Электрификация

Справочник домашнего мастера

Микросхема lm386 характеристики

Усилитель LM386. Применение данной микросхемы будет оправдано при изготовлении небольших устройств с низким напряжением питания, например, усилитель для дверного звонка, карманных радиоприемников и т.д.

Простота применения LM386 обусловлена применением всего нескольких внешних деталей, позволяющих получить полноценный усилитель.

Микросхема LM386 представляет собой усилитель мощности для усиления слабых аудиосигналов при низком напряжении питания. Хотя по умолчанию коэффициент усиления LM386 установлен на уровне 20, он с успехом может быть увеличен почти в 10 раз, то есть до 200 путем подключения внешних элементов, а именно резистора и конденсатора к выводам 1 и 8.

Вход микросхемы LM386 работает относительно земли, в то время как выход автоматически смещен к половине напряжения питания.

Содержание

Функциональная схема LM386

Назначение выводов микросхемы LM386

Размеры LM386

Усилитель LM386 выпускается в четырех модификациях. Первые три из них, а именно: LM386 N-1, N-2, N-3, обеспечивают очень низкое искажение и хорошо работают при напряжении питания в диапазоне от 4 до 12 вольт постоянного тока.

Четвертый тип, LM386 N-4 работает с рабочим напряжением от 5 до 18 вольт постоянного тока. Это крайние значения питающего напряжения, за пределами которого усилитель либо перестает работать, либо перегревается и выходит из строя.

Технические характеристики LM386

  • Ток покоя (потребление тока, когда усилитель находится в режиме ожидания) составляет около 4 мА.
  • Максимальная выходная мощность LM386 около 1,25 Вт при использовании динамика на 8 Ом.
  • Коэффициент усиления по напряжению составляет от 20 до 200 (от 26 дБ до 46 дБ соответственно).
  • Пропускная способность: 300 кГц при работе от 6 вольт питания
  • Низкий уровень искажений: 0,2%
  • Широкий диапазон напряжения питания: 4…12В или 5…18В

Далее рассмотрим применение LM386 в различных схемах аудиоусилителей.

Схемы включения усилителя LM386

На рисунке ниже показано типовое включение микросхемы LM386 из datasheet. В данном случае коэффициент усиления схемы ограничено до 20, поскольку к выводам 1 и 8 не подключены внешние элементы.

Данный коэффициент усиления (20) обеспечивается внутренними резисторами обратной связи на 1,35 кОм (к выводам 8 и 1) и 15 кОм (к выводам 1 и 5). Параллельное подключение внешних резисторов к данным резисторам приводит к изменению коэффициента усиления.

Формула расчета коэффициента усиления

A = (2 x R(1-5) )/ (150 + R(1-8))

Без каких-либо внешних компонентов усиление составляет 20:

А = 2 × 15000 / (150 + 1350) = 20

Конденсатор, подключенный между контактами 1-8 микросхемы, позволяет игнорировать резистор на 1,35 кОм, и следовательно коэффициент усиления будет:

А = 2 × 15000/150 = 200

Выход микросхемы подключен к громкоговорителю с помощью конденсаторного фильтра, который обычно используется в линейных усилителях. Переменный резистор на входе используется для настройки желаемого уровня громкости.

Вторая схема показывает, как можно повысить коэффициент усиления выше базовой установки (20) вплоть до 200 путем добавления конденсатора к контактам 1 и 8 микросхемы. Емкость конденсатора не должна превышать 10 мкФ.

Подбор коэффициента усиления в диапазоне от 20 до 200 может быть осуществлен, в том числе и с применением переменного резистора на 4,7 кОм, подключенного последовательно с конденсатором.

Избыток смещения может быть уменьшен путем соединения неиспользуемого вывода резистора с землей. Однако все вопросы смещения отпадают если активный вход соединен через конденсатор.

В варианте с коэффициентом усиления 200, необходимо соединить вывод 7 с помощью конденсатора емкостью 0,1мкФ с минусом питания для поддержания стабильной работы и предотвращения нелинейных искажений.

Простой, но интересный усилитель басов может быть получен путем подключения цепи из резистора и конденсатора к выводам 1 и 5

lm386 усилитель является, пожалуй, самым дешевым кит-набором, который можно найти на китайском рынке.

В комплекте идут:

  • Плата;
  • Конденасаторы;
  • Разъем 3.5;
  • Резисторы;
  • Светодиод;
  • Микросхема lm386;
  • Разъем для питания 12В;
  • Переменный резистор;
  • Регулировка.

Сбор усилителя

Как показывает схема платы, на ней должен быть два резистора на 4 кило Ома. А также резистор 4R7.

Все имеющиеся резисторы нужно проверить на соответствие с требованиями на плате, чтобы правильно их припаять. После чего останется установить на плату конденсаторы.

Три электролита можно расположить по кружочкам, которые указаны на плате. Самый маленький на 10 микрофарат, второй на 100 микрофарат и третий на 1000.

Керамические конденсаторы нужно установить в лунки, рядом с которыми написано СВ.

Теперь можно перевернуть плату и перед пайкой нанести флюс в основания усиков. После чего их все нужно аккауратно запаять. Усики можно откусить и теперь настало время вставить конденсаторы.

Важно знать, что минусовая ножка конденсатора отмечена минусом, а на плате место для отрицательной ножки закрашено в темный цвет.

