Зотов

Метки:

ПОДЕЛИТЕСЬ С ДРУЗЬЯМИ

П О П У Л Я Р Н О Е:

  • Самодельные станки и приспособления
  • Простые настольные станки для домашней мастерской

    Когда у домашнего мастера есть станки, тиски, различные приспособления и конечно, весь необходимый инструмент — то и работу выполнять приятней и быстрее. Поэтому сегодня речь пойдёт именно о них — наших помощниках! 🙂

    Подробнее…

  • Разнообразие простых схем на NE555
  • Микросхема NE555 (аналог КР1006ВИ1) — универсальный таймер, предназначена для генерации одиночных и повторяющихся импульсов со стабильными временными характеристиками. Она не дорогая и широко используется в различных радиолюбительских схемах. На ней можно собрать различные генераторы, модуляторы, преобразователи, реле времени, пороговых устройств и прочих узлов электронной аппаратуры…

    Подробнее…

  • Доработка реле поворотов 495.3747
  • В последнее время стало применение светодиодных автомобильных ламп. Они более долговечные и потребляют меньше тока. Последнее как раз и влияет на работу реле поворотов, изменяя его частоту. Периодичность работы реле привязана к сопротивлению нагрузки, то есть к установленным лампам. При увеличении сопротивления нагрузки, что именно и происходит при перегорании или размыкании одной из ламп реле начинает срабатывать наиболее часто. Тот же самый эффект наблюдается и при установке светодиодов в указатели поворотов, так как их потребляемая мощность меньше, а это значит сопротивление значительно больше.

    Изучив материал данной статьи, вы сможете доработать штатное реле указателей поворотов для светодиодов, чтобы оно срабатывало с нужной вам периодичностью. Подробнее…

Популярность: 14 990 просм.

Радиосхемы
Схемы электрические принципиальные

Простейший Ом-метр

категория

Самодельные измерительные приборы

материалы в категории

Журнал Радио 1 номер 1998 год
В Сычев. Москва

При изготовлении электроизмерительных приборов могут возникнуть некоторые трудности, связанные с изготовлением приборных шунтов. Эти шунты обычно низкоомные. и подобрать их нужно тщательно, так как от этого зависит точность измерителя. Для этого предлагается изготовить простой электронный омметр, которым можно измерить малые сопротивления при линейной шкале на четырех пределах: 10, 25.100 и 250 Ом.

Схема прибора

Схема прибора изображена на рисунке. Он состоит из источника стабилизированного тока на транзисторе VT1. режим работы которого задают стабилитрон VD1 и резисторы R3. R4, R5, и вольтметра (микроамперметр РА1 и резисторы R1, R2).

Коллекторный ток транзистора VT1 создает на резисторе Rx напряжение, пропорциональное его сопротивлению. Поэтому, если откалибровать (т.е. установить стрелочный указатель микроамперметра на последнее деление шкалы) измерительную часть по определенному образцовому резистору Roop. то измеряемое сопротивление можно будет считывать по линейной шкале измерительного прибора.

Работа с прибором сводится к следующему. К зажимам «Rx» присоединяют проверяемый резистор (например, изготавливаемый шунт), а к зажимам «Ro6p» -образцовый резистор, соответствующий выбранному пределу измерения. Переключатель SA2 переводят на соответствующий предел измерения, а переключатель SA1 — в положение «К» (калибровка). После подачи напряжения питания нажатием на кнопку SB1 подстроечным резистором R4 устанавливают стрелочный указатель на последнее деление шкалы. Затем переключатель SA1 переводят в положение «И» (измерение) и измеряют сопротивление Rx. Точность измерения в основном будет зависеть от точности образцовых резисторов.

Если во вспомогательном приборе использовать источник питания с напряжением 8…9 В или менее чувствительную головку, то стабилитрон Д814А нужно заменить на КС139А или КС147А, сопротивление резистора R5 уменьшить до 100 Ом. a R4 — до 470 — 680 Ом. Кроме того, если сопротивление образцового резистора не соответствует точно необходимому пределу измерения, то калибровку измерителя допустимо произвести с установкой показания, соответствующего номинальному значению этого резистора, если оно составляет не менее 80% от предела.

В приборе могут быть применены образцовые резисторы типов МТ, БЛП, С2-29В. С2-36. С2-14: резисторы МЛТ (R1. R3. R4. R5): резистор R2 типов СПО-0.5, CП3-4б или аналогичный; транзисторы серий КТ814. КТ816 с коэффициентом передачи тока базы более 50. В качестве микроамперметра РА1 применима измерительная головка, которая будет установлена в изготавливаемый прибор (например, 50 или 250 мкА). Переключатели SA1 и SA2 — тумблеры типа ТВ2-1. Вообще говоря, переключатель SA1 можно и исключить, оставив одну пару зажимов, к которым сначала подключить резистор Rocp. а после калибровки — резистор Rx.

В случае применения в приборе более распространенных транзисторов структуры п-р-п следует изменить полярность включения источника питания стабили трона и микроамперметра.

admin

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Наверх