Электрификация

Справочник домашнего мастера

Металлоискатель на микросхеме к176ла7 и к176ла9

Металлоискатель начинающего радиолюбителя (К176ЛА7, К176ЛА9)

Комментарии (21): #1 Сергей Декабрь 21 2013 С помощью предлагаемого устройства можно обнаружить медную монету диаметром 20 мм и толщиной 1,5 мм на глубине до 0,9 м.

Блин за такую чувствительность… Монета на 90 см… За такое Нобелевскую премию по физике давать надо… Может 0.09м??

#2 root Декабрь 22 2013

Нобелевскую премию никому давать не будем, а исправления в статью внесли, спасибо за замечание. )

#3 федя Июнь 04 2014

ошибка в схеме у ла9 два вывода имеют одинаковые номера 6 8 не читается я этот генератор использую для отпугивания мышей кроны хватает на месяц излучатель кварцевый

#4 root Июнь 04 2014

Спасибо вам, Фёдор, за замечание — ошибка исправлена.

#5 владимир Июнь 09 2014

6 и 8 вообще не должны быть подсоеденены или только 8, и ещё что значит с2* звёздочка что значит???

#6 root Июнь 09 2014

6 и 8 ножки микросхемы DD2 должны быть соединены, все верно. Звездочка возле изображения детали означает что номинал этой детали, возможно, придется подбирать для на стройки устройства или отдельного блока. С2 вместе с поисковой катушкой индуктивности создают колебательный контур, при изменении этой ёмкости будет изменена частота колебаний входного генератора.

#7 владимир Июнь 09 2014

а какая ошибка там у ла9 ? Я собрал такую схему, не нашел только варикап, у меня стоит д901д есть еще кв109а, с2 поставил 100 пф, шум в динамике постояно и тихо, на монеты не реагирует только на крупный металл, что посоветуете как исправить эту проблему

#8 владимир Июнь 09 2014

Когда R2 кручу там нет такого места чтоб звук не прослушивался? шум на всей прокрутке переменного резистора.

#9 root Июнь 09 2014

Ошибки уже нет, ее исправили.
Емкость д901д составляет от 28 до 38 пф. Варикапы кв109 не подойдут, у них емкость в несколько раз ниже.
Как вариант, для эксперимента можно попробовать включить вместо варикапа переменный конденсатор на емкость 20-100 пФ, какой уже найдете.
При использовании переменного конденсатора весь узел C1-R1-R2 можно исключить, правда помехоустойчивость устройства будет низкой — будут влиять наводки от руки при вращении ручки переменного конденсатора.

Чувствительность металлоискателя очень зависит от конструкции и размера поисковой катушки. Попробуйте выполнить катушку большего и меньшего диаметра, потом поэкспериментировать как будет с ними работать схема.

#10 владимир Июнь 10 2014

и ещё на схеме (б) у dd2 там есть перемычка идет снизу и до с8 помойму от 14 ноги если не ошибаюсь, вот если с ней то вообще не работает без неё ещё подаёт признаки что работает, а ты собирал такой?

#11 root Июнь 10 2014

Проверили печатную плату — действительно на печатной плате перемычки отобразили как дорожки, это неверно. Внесли исправления.
Если у вас печатная плата изготовлена по старому варианту(с ошибкой) то нужно поразрезать лишние соединения и впаять перемычки.

#12 владимир Июнь 11 2014

ещё очень важный мне вопрос, а варикап д901г пойдёт вместо д901в?

#13 root Июнь 11 2014

Ёмкость варикапа при Uобр=4 В, ’=1ч10 МГц
Д901А, Д901Б От 22 до 32 пФ
Д901В, Д901Г От 28 до 38 пФ

Думаю что в данной схеме можно использовать варикап д901г вместо д901в.

#14 владимир Июнь 11 2014

а если вместо с2 переменый конденсатор поставить на сколько ставить?

#15 root Июнь 11 2014

Скорее всего КПЕ с емкостью от 50 до 150 пФ будет достаточно, экспериментируйте.