Установка светодиода. Снова же смотрим подсказку полярности на плате. Там все нарисовано. На самом диоде короткая ножка есть минусовая, длинная — плюсовая.

Как и в предыдущем случае все надо зафлюсовать и затем запаять, откусив после этого все лишние ножки.

К этому моменту должны остаться следующие детали:

  • Микросхема;
  • Разъем;
  • Резистор;
  • Разъем для питания;
  • Джамперы.

Чтобы припаять кроватку для микросхемы обратите внимание на ключ в виде полукруга. Нужно будет найти такой же полукруг на схеме. Этим местом и надо совместить кроватку и плату. С обратной стороны необходимо прихватить кроватку.

Все остальные детали нужно будте прихватить точно также, установить плату и аккуратно все запаять.

В самом конце паечного процесса останется еще три места для Джамперов. Затем отмойте плату от флюса и наденьте колпачок регулировки.

Вставить микросхему нужно также ориентируясь на ключ в виде полукруга на ее кроватку.

Тест усилителя

Для опыта использовались

  • телефон;
  • проводки с джеком 3.5;
  • колонка

Джампер, рядом с которым маркировка SP — минус. К этому джамперу и следует подключить динамик. Если вы не уверены в том, где минус, а где плюс, тогда подсоедините коннектор к проводу не припаивая, чтобы успеть его вытащить в случае возникновения ЧП.

Питание в 12 Вольт следует подключить к разъему входного питания. Уменьшите звук на минимум и включите блок питания, чтобы усилитель ожил.

В динамике раздастся щелчок, а светодиод на плате загорится. Это значит, что все было сделано правильно.

Теперь подключите телефон к усилителю и включите музыку. Динамик мощностью 5 Ватт выдает хороший и чистый звук. Если сделать громкость максимальной, то это не очень сильно отразится на качестве звука. Поэтому прослушивать музыку дома можно без проблем. Тем более, что выходная мощность усилителя также составляет 5 Ватт.

Характеристики

Напряжение питания DC9-15V, рекомендуется 12 В
Выходная мощность может быть подключена к динамикам 4-8 Ом, максимальная стерео система 2×35 Вт (14,4 В 4 Ом)
Сопротивление 4-8 Ом
Вход аудио 3,5 мм аудио вход
Защита защита от обратного питания, короткое замыкание, перегрузка, перегрев
Размер платы 55,12 мм * 45,21 мм
Ручка открытия потенциометра 7мм
Размеры 55,12 * 59,09 * 50 мм (длина * ширина * высота)

Отзывы пользователей

Илья. Орел.

Этот усилитель я заказывал в Китае, быстро очень пришел. Ни одна деталь набора не была потеряна. Плохо то, что не предоставлена схема сборки усилителя, до всего надо было додумываться самостоятельно. Поэтому если вы новичок и не умеете заниматься пайкой, то вам точно этот усилитель заказывать не следует.

Владимир. Владимир.

Кит попался отличным, претензий к деталям нет, все сели как надо — ровно и без проблем. Относительно звука, если честно, то я ожидал более громкий звук, так как часто приходится работать в гараже а данный усилок не совсем справляется со своей задачей на улице. Для дома или другого закрытого помещения усилитель подойдет хорошо, особенно для небольшой компании, которые просто хотят послушать музыку без какой-либо серьезной аппаратуры.

LM386, KA386, КР1438УН2 – «чемпион» среди аудиоусилителей

Разговор пойдёт об очень распространённой интегральной схеме (ИС) звукового усилителя мощности LM386, производимой компанией National Semiconductor (сейчас полностью входит в состав Texas Instruments) .
Действительно, напряжение питания микросхемы может быть в пределах 4…12 В, а потребляемый ток покоя составляет всего 4 мА, что является идеальным для большинства аудиопроектов, получающих питание от батарей. Усилитель развивает выходную мощность 0,5 Вт при напряжении питания 9 В и сопротивлении нагрузки 8 Ом. Если добавить, что Кус. этой интегральной МС может быть легко выбран от 20 до 200 с помощью двух внешних элементов, а её выходное напряжение автоматически устанавливается равным половине напряжения питания, то станет ясно, почему в течение многих лет эта микросхема сохраняет популярность.
Заголовок проекта отражает сказанное – как микросхема, так и наборы на её основе чрезвычайно востребованы радиолюбителями, в этом смысле аудиоусилитель LM386 действительно чемпион. См., например,

Предлагаю ознакомиться с возможностями массовой микросхемы LM386 и предложить мои варианты её применения.

Характеристики, функциональная схема и выбор внешних элементов усилителей на ИС LM386

Усилитель мощности звуковой частоты LM386 применяется в портативной радиоэлектронной аппаратуре.
Аналогом LM386 является KA386 фирмы Samsung, отечественный аналог – КР1438УН2. У российских любителей интегральная схема LM386 стала популярна с падением «железного занавеса», до этого времени тогда ещё советские электронщики облюбовали в качестве массового усилителя микросхему К157УД1, предназначенную для применения в аппаратуре магнитной записи.

