Электрификация

Справочник домашнего мастера

Лабораторный блок питание

СТАБИЛИЗАТОР НАПРЯЖЕНИЯ НА ПОЛЕВОМ ТРАНЗИСТОРЕ

Несложная схема для регулирования, а также стабилизации напряжения представлена на картинке выше, её сможет собрать даже новичок в электронике. К примеру, на вход подано 50 вольт, а на выходе получаем 15,7 вольт или другое значение до 27V.

Схема регулируемого стабилизатора

Основной радиодеталью данного устройства является полевой (MOSFET) транзистор, в качестве которого можно использовать IRLZ24/32/44 и другие подобные. Наиболее часто они производятся компаниями IRF и Vishay в корпусах TO-220 и D2Pak. Стоит около 0.58$ грн в розницу, на ebay 10psc можно приобрести за 3$ (0,3 доллара за штуку). Такой мощный транзистор имеет три вывода: сток (drain), исток (source) и затвор (gate), он имеет такую структуру: металл-диэлектрик(диоксид кремния SiO2)-полупроводник. Микросхема-стабилизатор TL431 в корпусе TO-92 обеспечивает возможность настраивать значение выходного электрического напряжения. Сам транзистор я оставил на радиаторе и припаял его к плате с помощью проводков.

Входное напряжение для этой схемы может быть от 6 и до 50 вольт. На выходе же получаем 3-27V с возможностью регулирования подстрочным резистором 33k. Выходной ток довольно большой, до 10 Ампер, в зависимости от радиатора.

Сглаживающие конденсаторы C1,C2 могут иметь ёмкость 10-22 мкФ, C3 4,7 мкФ. Без них схема и так будет работать, но не так хорошо, как нужно. Не забываем про вольтаж электролитических конденсаторов на входе и выходе, мною были взяты все рассчитаны на 50 Вольт.

Мощность, которую сможет рассеять такой стабилизатор напряжения не может быть более 50 Ватт. Полевой транзистор обязательно устанавливается на радиатор, рекомендуемая площадь поверхности которого не менее 200 квадратных сантиметров (0,02 м2). Не забываем про термопасту или подложку-резинку, чтобы тепло лучше отдавалось.

Возможно использование подстрочного резистора 33k типа WH06-1, WH06-2 они имеют достаточно точную регулировку сопротивления, вот так они выглядят, импортный и советский.

Для удобства на плату лучше припаять две колодки, а не провода, которые легко отрываются.

Печатная плата для дискретных элементов и переменного резистора типа СП5-2 (3296).

Стабильность неплоха и напряжение изменяется только на доли вольта на протяжении длительного времени. Готовая платка получилась компактна и удобна. Так как я планирую длительное время использовать это устройство для защиты дорожек окрасил всё дно платы зеленым цапонлаком. Автор материала — Егор.

Форум по БП

Обсудить статью СТАБИЛИЗАТОР НАПРЯЖЕНИЯ НА ПОЛЕВОМ ТРАНЗИСТОРЕ

Лабораторный блок питания своими руками

Подача напряжения питания для различной электронной аппаратуры может осуществляться не только от заводских устройств. Блок питания (БП) своими руками можно сделать и в домашних условиях. В том случае, когда такой аппарат нужен для постоянной работы с различными напряжениями при регулировке: усилителей, генераторов и других самодельных схем, желательно, чтобы он был лабораторным.

Самодельный блок питания

Схемы блоков питания

Напряжение лабораторного БП располагается в интервале от 0 до 35 вольт. Для этой цели подходят схемы, по которым можно собрать следующие БП:

  • однополярный;
  • двуполярный;
  • лабораторный импульсный.

Конструкции подобных устройств обычно собраны либо на обычных трансформаторах напряжения (ТН), либо на импульсных трансформаторах (ИТ).

Внимание! Отличие ИТ от ТН в том, что на обмотки ТН подается синусоидальное переменное напряжение, а на обмотки ИТ приходят однополярные импульсы. Схема включения обоих абсолютно идентична.

Импульсный трансформатор

Простой лабораторный

Однополярный БП с возможностью регулировать выходное напряжение можно собрать по схеме, в которую входят:

  • понижающий трансформатор Tr ( 220/12…30 В);
  • диодный мост Dr для выпрямления пониженного переменного напряжения;
  • электролитический конденсатор С1 (4700 мкФ*50В) для сглаживания пульсации переменной составляющей;
  • потенциометр для регулировки выходного напряжения Р1 5 кОм;
  • сопротивления R1, R2, R3 номиналом 1кОм, 5,1 кОм и 10 кОм, соответственно;
  • два транзистора: Т1 КТ815 и Т2 КТ805, которые желательно установить на теплоотводы;
  • для контроля напряжения на выходе устанавливают цифровой вольтамперметр, с интервалом измерений от 1,5 до 30 В.