#16 валера Март 21 2015

схема небудет работат с кварцем 1 мгц так как разность между двумя генераторами должна быть в 1 килогерц и два генератора должны настроены 200килогерц тогда металло искатель запустится сразу

#17 гена матушков Февраль 01 2017

эту схему я встречал в журнале радио № 8 за 1990 год стр 33…35

#18 root Февраль 01 2017

Гена, все верно. Статья называлась: «Три металлоискателя на микросхемах» — Р. Скетерис.

#19 саня Март 02 2017

Скажите, при включении в наушниках звук идет как в кино на военных рациях разной частоты писк. И он плавает, то тише то громче, то тональность меняет. Так и должно быть? На металл не реагирует. Может что то не так? Сборку схемы проверил.

Металлоискатель на микросхеме К176ЛА7

Подробности Категория: Металлоискатели

Схема металлоискателя на микросхеме К176ЛА7

Поисковый генератор изготовлен на основе первых двух элементах в микросхеме DD1. Колебательный контур здесь создан конденсаторами С2 и СЗ, высокочувствительной поисковой катушкой L1 и варикапом VD1. Для того, чтобы настроиться на частоту, равную 100 кГц используется потенциометр R2, который задаёт нужное напряжение варикапу VD1.

В роли буферных усилителей сигнала задействованы логические элементы DD1.3 и DD2.3, которые работают на смеситель DD1.4. Индикатором металлоискателя на микросхеме К176ЛА7 есть телефонный капсюль BF1 с высоким сопротивлением. Конденсатор С10 установлен как шунт для высокочастотной составляющей, которая поступает от смесителя.

Питание на металлоискатель подаётся от источника питания постоянного тока с напряжением в 9 В, в котором используется батарея «Крона». В качестве фильтра в схеме использованы конденсаторы С8 и С9.

Поисковая катушка металлоискателя

Высокочувствительная поисковая катушка, которая используется в устройстве, требует к себе особого внимания и точности при изготовлении. Наматывать катушку следует на виниловую трубку с внешним диаметром и внутренним диаметрами в 15 мм и 10 мм соответственно. Желательно, чтобы трубка была согнута в форме окружности, диаметр которой 200 мм.

Поисковая катушка содержит на себе 100 витков провода ГТЭВ-0,27. Когда наматывание заканчивается, катушка обвивается фольгой из алюминия. Это нужно для создания электростатического экрана, то есть, чтобы уменьшить влияние ёмкости между землёй и катушкой. При обмотке и обвитии алюминиевой фольгой нельзя допускать электрического контакта между острыми краями фольги и проводом намотки. В данном случае, поможет здесь «обвивка наискось».

Для того, чтобы защитить само алюминиевое покрытие от механических повреждений, катушку в дополнение можно обвить изоляционной лентой. Диаметр катушки может отличаться, но здесь действует такое правило: чем меньше диаметр высокочувствительной поисковой катушки, тем больше становится чувствительность всего устройства, зато сужается площадь поиска металлических предметов. Обратный эффект достигается при увеличении диаметра катушки.

Монтажная плата

Как работать с устройством?

Установив высокочувствительную поисковую катушку в близости от поверхности грунта, следует настроить генератор с помощью потенциометра R2, причем сделать это нужно так, чтобы звук не прослушивался в телефонном капсюле.При движении поисковой катушки над поверхностью грунта, почти касаясь её, металлический предмет может отыскаться по появлению звуковых сигналов в телефонном капсюле. Металлоискатель на микросхеме К176ЛА7 позволяет обнаружить монету 20мм на глубине до 9 см.

Цифровые микросхемы — начинающим (занятие 2) — К176ЛА7

На прошлом занятии мы познакомились с простыми логическими элементами НЕ, И, ИЛИ, И-НЕ, ИЛИ-НЕ. Теперь начнем знакомство непосредственно с микросхемами серий К561 или К176, на примере микросхемы К561ЛА7 (или К176ЛА7, в принципе они одинаковые, различаются только некоторые электрические параметры).