Основные технические характеристики микросхемы LM386
Выходная мощность, Pвых = 250…500 МВт,
Сопротивление нагрузки, Rн = 8 Ом.
Коэффициент усиления, Ku = 26…46 дБ,
Полоса частот, B = 20 Гц..60 кГц,
Входное сопротивление, Rвх = 50 кОм,
Коэффициент гармоник, Kг = 0,2%,
Напряжение питания, Uп = 4…12 В,
Ток покоя, Io=4 мА.
Таблица 1 поможет оперативно выбрать необходимое напряжение питания в зависимости от сопротивления нагрузки и требуемой выходной мощности.

На рис. 1 изображена функциональная схема LM386. На ней транзисторы структуры p-n-p VT1, VT2 и VT5, VT6 образуют дифференциальный усилитель, в котором каждый из входов соединён с общим проводом через резисторы R1 и R2, собственно и определяющие типовое входное сопротивление 50 кОм.
Нагрузкой дифференциального усилителя является токовое зеркало на транзисторах VT3, VT4, а выход (транзистор VT5) соединён с входом усилителя напряжения VT7, включённого по схеме с общим эмиттером. В цепь коллектора VT7 последовательно включены диоды VD1, VD2, служащие для создания смещения на базах выходного каскада, и источник тока Io.
Усилитель мощности работает в классе АВ и выполнен на транзисторах VT8 – VT10, включённых по схеме с общим коллектором, поэтому коэффициент усиления выходного каскада по напряжению близок к единице.

Рис. 1. Функциональная схема низковольтного аудиоусилителя LM386
Обратите внимание, что для минимизации падения напряжения на транзисторах выходного каскада и получения максимальной выходной мощности в схеме не предусмотрены элементы защиты от перегрузок.
Резисторы R2 и R3 задают ток транзисторов дифференциального усилителя. Точка соединения резисторов R2 и R3 выведена на внешний вывод микросхемы (вывод 7), предназначенный для подключения внешнего фильтрующего конденсатора.
Эмиттеры транзисторов дифференциального каскада VT2 и VT5 включены несколько нестандартно: не соединены вместе, а содержат резисторы отрицательной обратной связи. Два из них — R4 и R5 последовательно включены между эмиттерами VT2 и VT5, а третий — R6, подключён к эмиттеру VT5 и выходу выходного каскада (эмиттеры VT8, VT9).
Коэффициент усиления по напряжению при таком включении равен удвоенному отношению сопротивления R6 к сумме сопротивлений резисторов, установленных между эмиттерами транзисторов VT2 и VT5 (R4 + R5):
Ku=2R6/(R4+R5)=2•15/(0,15+1,35)=20 (1)
Вывод эмиттера VT5 и точка соединения резисторов R4, R5 выведены на внешние выводы микросхемы (выводы 1 и 8 соответственно) и предназначены для установки требуемого коэффициента усиления, который может варьироваться в диапазоне от 20 до 200. Если закоротить выводы 1 и 8 по переменному току с помощью внешнего конденсатора, то в выражении (1) сопротивление внутреннего резистора R5 принимаем равным нулю, и полное усиление по напряжению составит 200.
Включив между выводами 1 и 8 последовательную цепочку, состоящую из резистора и конденсатора, можем варьировать коэффициент усиления от 20 до 200:
Ku=2R6/(R4+R5Rвн/(R5+Rвн)),
где Rвн – сопротивление внешнего резистора, кОм.
Ёмкость внешнего конденсатора Свн должна быть выбрана такой, чтобы в рабочем диапазоне частот его сопротивление переменному току было много меньше, чем Rвн. При Rвн=0 получаем Ku=200; при Rвн=∞ получаем Ku=20, а при Rвн=680 Ом коэффициент усиления Ku=50.
Для получения требуемой амплитудно-частотной характеристики (АЧХ) можно включать комплексные элементы как между выводами 1 и 8, так и между выводами 1 и 5 микросхемы.
Элементы формирования требуемой АЧХ можно включать не только между указанными выводами, но и общим проводом . Например, можно установить между выводом 1 и общим проводом цепочку, состоящую из оксидного конденсатора и внешнего резистора Rвн.
Интересно, что в этом случае удаётся получить коэффициент усиления порядка 70 дБ. При Rвн=4,7 Ом получаем Ku=70 дБ; при Rвн=15 Ом имеем Ku=60 дБ, а при Rвн=47 Ом коэффициент усиления составит Ku=50 дБ.
Такие схемы могут найти применение в высокочувствительных устройствах (приёмники прямого преобразования, сверхчувствительные микрофоны и др.), при этом удаётся обойтись без дополнительного усилительного каскада на транзисторе, включаемого перед усилителем на микросхеме LM386.

Усилительные схемы на ИС LM386

Усилитель с коэффициентом усиления 200

Принципиальная схема усилителя с коэффициентом усиления Ku=200 (46 дБ), изображена на рис. 2 а, б. На первом из них (рис. 2 а) показана функциональная схема ИС LM386, позволяющая лучше понять работу усилителя, а на втором (рис. 2 б) микросхема изображена в виде «чёрного ящика», по ней легче выполнять разводку печатной платы и проверку правильности установки смонтированных на ней элементов.