В коллекторную цепь транзистора Т2 включены: С2 10 мкф * 50 В и диод Д1.

Схема простого БП

К сведению. Диод устанавливают для защиты С2 от переполюсовки при подключении к аккумуляторам для подзарядки. Если такая процедура не предусмотрена, можно заменить его перемычкой. Все диоды должны выдерживать ток не менее 3 А.

Печатная плата простого БП

Двухполярный источник питания

Для питания усилителей низкой частоты (УНЧ), имеющих два “плеча” усиления возникает необходимость в применении двухполярного БП.

Важно! Если монтировать лабораторный БП, стоит остановить внимание именно на аналогичной схеме. Источник питания должен поддерживать любые форматы выдаваемого постоянного напряжения.

Двухполярный ИП на транзисторах

Для такой схемы допустимо применять трансформатор с двумя обмотками на 28 В и одной на 12 В. Первые две – для усилителя, третья – для питания охлаждающего вентилятора. Если таковой не окажется, то достаточно двух обмоток равного напряжения.

Для регулировки выходного тока применены наборы резисторов R6-R9, подключаемые с помощью сдвоенного галетного переключателя (5 положений). Резисторы подбирают такой мощности, чтобы они выдерживали ток более 3 А.

Внимание! Установленные светодиоды гаснут при срабатывании защиты по току, если он превышает значение 3 А.

Переменный резистор R нужно брать сдвоенный номиналом 4.7 Ом. Так проще осуществлять регулировку по обоим плечам. Стабилитроны VD1 Д814 соединены последовательно для получения 28 В (14+14).

Для диодного моста можно взять диоды подходящей мощности, рассчитанные на ток до 8 А. Допустимо устанавливать диодную сборку типа KBU 808 или аналогичную. Транзисторы КТ818 и КТ819 необходимо установить на радиаторы.

Подбираемые транзисторы должны иметь коэффициент усиления от 90 до 340. БП после сборки не требует специальной наладки.

Лабораторный импульсный бп

Отличительной чертой ИПБ является рабочая частота, которая в сто раз выше частоты сети. Это дает возможность получить большее напряжение при меньшем количестве витков обмотки.

Информация. Чтобы получить 12 В на выходе ИПБ с током 1 А для сетевого трансформатора достаточно 5 витков при сечении провода 0,6-0,7 мм.

Простой полярный ИП можно собрать, используя импульсные трансформаторы от компьютерного БП.

Лабораторный блок питания своими руками можно собрать по схеме приведенной ниже.

Схема импульсного блока питания

Данный источник питания собран на микросхеме TL494.

Важно! Для управления Т3 и Т4 используется схема, в которую входит управляющий Тr2. Это связано с тем, что встроенные ключевые элементы микросхемы не имеют достаточной мощности.

Трансформатор Тr1 (управляющий) берут от компьютерного БП, он «раскачивается» при помощи транзисторов Т1 и Т2.

Особенности сборки схемы:

  • для минимизации потерь при выпрямлении используют диоды Шоттки;
  • ESR электролитов в фильтрах на выходе должен быть как можно ниже;
  • дроссель L6 от старых БП применяют без изменения обмоток;
  • дроссель L5 перематывают, намотав на ферритовое кольцо медный провод диаметром 1,5 мм, набрав 50 витков;
  • Т3, Т4 и D15 крепят на радиаторы, предварительно отформатировав выводы;
  • для питания микросхемы, управления током и напряжением применяют отдельную схему на Tr3 BV EI 382 1189.

Вторичная обмотка выдает 12 В, которые выпрямляются и сглаживаются при помощи конденсатора. Микросхема линейного стабилизатора 7805 стабилизирует его до 5 В для питания схемы индикации.

Внимание! Допустимо использовать в этом БП любую схему вольтамперметра. В таком случае микросхема для стабилизации 5 В не понадобится.

Изготовление печатной платы и сборка

Схема подразумевает изготовление трёх печатных плат. Платы подбираются для корпуса Kradex Z4A.

Расположение плат в корпусе Kradex Z4A

Платы выполнены из фольгированного гетинакса путем фотопечати и протравки дорожек.

Настройка блока питания

Правильно собранное устройство не нуждается в особой регулировке. Необходимо лишь подстроить диапазоны регулировки тока и напряжения.

Четыре операционных усилителя в микросхеме LM324 осуществляют регулировку тока и напряжения. Микросхема питается через фильтр, собранный на L1, C1 и С2.

Чтобы настроить схему регулировки, нужно подобрать элементы, помеченные звёздочкой, для маркировки регулирующих диапазонов.

Индикация

Для индикации обычно используются устройства индикации и модуль измерения на микроконтроллерах. Питание таких контроллеров лежит в пределах 3-5 В.