Микросхема содержит четыре элемента И- НЕ, это одна из наиболее часто используемых микросхем в радиолюбительской практике. Микросхема К561ЛА7 (или К176ЛА7) имеет прямоугольный пластмассовый черный, коричневый или серый корпус с 14-ю выводами, расположенными по его длинным краям. Эти выводы изогнуты в одну сторону. На рисунках 1А, 1Б и 1В показано как производится нумерация выводов. Вы берете микросхему маркировкой к себе, при этом выводы оказываются повернуты в противоположную от вас строну. Первый вывод определяется по «ключу». «Ключ» — это выштампованная углубленная метка на корпусе микросхемы, она может быть в форме паза (рисунок 1А), в форме маленькой точки-углубления, поставленной возле первого вывода (рисунок 1Б), или в форме большой углубленной окружности (рисунок 1 В). В любом случае отсчет выводов ведется от помеченного «ключом» торца корпуса микросхемы. Как отсчитываются выводы показано на этих рисунках. Если микросхему перевернуть «на спину», то есть маркировкой от себя , а «ногами» (выводами) к себе, то положение выводов 1-7 и 8-14, естественно поменяются местами. Это понятно, но многие начинающие радиолюбители эту мелочь забывают и это приводит к неправильной распайке микросхемы, в результате чего конструкция не работает, да и микросхема может выйти из строя.

На рисунке 2 показано содержимое микросхемы (при этом микросхема изображена «ногами к вам», в перевернутом виде). В микросхеме есть четыре элемента 2И-НЕ и показано как их входы и выходы подключены на выводы микросхемы. Питание подключается так : плюс — на вывод 14, а минус — на вывод 7. При этом общим проводом считается минус. Паять выводы микросхемы нужно очень осторожно и использовать паяльник мощностью не более 25 Вт. Жало этого паяльника нужно заточить так, чтобы ширина его рабочей части была 2-3 мм. Время пайки каждого вывода не должно быть более 4 секунд. Лучше всего микросхемы для опытов разместить на специальных макетных платах, вроде той, что предложил наш постоянный автор Сергей Павлов в журнале иРК-12-99″ (страница 46).

Напомним, что цифровые микросхемы понимают только два уровня входного напряжения «О» — когда напряжение на входе около нуля питания, и «1» — когда напряжение близко к напряжению питания. Проведём эксперимент (рисунок 3) превратим элемент 2И-НЕ в элемент НЕ (для этого его входы нужно соединить вместе) и будем подавать на эти входы напряжение с переменного резистора R1 (подойдет любой на любое сопротивление от 10 кОм до 100 кОм), а на выходе подключим светодиод VD1 через резистор R2 (Светодиод может быть любой излучающий видимый свет, например АЛ307). Затем подключим питание (не перепутайте полюса) — две последовательно соединенные «плоские» батареи по 4,5 В каждая (или одна «Крона» на 9В). Теперь поворачивая движок резистора R1 следите за светодиодом, в какой то момент сретодиод будет гаснуть, а в какой то зажигаться (если светодиод не горит вообще, это значит, что вы его неправильно подпаяли, поменяйте его выводы местами и все будет нормально).

Теперь подключите вольтметр (РА1) так как показано на рисунке 3 (в качестве вольтметра можно использовать любой тестер или мультиметр, включенный на изменение постоянного напряжения). Поворачивая движок R1 заметьте при каком напряжении на входах элемента микросхемы светодиод горит, а при каком гаснет.