Рис. 2. Усилитель с коэффициентом усиления 200
Резистор R1 служит регулятором громкости, конденсатор C1 является фильтрующим. Конденсатор C2 шунтирует выводы 1 и 8 микросхемы DA1 по переменному току, благодаря чему достигается максимальный коэффициент усиления; конденсатор C4 служит для развязки по питанию, что важно в условиях работы с разряженной батареей, когда её внутреннее сопротивление увеличивается.
Цепочка C3, R2 предназначена для повышения стабильности при работе усилителя на ёмкостную нагрузку. Иногда её установкой пренебрегают, что не является преступлением, но нежелательно, поскольку может преподнести «сюрприз» в самый неподходящий момент. Нагрузка ВА1 подключена к выходу ИС через разделительный конденсатор С5.

Усилитель с минимальным количеством внешних элементов и коэффициентом усиления 20

На рис. 3 показана схема с минимальным количеством элементов, имеющая коэффициент усиления по напряжению Ku=20 (26 дБ). Здесь выводы 1 и 8 микросхемы оставлены свободными, исключён из схемы фильтрующий конденсатор, подключаемый к выводу 7. В результате весь усилитель содержит всего семь элементов, включая и динамическую головку ВА1.

Рис. 3. Усилитель с минимальным количеством внешних элементов и коэффициентом усиления 20

Усилитель с коэффициентом усиления 50

Ещё один вариант схемы приведён на рис. 4. При значениях элементов, показанных на этой схеме, обеспечивается усиление по напряжению Ku=50 (34 дБ).

Рис. 4. Усилитель с коэффициентом усиления 50
По сравнению с предыдущей схемой добавлено три элемента: два конденсатора и резистор. В табл. 2 приведены значения резистора R2 для получения других коэффициентов усиления по напряжению.

Усилитель с подъёмом низких частот

Примером усилителя, в котором производится формирование требуемой частотной характеристики, является схема, показанная на рис. 5.
Здесь усиление по напряжению изменено шунтированием внутреннего резистора обратной связи (R6), доступного через выводы 1 и 5 микросхемы LM386. Шунтирование цепочкой R2, C2 позволяет получить подъем частотной характеристики около 6 дБ на частоте 85 Гц, что может быть использовано для улучшения звучания малогабаритных акустических систем.
Коэффициент усиления по напряжению усилителя на частоте 1 кГц составляет Ku=10 (20 дБ).

Рис. 5. Усилитель с подъёмом низких частот

Принципиальная схема усилителя для АМ радиоприёмника

Ещё один пример применения ИС в качестве усилителя для малогабаритного АМ радиоприёмника показан на 6. В этой схеме радиовещательный сигнал после детектора поступает через конденсатор С1, устраняющий передачу постоянной составляющей на регулятор громкости R1.

Рис. 6. Принципиальная схема усилителя для АМ радиоприёмника
Сигнал со среднего вывода R1 поступает на неинвертирующий вход микросхемы DA1 через развязывающую цепочку – фильтр нижних частот R2, C2, устраняющий попадание остатков высокочастотного напряжения. Для этих же целей на выходе усилителя включена цепочка L1, C7. Дело в том, что усилитель на микросхеме DA1 довольно широкополосный (полоса пропускания составляет около 300 кГц) и без принятия подобных мер служит отличным источником радиоизлучений в длинноволновом и средневолновом диапазонах волн.
Резистор R3, включённый параллельно катушке L1, служит для устранения нежелательных резонансов в звуковом диапазоне частот. Коэффициент усиления по напряжению усилителя максимален (Ku=200).
Наряду с оксидным конденсатором С6 включён керамический конденсатор С5, используемый для высокочастотной развязки по цепи источника питания; не забыт в этой схеме и фильтрующий конденсатор, подключаемый к выводу 7 микросхемы (С3).
Катушка L1 представляет собой ферритовую бусинку с пропущенным проводом внутри (Ferrite Bead).

Другие варианты применения микросхемы LM386

Усилитель на LM386 с гнездом для подключения наушников

На рис. 7 показан усилитель с возможностью подключения головных телефонов. На схеме входное напряжение от источника аудиосигнала подаётся через конденсатор С1, устраняющий постоянную составляющую на регулятор громкости R1.
Рис. 7. Усилитель с гнездом для подключения наушников
Второй конденсатор (С2), включённый между средним выводом R1 и неинвертирующим входом, в принципе не нужен, но такое схемотехническое решение устраняет шорохи при возможном плохом качестве переменного резистора, а также уменьшает смещение половинного напряжения на выходе усилителя.
Гнездо для подключения наушников включено через развязывающий конденсатор С5 таким образом, что при отсутствии штекера наушников подключён динамик ВА1, а при включении штекера – динамик отключается.
Назначение остальных элементов усилителя было рассмотрено выше. Коэффициент усиления по напряжению минимален (Ku=20).

Переговорное устройство на LM386

Взяв за основу усилитель с максимальным коэффициентом усиления (рис. 2), можно получить простое переговорное устройство. Как видно из схемы, представленной на рис. 8, в неё добавлен выключатель питания и переключатель «Приём – передача», обеспечивающий попеременную работу динамических головок ВА1 и ВА2 в качестве микрофона или громкоговорителя.
Рис. 8. Переговорное устройство
Устройство позволяет организовать проводную связь между двумя абонентами. Дальность связи достигает нескольких сотен метров.
Область применения этой конструкции: связь между двумя абонентами, игры и т. п. Усилитель с динамической головкой ВА1 располагается на основном пункте связи, а другая динамическая головка – на удалённом пункте связи. Соединение основного и удалённого пунктов связи выполняют многожильным телефонным двухпроводным кабелем. Конструкция питается от батареи напряжением 9 В типа «Крона».

Генератор синусоидальных сигналов с малыми искажениями на LM386

Этот же усилитель без больших затрат превращается в генератор синусоидальных сигналов с малым коэффициентом гармоник. Схема генератора с мостом Вина показана на рис. 9.
Рис. 9. Генератор синусоидальных сигналов с малыми искажениями
Напомним, что частота генератора определяется выражением:
fo=½Π√(R1R2C1C2)
Чаще всего выбирают R1=R2 и C1=C2, при этом выражение упрощается:
fo=½ΠR1C1
Вторым требованием является то, что коэффициент отрицательной обратной связи усилителя должен быть равен точно 1/3 . При указанных условиях в схеме возникают незатухающие колебания. Если этот коэффициент меньше 1/3, амплитуда колебаний будет быстро увеличиваться со временем, пока выходное напряжение не превратится в меандр.
Если коэффициент отрицательной обратной связи более 1/3, амплитуда колебаний через некоторое время будет стремиться к нулю. Ясно, что установить идеальное значение коэффициента можно, если применить систему автоматической регулировки амплитуды.
Для этого предусмотрена цепь отрицательной обратной связи R3, HL1, которая так воздействует на коэффициент усиления, чтобы амплитуда колебаний стабилизировалась при весьма малых нелинейных искажениях (порядка 0,05%).
Если выходное напряжение генератора по каким-либо причинам увеличивается, увеличится и ток через R3, а также напряжение на нелинейном элементе – лампе накаливания HL1. Нить лампы накаливания разогреется, и её сопротивление увеличится, что приведёт к уменьшению глубины отрицательной обратной связи и уменьшению напряжения на выходе генератора. При уменьшении выходного напряжения генератора процессы происходят в обратном направлении, в результате обеспечивается автоматическая стабилизация коэффициента усиления.
При указанных на принципиальной схеме значениях элементов частота генерируемых колебаний составляет 1 кГц, а амплитуда – около 2 В эфф.

Генератор прямоугольных импульсов на LM386

Схема, показанная на рис. 10, представляет собой генератор сигналов прямоугольной формы.
Рис. 10. Генератор прямоугольных импульсов
Усилитель DA1 играет роль компаратора. Положительная обратная связь реализуется с помощью делителя R1, R2, подключённого к неинвертирующему входу усилителя. Коэффициент обратной связи Kос=R2/(R1+R2). В состав отрицательной обратной связи включена интегрирующая цепь R3, C1.

Период колебаний генератора для симметричных сигналов прямоугольной формы составляет:
T=2R3C1ln
При Кос=0,462 формула упрощается:
Т=2R3C1, и частота f=½R3С1
Максимальная частота генерируемых схемой колебаний ограничена скоростью нарастания выходного напряжения усилителя DA1.

Универсальный усилитель на ИС LM386

Показанная на рис. 11 схема универсального УМЗЧ на ИС LM386 открывает простор для творчества, поскольку предоставляет готовый функциональный узел для широкого спектра применений (см. табл. 3).
Исключён фрагмент. Наш журнал существует на пожертвования читателей. Полный вариант этой статьи доступен только меценатам и полноправным членам сообщества. Читай условия доступа!
Рис. 11. Универсальный усилитель на ИС LM386

Детали универсального усилителя и монтажная плата

Применены резисторы типа МЛТ, МОН, С2-33Н мощностью 0,25 или 0,125 Вт. Конденсаторы керамические КМ-5, КМ-6, К10-17, К10-47, а также плёночные К73-9, К73-17 или К73-24; оксидные конденсаторы К50-35. Динамическая головка – широкополосная, с сопротивлением 8 Ом, мощностью 0,5…3 Вт, например 1ГДШ-6-8. Все детали могут быть заменены импортными аналогами.
Детали
На рис. 12 показана монтажная плата усилителя.
Рис. 12. Монтажная плата универсального УМЗЧ на LM386
Для экспериментов с усилителем подходит лабораторный источник питания на основе аккумуляторной батареи .

Итог

Микросхема LM386 позволяет собрать множество надёжных конструкций, в которых нужна небольшая выходная мощность.
В настоящее время появились достойные преемники LM386, содержащие минимум навесных элементов. К ним можно отнести LA4525, LA4534 фирмы SANYO, выпускаемые в корпусе DIP8 или MFP105 под поверхностный монтаж; AP4890, TDA7050, TDA7052, KA2209, КР174УН31 и др. .