На рисунке 4 показана схема простого реле времени. Рассмотрим как она работает. В тот момент, когда контакты выключателя S1 замкнуты конденсатор С1 разряжен через них, и напряжение на входах элемента равно логической единице (близко к напряжению питания). Поскольку этот элемент у нас работает как НЕ (оба входа И замкнуты вместе) на его выходе при этом будет логический нуль, и светодиод гореть не будет. Теперь размыкаем контакты S1. Конденсатор С1 начинает медленно заряжаться через резистор R1. И напряжение на этом конденсаторе будет расти, а напряжение на R1 падать. В какой то момент это напряжение достигнет уровня логического нуля и микросхема Переключится», на выходе элемента будет логическая единица — светодиод загорится. Вы можете поэкспериментировать устанавливая на место R1 резисторы разного сопротивления, а на место С1 конденсаторы разных емкостей, и обнаружить интересную зависимость — чем больше емкость и сопротивление тем больше времени будет проходить с момента размыкания S1 до зажигания светодиода. И наоборот чем меньше емкость и сопротивление тем меньше времени проходит от размыкания S1 до зажигания светодиода. Если резистор R1 заменить переменным можно поворачивая его движок каждый раз изменять время, которое будет отрабатывать это реле времени. Запуск этого реле времени производится кратковременным замыканием контактов S1 (можно вместо S1 просто пинцетом или проволочкой замыкать выводы С1 между собой разряжая таким образом С1.

Если места подключения резистора и конденсатора поменять (рисунок 5) схема будет работать наоборот, — при замыкании контактов S1 светодиод зажигается сразу, а гаснет через некоторое время после их размыкания.

Собрав схему, показанную на рисунке 6 — мультивибратор из двух логических элементов, можно сделать простую «мигалку» — светодиод будет мигать, а частота этого мигания будет зависить от сопротивления резистора R1 и емкости конденсатора С1. Чем меньше будут эти величины тем быстрее будет мигать светодиод, и наоборот, чем больше — тем медленнее (если светодиод не мигает вообще — это значит, что он неправильно подключен, нужно поменять местами его выводы).

Теперь внесем изменения в схему’ мультивибратора (рисунок 7) — отключим вывод 2 от вывода 1 первого элемента (D1.1) и подключим вывод 2 к такой же цепи из конденсатора и резистора, как в опытах с реле. времени. Теперь смотрите что будет : пока S1 замкнут напряжение на одном из входов элемента D1.1 равно нулю. Но это элемент И-НЕ, а значит, что если на его один вход подан нуль, то независимо от того что происходит на его втором входе, на его выходе все равно будет 1 единица. Эта единица поступает на оба входа элемента D 1.2, и на выходе D 1.2 будет ноль. А раз так, то светодиод загорится и будет гореть постоянным светом. После размыкания S1 конденсатор С2 будет медленно заряжаться через R3 и напряжение на С2 будет расти. В какой то момент оно станет равным логической единице. В этот момент выходной уровень L элемента D1.1 станет зависеть от уровня на его втором входе — выводе 1 и мультивибратор начнет работать, а светодиод станет мигать.

Если С2 и R3 поменять местами (рисунок 8) схема будет работать наоборот — вначале светодиод будет мигать, а поистечении некоторого времени после размыкания S1 он перестанет мигать и будет гореть постоянно.

Теперь перейдем в область звуковых частот — соберите схему, показанную на рисунке 9. Когда вы подключите питание в динамике будет слышен писк. Чем больше С1 и R1 тем ниже будет тон писка, а чем они меньше, тем выше тон звука. Соберите схему показанную на рисунке 10.

Это готовое реле времени. Если на ручку R3 нанести шкалу, то им можно пользоваться, например при фотопечати. ВЫ замыкаете S1, установите резистором R3 нужное время, и затем размыкаете S1, После того как это время истечет динамик станет пищать. Схема работает почти также как показанная на рисунке 7.

На следующем занятии попробуем собрать несколько полезных в быту приборов на микросхемах К561ЛА7 (или K176J1A7).

Функциональный генератор импульсов (176ЛА7)

Генератор вырабатывает синхронизированные колебания трех форм: прямоугольной, треугольной и синусоидальной (рис. 59) . Его основу составляет замкнутая релаксационная схема, образованная пороговым устройством на элементах DD1.1 и DD1.2 и интегратором на элементе DD1.3. Элемент DD1.4 выполняет функцию преобразователя треугольных колебаний в синусоидальные.