Файлы

Плата и схема универсального УМЗЧ на LM386 здесь:
▼ lm386-the-champion-among-amplifiers.zip 🕗 09/09/15 ⚖️ 29,92 Kb ⇣ 68

Список источников

1. LM386 — Low Voltage Audio Power Amplifier.
2. Дайджест КВ+УКВ // Радиоаматор, 2009, №2, с. 56 (Как получить усиление 74 дБ от микросхемы LM386).
3. Мосягин В. Узконаправленный микрофон // Радио, 2002, №5, с. 54, 55.
4. Merryfield T. Super-Ear Audio Telescope // Everyday Practical Electronics, 2005, №6, p. 388 – 392.
5. Stewart J. The Big Ear // Nuts & Volts, 2008, №10, p. 34 – 39.
6. Фолкенберри Л. Применения операционных усилителей и линейных ИС. – М.: Мир, 1985. 572 с. (с. 250 — 254).
7. Дайджест (Тест микрофонного эффекта конденсаторов) // Радиохобби, 2000, №5, с. 25.
8. Большая статья о маленьком усилителе на микросхеме TDA2822M. Датагорская статья.
9. Справочник. Микросхема УМЗЧ LA4525. Микросхема УМЗЧ LA4534M // Радиоконструктор, 2008, №9, с. 20 — 22.
10. Мосягин В.В. Юному радиолюбителю для прочтения с паяльником. (Серия «СОЛОН – радиолюбителям», выпуск 17). – М.: СОЛОН – Пресс, 2003. – 208 с. 11. Мосягин В.В. Секреты радиолюбительского мастерства. (Серия «СОЛОН – радиолюбителям) – М.: СОЛОН – Пресс, 2005. – 216 с.

Камрад, смотри полезняхи!

Владимир Мосягин (MVV) Россия, Великий Новгород Список всех статей Профиль MVV Радиолюбительством увлекся с пятого класса средней школы.
Специальность по диплому — радиоинженер, к.т.н.
Автор книг «Юному радиолюбителю для прочтения с паяльником», «Секреты радиолюбительского мастерства», соавтор серии книг «Для прочтения с паяльником» в издательстве «СОЛОН-Пресс», имею публикации в журналах «Радио», «Приборы и техника эксперимента» и др.

Микросхема LM386 в качестве самодельного усилителя для колонок

В этой статье мы построим своими руками усилитель для колонок на микросхеме LM386. Я собрал почти десяток различных аудиоусилителей на LM386, но большинство из них создают слишком много шума, треска, и других помех.

И наконец-то я нашел схему, которая великолепно звучит. Конечно, это не усилитель с минимальным набором деталей. Есть много дополнительных конденсаторов для уменьшения шумов. В схему добавлен контроль басов, что сделало звук еще лучше.

Прежде чем начать строительство усилителя для колонок, полезно будет ознакомиться немного со справочной информацией.

Усилитель LM386

LM386 довольно универсальный чип. Необходимы только пара резисторов и конденсаторов, чтобы сделать простой аудио усилитель. Чип имеет функции контроля коэффициента усиления и усиления НЧ, а также может быть превращен в автогенератор, способный выводить синусоиды или прямоугольные волны.

LM386 представляет собой тип операционного усилителя (ОУ). Операционный усилитель принимает входной потенциал (напряжение) и формирует выходной потенциал, который в десятки, сотни или даже в тысячи раз превосходит входной потенциал.

В этой схеме LM386 принимает входной аудиосигнал и увеличивает его от 20 до 200 раз. Это усиление не что иное, как коэффициент усиления по напряжению.

Усиление и громкость

После того, как вы соберете этот усилитель и поиграетесь с регуляторами громкости и усиления, вы заметите, что оба влияют на увеличение или уменьшение интенсивности звука, выходящего из колонки. Так в чем же разница?

Изменение коэффициента усиления влияет на усиление входного сигнала. Это характеристика усилителя. Громкость позволяет регулировать громкость звука в диапазоне усиления (коэффициента усиления).

Вывод Gain устанавливает диапазон возможных уровней громкости. Например, если наш коэффициента усиления составляет 20, то диапазон громкости будет от 0 до 20. Если же коэффициента усиления 200, громкость будет от 0 до 200.

Операционный усилитель LM386 имеет 8 контактов, как показано на рисунке ниже:

Основные выводы микросхемы: выводы 2 и 3 – вход, вывод 5 — положительный выход. Регулирование усиления может быть достигнуто путем подключения к контактам 1 и 8 конденсатора на 10 мкФ, при этом коэффициент усиления будет 200. Если же контакты 1 и 8 оставить свободными, то усиление будет 20. Так же коэффициент усиления может быть настроен на любое значение в диапазоне от 20 до 200 путем подключения потенциометра последовательно с конденсатором.

Есть три разновидности ОУ LM386, каждый имеет различные показатели выходной мощности:

  • LM386N-1: 0,325 Вт
  • LM386N-3: 0,700 Вт
  • LM386N-4: 1,00 Вт

Внутренняя структура микросхемы LM386:

(unknown, скачано: 183)

Теперь, когда у нас есть представление о LM386, давайте соберем усилитель. Для сравнения, я покажу вам, как сначала сделать простой усилитель, так чтобы вы смогли сравнить его с более качественным усилителем звука, который мы соберем позже.

В приведенной схеме источник питания, звуковой входной сигнал, и выходной аудиосигнал имеют общую шину. Это в свою очередь создает помехи в выходном сигнале. Чтобы не допустить этого, мы можем подключить минус питания, вход и выход прямо к выводу 4 LM386:

В результате этого звучание должно быть значительно лучше, по сравнению с предыдущей схемой, но вы, вероятно, заметили некоторый шум, треск.

Чтобы это исправить, нам необходимо добавить разделительные конденсаторы. Эти конденсаторы позволяют изолировать схему усилителя от помех, вызванных колебаниями питания и шума от входного сигнала.