Для работы генератора используются различные участки передаточной характеристики КМОП элементов. Так, для работы порогового устройства и интегратора используется линейный участок передаточной характеристики.

Как в целом работает генератор? Выход интегратора соединен через резистор R3 со входом порогового устройства, поэтому, когда на выходе порогового устройства напряжение высокого уровня, то через резисторы R5 и R6 заряжается конденсатор С4, в результате чего на выходе интегратора изменяется со скоростью, определяемой постоянной времени цепочки RSR6C4. Когда же напряжение на выходе интегратора достигнет порога срабатывания порогового устройства и на его выходе появляется напряжение низкого уровня, интегрирование происходит в обратном направлении. Таким образом, на выходе порогового устройства формируются прямоугольные импульсы, а на выходе интегратора — треугольной формы.

Рис 59. Функциональный генератор: а — схема, б — монтажная плата

Колебания треугольной формы поступают на вход преобразователя, представляющего собой усилитель с нелинейной симметричной передаточной характеристикой. Подстроечньім резистором R7 уровень входного треугольного напряжения устанавливают таким, чтобы «верхушки» этого напряжения выходили ла нелинейный участок характеристики элемента и сглаживались. При этом на выходе преобразователя формируется сигнал, приближенный к синусоидальному, коэффициент гармоник которого составляет около 5 %.

При налаживании генератора резистором R7 устанавливают такой режим работы элемента DD1.4, при котором на его выходе получается синусоидальное напряжение с минимальными искажениями. Резистором R1 добиваются симметричного как треугольного, так и синусоидального напряжения.

Частоту генератора можно в широких пределах изменять резисторов R5, поэтому его можно заменить переменным, разместить на передней панели генератора и снабдить шкалой. Питать генератор следует обязательно стабилизированным натяжением. Выходы генератора рассчитаны на подключение нагрузки яе менае 10 кОм.

Литература: И. А. Нечаев, Массовая Радио Библиотека (МРБ), Выпуск 1172, 1992 год.

Исповедь радиовандала

…или как я сдавал радиодетали на лом.

Если вы смотрели мультсериал Futurama, то, возможно, помните, как робота Бендера обуяла алчность, и он продал своё тело из титана, когда цены на него резко выросли. Так вот, именно этот эпизод я вспоминаю, когда сдаю радиодетали в скупку.

Для тех, кто не в теме.

Практически в любом электронном компоненте, будь то транзистор или микросхема, присутствуют драгоценные металлы: золото, серебро, платина, палладий, иридий и др. Эти металлы можно извлечь из бэушных и старых радиодеталей, а затем вторично использовать.

По счастью мне в руки попало несколько печатных плат с «золотыми» микросхемами и иной радиолом. До этого я не интересовался сдачей радиодеталей, да и позолоченных микрух в глаза не видел. Большое количество морально устаревших и однотипных радиодеталей мне не нужно, и я решил их сдать. Ну, и, тем самым, немного подзаработать. Так я стал радиовандалом и перешёл на сторону зла .

Вот плата.

Приглядимся…

На фото — интегральный стабилизатор, микросхема КР142ЕН1Б в корпусе из «розовой» керамики с позолотой! Именно из таких микросхем можно добыть золото, поэтому их и принимают на переработку.

В каких радиодеталях есть золото?

Микросхемы, содержащие золото встречаются не часто, но всё же их можно встретить в старой радиоаппаратуре. Покажу лишь некоторые из них.

Это «розовые пиджаки» — дешифраторы 514ИД2 (аналог К514ИД2) с позолоченными выводами. По маркировке видно, что они изготовлены в 1992 году.

Вот эти дешифраторы 514ИД1 уже постарее будут, а, именно, 1988 года «рождения». Золотишка на них побольше. Взгляните на «пузо».

Вот так выглядят золотые микросхемы 564 серии (К564). На этом фото: Арифметико-логическое устройство — микросхема 564ИП3 (аналог К564ИП3) и сумматор 564ИМ1 (1КИМ1).

Микросхемы 564ЛС2 (К564ЛС2). Плёнка на выводах — это лак. Скупают их по цене где-то 15 — 20 рублей штука.

Отряд жёсткой логики — микросхемы 564ЛЕ5 (1КЛЕ5). У них золотые ножки и пузо. На рынке их принимают за 10-12 рублей штука. Кстати, микросхемы в таких корпусах довольно компактные, их можно использовать в самодельных конструкциях. Выйдет дорого и сердито.

Вот так выглядят микросхемы 564ЛЕ5, 564ЛП2, 564ТМ2, 1КЛА8 (564ЛА8), 564ЛА7 (1КЛА7), 1КЛА9 в корпусе типа «золотая коробочка».

Для тех, кто не знает, микросхемы серий К564 (564), К176, К561, К1561 являются аналогами. Выпускались в различных корпусах. Например, микросхему К176ЛА7 я видел только в пластиковом корпусе. А её аналог 1КЛА7 (она же 564ЛА7, К564ЛА7) видел как в пластике, так и в металлическом корпусе с золотыми выводами.

Вообще, как я понял, микросхемы серии К564 военной приёмки маркируют без первой буквы К.

Логические микросхемы 109ЛИ1. Это 6-ти входовый элемент «И» для работы на низкоомную нагрузку.

А это уже светодиодные семисегментные индикаторы АЛС314А (в красном корпусе) и 3ЛС321Б1. Выводы их позолочены. Кроме этого кристалл каждого светодиода внутри индикатора соединяется с выводами тонкой проволочкой из золота.

Если к вам в руки попадут такие индикаторы, то советую оставить себе несколько штук. Особенно мне нравятся миниатюрные АЛС314А. Где-то видел, что на таких индикаторах один умелец собрал наручные часы !

Транзисторы, однако, также таят в себе реальную ценность! На фото транзистор КТ602Б с позолоченным пузом. Увидите похожий транзистор — обязательно приберите. Я, например, встречал жёлтое «пузо» у транзисторов 2Т608Б, 2Т603А, 2Т312Б и других.

У некоторых транзисторов жёлтый драгметалл находится внутри, например, у мощного транзистора КТ808. Чтобы до него добраться, у транзистора спиливают шляпку.

Я был слегка удивлён, когда обнаружил золото даже в транзисторах КТ814 — КТ817! Если раскусить корпус транзистора, то можно обнаружить позолоченное основание. Вот такое.

Сдал около трёх сотен таких по цене где-то 3-5 рублей за штуку. Но, в некоторых партиях транзисторов такой позолоты нет, всё зависит от «древности» изделия. Также в более старых изделиях основание позолочено полностью, а не как на фотографии — только половина.

Транзисторные оптопары 3ОТ127А.

Когда я увидел вживую «золотые» микросхемы и транзисторы, то был немного удивлён. Вы бывали в магазинчиках, где торгуют ювелиркой? Кольцами, цепочками, серьгами? Обычно это небольшой уголок в каком-нибудь крупном магазине. Так вот цвет этих «ювелирных» изделий сильно отличается от цвета позолоченных ножек и пуза «золотых» микросхем.

Вот тогда-то в мою голову закралась мысль о качестве этих ювелирных изделий. Так что, если среди читателей есть девушки, то советую хотя бы раз поглядеть на позолоченные контакты разъёмов или «золотые» микросхемы. Будет с чем сравнивать. Вот разъём СНП30P-B и его позолоченные контакты.

Россыпь таких контактов выглядит очень шикарно. На колечко бы хватило .

Конечно, для нанесения позолоты на корпус микросхем используется не чистейшее золото, да и слой позолоты может быть мизерный. Как мне сказали на рынке, один старый транзистор по содержанию золота перетянет горсть «золотых» микросхем типа К564ТМ2.