Используя конденсаторы с большой емкостью, мы получим НЧ фильтр, а используя конденсаторы с малой емкостью отфильтруем высокочастотный шум.

Это был минимум который необходим для строительства усилителя на LM386. Теперь пришло время построить более качественную версию с возможностью изменения коэффициента усиления. Добавил несколько элементов в схему, это позволит нам получить более качественное звучание:

  • разделительный конденсатор 470 пФ между положительным входным сигналом и землей.
  • конденсаторы 100 мкФ и 0,1 мкФ между положительными и отрицательными шинами питания. 100 мкФ конденсатор будет фильтровать низкочастотный шум, в то время как 0,1 мкФ конденсатор будет фильтровать высокочастотный шум.
  • конденсатор 0,1 мкФ между контактами 4 и 6 для дополнительной развязки источника питания микросхемы.
  • резистор 10к и конденсатор 10 мкФ подключены последовательно к выводу 7 и минусом питания.

На рисунке ниже показано как это все соединить:

Следует обратить внимание для того, чтобы иметь чистый звук, необходимо все соединения делать как можно короче и ближе к выводам микросхемы.

Особенностью LM386 является возможность добавить регулирование басов. Все, что вам нужно сделать, это подключить конденсатор емкостью 0,033 мкФ и потенциометр 10K Ом последовательно между контактами 1 и 5:

Стереоусилитель на двух LM386 на подставке из древесины плюща

Автор Hackaday.io под ником carbono.silício (переводится как карбид кремния — абразив и одновременно полупроводник, который одно время даже в светодиодах применяли) собрал, на первый взгляд, обычный стереоусилитель, каждый из каналов которого содержит по одной микросхеме LM386. Но эта самоделка представляет собой не только утилитарный предмет, но и произведение искусства. Устройство собрано, во-первых, на подставке из древесины плюща, покрытой шеллаком, а во-вторых — объёмным монтажом, придающим ему особую, неповторимую «скульптурность». Схема обоих стереоканалов — стандартная, из даташита на микросхему, её можно посмотреть, например, . Есть два варианта этой схемы, с фиксированным и регулируемым (и одновременно повышенным) коэффициентом усиления:
Взяв кусок древесины плюща, мастер не особо и вмешивается в его форму. Только делает две поверхности плоскими для удобства, и всё. Далее он покрывает получившуюся подставку шеллаком и приступает к размещению компонентов, начав с разъёма для блока питания, выключателя, входных и выходных гнёзд типа RCA (тюльпан), а также панелек для микросхем обоих каналов. Для тех, кто хорошо умеет паять, панельки не обязательны, но здесь они являются частью электронной скульптуры:
Затем он добавляет сдвоенный переменный резистор, постоянные и подстроечные резисторы, конденсаторы, выключатель тонкомпенсации. По подстроечным резисторам догадайтесь, по какой из двух стандартных схем мастер собирает стереоканалы. С электролитических конденсаторов он снимает термоусадку, отчего они выглядят как винтажные, и даже лучше. Но перед её снятием надо нацарапать сверху на алюминии едва заметную метку с указанием полярности, иначе эти данные потеряются безвозвратно.
В принципе, на этом усилитель можно посчитать готовым и начать им пользоваться. Но мастер добавляет две, на первый взгляд, незначительные детали, придающие конструкции законченный вид. Во-первых, это ручка на оси переменного резистора, а во-вторых, подсветка, состоящая из последовательно включённых резисторов (постоянного и подстроечного) и светодиода. В куске древесиы изначально присутствовала небольшая выемка, в которую как раз поместился светодиод. Обратите внимание: ручка сделана из корпуса электролитического конденсатора.
А вот вид на готовый усилитель ещё с трёх ракурсов:
Давайте посмотрим видео об этом усилителе:

Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. .

Усилитель на LM386 низкой частоты мощностью до 0,7Вт

Привет всем любителям электроники. Буквально вчера опробовал усилитель низкой частоты на LM386. Данная микросхема представляет собой надежный и в то же время простой интегральный усилитель низкой частоты, с выходной мощностью примерно 0,7Вт на нагрузке 8 Ом, при питании микросхемы напряжением 9 Вольт. Усилитель без каких-либо проблем завелся сразу после монтажа. Да и чему тут удивляться, наипростейшая схема обвязки микросхемы. Усилитель имеет низкий коэффициент нелинейных искажений, так же как и уровень собственных шумов.

Применяется LM386 в карманных радиоприемниках, микрофонных усилителях, различных радиоэлектронных игрушках и в других устройствах, где нужна малая выходная мощность, до одного Ватта.

Основные характеристики микросхемы:

  • Напряжение питания от 4 до 12В.
  • Максимальная выходная мощность 0,7Вт (при питании 9В)
  • Коэффициент усиления до 200Дб (зависит от схемы, читаем ниже)
  • Коэффициент гармоник 0,2% (при питании 6В и нагрузке 8Ом)
  • Ток в режиме покоя составляет 4мА.

Есть несколько схем сборки усилителя на данной интегральной микросхеме, все схемы имеют различный коэффициент усиления, есть на 20дБ, 50дБ и на 200дБ. Схемы можете посмотреть в паспорте микросхемы. Есть там и схема с повышенным басом. Я же собирал вариант на 200дБ.