Известно, что чистота контакта напрямую влияет на надёжность электронного устройства. Поэтому контакты разъёмов, панелек покрывают тонким слоем золота. Оно не окисляется даже при нагреве, устойчиво к воздействию кислорода, серы, кислот. Например, позолоченные контакты я обнаружил в панельках для микросхем РС-40-7.

А также в панельках РС-28-7.

Обычно один позолоченный контакт оценивают в 1 рубль. Так что на 5-10 панелек РС-40-7 можно сходить в кино.

В миниатюрных переключателях ВДМ1-8, ВДМ1-2 контакты также покрыты слоем позолоты.

Один вывод переключателя также оценивают в 1 рубль. Я оставил несколько штук таких переключателей себе. Очень жаль отдавать на лом такие детали. Можно сказать, что их надёжность подкреплена самым ценным товаром на Земле — золотом!

Сквозь прозрачный пластик корпуса ВДМ1-2 видна характерная желтизна токоведущих контактов.

Во всевозможных тумблерах, переключателях, переменных резисторах и реле контакты покрывают сплавами платины, иридия. В общем, везде, где имеет место многократная механическая нагрузка и износ. Золото не используют по причине его низкой механической прочности. Переключатели ВДМ1-2, видимо, исключение. Скорее всего, они рассчитаны на небольшое число переключений.

Золото в импортных радиодеталях

К импортным радиодеталям скупщики относятся с недоверием, но несмотря на это принимают и их. Если у вас завалялись процессоры от компьютеров или материнские платы, то их тоже можно сдать. Материнские платы, как правило, принимают на вес. Дёшево, мне предложили по 150 руб. за кило, но это лучше, чем если бы эта плата гнила на свалке.

У меня даже нашёлся древний процессор Intel® Pentium® под Socket 7, который был установлен в каком-то промышленном компьютере.

На ютубе нашёл видео о том, как из подобных процев добывают золото. Видео очень интересное. Чел потрошит компьютерный лом, а народ в комментариях рассуждает о том, насколько это выгодно, ведь чистота золота бывает разная, а, следовательно, и его цена. В общем, советую к просмотру.

Зачем микросхемы покрывают золотом?

Дело в том, что золото — это благородный металл. Он с трудом образует химические соединения даже при нагревании, устойчив к кислотам. Эти качества обеспечивают чистоту и надёжность контакта. Отсутствие агрессивных примесей гарантирует сохранность и качество контакта спустя длительный срок эксплуатации аппаратуры.

В связи с этим, корпуса и выводы микросхем покрывают слоем позолоты.

А где в микросхемах золото, если они в пластиковом корпусе?

Золото обладает хорошей электропроводностью, легко паяется мягкими припоями. Пластично и вытягивается в очень тонкую проволоку (1 грамм Au ~ 3,5 км. проволоки). И самое интересное, это то, что легко сплавляется с кремнием и германием! Чем, как не золотой проволокой соединять кремниевый чип и внешние выводы?

Именно поэтому кремниевый чип в микросхемах подключают к внешним выводам золотой проволокой. Золотую проволочку от чипа к выводам легко разглядеть сквозь прозрачный пластик светодиода. Я, например, сумел её сфоткать в мигающем светодиоде.

Во времена СССР драгметаллов для производства электронных компонентов не жалели, особенно для электроники специального назначения. Тогда, как и сейчас, на каждый тип электронного изделия составлялась документация. В ней указывалось, какие металлы, и в каком количестве идут на производство одного элемента.

Если у кого-то сохранился старый отечественный магнитофон (например, «Романтика»), то в инструкции к нему можно обнаружить страничку с таблицей. В ней указано содержание и количество драгметаллов в начинке данного аппарата.

В последствие это облегчило «оценку» принимаемого на переработку изделия. Именно поэтому скупщики предпочитают детали советского периода, к импорту относятся с лёгким недоверием.

Где можно сдать радиодетали?