Схема усилителя на LM386:

Номиналы элементов:

  • С1= 10мкФ 25В
  • С2= 220мкФ 25В
  • С3= 0,047мкФ
  • С4= 0,01 мкФ
  • R1= 10 Ом 0,25Вт
  • R2= 10 кОм – подстроечный.

Печатную плату при распечатке не зеркалим, песатаем как есть!

У штекера я спаял вместе правый и левый канал.

Нагрузкой послужила динамическая головка мощностью 1Вт и сопротивлением 8Ом.

Даташит на LM 386

Печатная плата

Digitrode

Операционник LM386 является отличным базисом для построения усилителей звука. Тем не менее, существует огромное количество схем с участием LM386, но не все они позволяют создать действительно качественный звуковой усилитель.

В этом материале будет продемонстрировано, как создать отличный звуковой усилитель на основе LM386. При этом в таком устройстве можно реализовать возможность усиления басов.

Прежде чем приводить готовые схемы усилителей звука, стоит сначала взглянуть на сам компонент LM386. Он является достаточно универсальным операционным усилителем. Для создания рабочего усилителя требуется только пара сопротивлений и конденсаторов. Микросхема имеет опции для регулировки усиления и повышения баса, а также может быть преобразована в генератор, способный генерировать синусоидальные волны или прямоугольные волны. Существует три разновидности LM386, каждая с разными номинальными значениями мощности: LM386N-1 (0,325 Вт), LM386N-3 (0,700 Вт), LM386N-4 (1,00 Вт). Фактическая выходная мощность, которую вы получите, будет зависеть от вашего напряжения питания и импеданса громкоговорителя. В документации на LM386 есть графики, которые подробнее расскажут вам об этом. В данном случае прикладывалось напряжение питания 9 В, но вы можете питать этот усилитель напряжением от 4 В и до 12 В. Распиновка LM386 показана на схеме ниже.

ОУ LM386 берет входной аудиосигнал и повышает его напряжение в лимитах от 20 до 200 раз. Это число еще именуется как коэффициент усиления по напряжению. Изменение усиления может быть реализовано подсоединением 10 мкФ конденсатора между выводами 1 и 8. При отсутствии конденсатора между выводами 1 и 8 коэффициент усиления будет установлен на 20. При задействовании конденсатора 10 мкФ коэффициент усиления будет установлен на 200. Коэффициент усиления можно изменить на любое значение между 20 и 200 за счет включения сопротивления (или потенциометра) последовательно с конденсатором.

Теперь, когда мы узнали кое-что о LM386, давайте начнем с создания «голого» усилителя на основе LM386 с минимальным числом элементов, требуемых для его работы. Таким образом, потом вы можете сравнить его с усилителем с более качественным звучанием, который мы соберем позже. Принципиальная и макетная схемы подключения показаны ниже.

На приведенной выше схеме подключения заземление аудиовхода соединено с заземленим аудиовыхода. Выходное заземление «шумит» и вызывает искажение входного сигнала при подключении таким образом. Звуковое входное заземление чувствительно к любым помехам, и любой шум, получаемый усилителем, увеличивается через усилитель. Ставьте целью как можно дальше размещать входную землю отдельно от других путей заземления. Например, вы можете подключить заземление для источника питания, входа и выхода непосредственно к контакту заземления (контакт 4) LM386 следующим образом:

Подключение этого типа должно звучать лучше, чем первая схема, но вы, вероятно, все равно заметите какой-то шум. Мы исправим это в следующей схеме, добавив развязывающие конденсаторы и пару RC-фильтров.

Несколько элементов в этой схеме заставляют ее звучать лучше. Конденсатор емкостью 470 пФ между положительным входным сигналом и землей нужен для фильтрации различных помех, полученных с аудиовходамов. Конденсаторы 100 мкФ и 0.1 мкФ между положительными и отрицательными линиями питания нужны для развязки питания. Конденсатор 100 мкФ отфильтровывает низкочастотный шум, а конденсатор 0.1 мкФ будет фильтровать высокочастотный шум. Емкость 0.1 мкФ между выводами 4 и 6 требуется для дополнительной развязки источника питания от операционника. Резистор 10 КОм и конденсатор 10 мкФ, идущие последовательно, между линией 7 и заземлением нужны для развязки входного аудиосигнала. Вот так это выглядит на макете.

Завершающим этапом построения качественного усилителя звука на LM386 является добавление возможности усиления басов. Усиление басов – это в основном простой фильтр нижних частот, и он удаляет большую часть шума, не убираемого развязывающими конденсаторами. Все, что вам нужно для схемы усиления баса – это конденсатор 0.033 мкФ и потенциометр 10 КОм последовательно между линиями 1 и 5.

Схему можно по-быстрому протестировать, подключив какое-нибудь устройство вывода звука. Простой способ подключения аудиовхода в такой схеме — это отрезать 3.5-мм аудиоразъем от старого набора наушников и подключить его к выводам на макетной плате. Таким образом, на основе LM386 можно самостоятельно, быстро и недорого собрать качественный усилитель звука с возможностью усиления басов. LM3886 — безусловно, один из лучших звуковых усилителей, но есть усилители и с более лучшими характеристиками. После экспериментов с LM386 можно начать создание проектов TDA2003, а затем плавно перейти на TDA2050.

Теги: операционный усилитель

admin

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Наверх