Сдать радиодетали на лом можно на любом радиорынке. Наверняка уже видели вывески вроде «Куплю радиодетали дорого». Приносите своё добро скупщику (есть на каждом радиорынке), он озвучивает цену 1 единицы для каждого типа радиодеталей. Если цена вас устраивает, то отдаёте своё добро скупщику, он считает или взвешивает. Взамен вы получаете кэш (т.е наличку). Такова схема. Можно также отправлять посылки с деталями почтой специальным фирмам, но я не пробовал.

Как вы думаете, что больше всего любят скупщики радиодеталей? Транзисторы? Нет. Микросхемы? Неа. А что?! Они обожают обычные керамические конденсаторы серии КМ4, КМ5, КМ6.

Дело в том, что в этих конденсаторах в достаточном количестве содержится платина и палладий. Один килограмм конденсаторов КМ стоит в районе нескольких десятков тысяч рублей!

Вот так выглядят конденсаторы КМ5.

Также ценятся «рыжики», конденсаторы КМ6 оранжевого цвета. Я сдавал те, что на фото и скупщик их взял без вопросов. Но стоит понимать, что при непонятной маркировке даже такие конденсаторы могут не взять. Я, например, видел похожего цвета конденсаторы в китайских усилителях.

Конденсаторы принимают на вес и без выводов (откусываются). Даже если у вас 20 грамм, то взвесят и купят. Говорят, что чем больше принесёшь, тем выше цену дадут за 1 грамм. Честно говоря, я в это не верю. Всё зависит от скупщика и ценового «сговора» на радиорынке. Все скупщики на рынке знают друг друга и между ними есть определённая договорённость. Как мне объяснили, все они сдают выкупленные детали одному человеку, который регулярно приезжает и скупает всё добро уже оптом.

Схема такого бизнеса довольно проста. Скупаешь в розницу по низкой цене, затем продаёшь оптом представителю фирмы от аффинажного завода. На разнице зарабатываешь. Как то так.

В любом случае, сдавая радиодетали, нужно понимать, что их стоимость зависит не только от цены драгметалла на Лондонской бирже и курса доллара в конкретный день, но и от скупщиков. А они тоже хотят жить. Это их бизнес. Поэтому прежде чем сдавать своё добро в первом же ларьке скупщика, советую пробежаться по радиорынку и поузнавать расценки на то, что у вас есть. Я, например, выявил целую «сеть» скупщиков, которые принимают детали очень дёшево.

Если школьный курс химии для вас не прошёл даром, то в голову стукнет вполне логичная мысль: «А почему бы самому не извлечь драгметаллы из радиодеталей и продать?». Насколько знаю, за это можно получить ата та. Дело в том, что нарушение правил сдачи драгметаллов государству карается 192 статьёй УК РФ (глава 22).

Перечень радиоэлектронных изделий, которые принимают на переработку (скупают) довольно велик. Это и реле, и транзисторы, и переключатели, тумблера, конденсаторы, переменные резисторы, реостаты, индикаторы, радиолампы, и даже печатные платы! Всё, что содержит драгметаллы в достаточном количестве. Но в большинстве случаев, это, как правило, радиодетали, произведённые во времена Советского Союза.

Под занавес сего повествования, отмечу.

Я не приветствую радиовандализм. После развала союза началась лихорадка по «уничтожению» советского наследия. Под этот каток попало и электронное оборудование. Многие тогда сделали нехилые бабки на розничной скупке и оптовой продаже деталей, содержащих драгметаллы. С тех пор прошло уже немало лет, но бизнес на скупке радиодеталей ещё живёт.

Я за грамотную утилизацию. Электроника — это кладезь драгметаллов и редких химических элементов. Мне приятно, что даже на старом барахле, которое обычно выкидывают на свалку, можно немного заработать. Полученные деньги можно пустить на покупку более нужных деталей.

Главная &raquo Радиоэлектроника для начинающих &raquo Текущая страница

Также Вам будет интересно узнать:

  • Покупаем радиодетали на AliExpress.

  • Как научиться читать принципиальные схемы?

admin

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Наверх