Рекомендации по улучшению надежности

Лабораторный бп должен простоять под нагрузкой не менее 2 часов. После этого проверяют температуру корпусов трансформаторов, работу теплоотводов. При намотке трансформаторов для снижения шума при работе намотку обмоток осуществляют плотно виток к витку. Готовую конструкцию заливают парафином. При установке элементов на радиаторы места контактов промазывают теплопроводящей пастой.

В корпусе просверливают ряд отверстий, напротив теплоотводов, сверху дополнительно устанавливают кулер.

Защита блока питания

Токовая стабилизация (защита) микросхемы LM324 срабатывает при превышении установленного токового порога. В этом случае на микросхему приходит сигнал о понижении напряжения. Красный светодиод служит индикатором повышения напряжения или возникновения короткого замыкания. В рабочем режиме светится зеленый светодиод.

Советы по оформлению корпуса

Корпус Kradex Z4A позволяет выводить элементы управления и индикации, как на лицевую, так и на боковые панели. Ручки регулировки, индикатор лучше всего устанавливать на лицевую панель. Разъем для выходного напряжения можно крепить где угодно.

Внешний вид самодельного ИБП

Собранный своими руками лабораторный блок питания с использованием мощных полевых транзисторов и импульсных трансформаторов незаменим для работы. В качестве индикаторов желательно использовать цифровые электронные ампервольтметры.

Приветствую всех, особенно начинающих радиолюбителей, поскольку именно они очень часто сталкиваются с проблемой поиска источников питания для своих самоделок и поэтому в ходе этой статьи будет рассмотрен вариант постройки простейшего лабораторного блока питания с возможностью ограничения тока.
Наш блок питания может обеспечивать на выходе стабилизированное напряжения от ноля до пятнадцати вольт и ток до 1.5 Ампер, эти параметры можно изменять и походу поясню, как это сделать.В проекте специально использованы наиболее доступные компоненты, чтобы ни у кого не возникло трудности с их поиском, а теперь давайте рассмотрим схему и поймём принцип её работы.

Схема состоит из трех основных частейСетевой понижающий трансформатор (красным обозначен), он обеспечивает нужные для наших целей выходные параметры, а также гальваническую развязку. В моем варианте был использован трансформатор от блока питания старого кассетного магнитофона, подойдет и любой другой, основные параметры блока питания будут зависеть в первую очередь от трансформатора, притом нужно учитывать один момент — максимальное выходное напряжение лабораторного блока питания будет на несколько вольт меньше, чем напряжение на выпрямителе. Трансформатор подбирается с нужным током, в моем случае имеются две обмотки по 20 вольт, ток каждой из них составляет около 0,7 Ампер, обмотки подключены параллельно, то есть общий ток около полутора ампер.
Вторая часть из себя представляет выпрямитель, для выпрямления переменного напряжения в постоянку и конденсатор, для сглаживания напряжения после выпрямителя и фильтрации помех.

И наконец третий узел — это плата самого стабилизатора, давайте её рассмотрим поподробнее…

Уже постоянное напряжение поступает на плату стабилизатора, где стабилизируется до некоторого уровня. Режим стабилизации будет зависеть от стабилитрона, в нашем случае он на 15 Вольт, именно он задает максимальное выходное напряжение блока питания.
Беда в том, что ток у таких стабилитронов не велик, поэтому его нужно усилить с помощью простого каскада усиления по току, построенного на транзисторах VТ 1 и VТ 2, транзисторы подключены таким образом, чтобы обеспечить максимально большое усиление, то есть по сути это аналог составного транзистора.

Регулятор напряжения в лице переменного резистора R1, выполняет функцию простого делителя напряжения и может быть рассмотрен, как 2 последовательно соединенных резистора с отводом от места их соединения.Изменяя сопротивление каждого из них, мы можем регулировать напряжение. Это напряжение усиливается ранее указанным каскадом.

Второй переменный резистор позволит ограничивать выходной ток. Если такая функция не нужна, то схема будет выглядеть следующим образом.

Теперь подробнее о компонентах, большую их часть, а если точнее все компоненты можно найти в старой аппаратуре, например в телевизорах, усилителях, приемниках, магнитолах и прочей технике.

Также возможно использовать импортные аналоги, которые имеют одинаковое расположение выводов. В архиве сможете найти некоторые варианты замены транзисторов, как на советские, так и на импортные.

Можно использовать готовые мосты, которые можно найти в компьютерных блоках питания или же собрать мост из любых четырех аналогичных диодов с током от двух ампер.

Для увеличения выходного напряжения блока питания сначала нужно найти соответствующий трансформатор, затем заменить стабилитроны на более высоковольтные, скажем на 18 или 24 вольта, будет зависеть от нужного вам выходного напряжения.

Резистор ограничивает ток через стабилитрон, расчет производится исходя из напряжения выпрямителя. Рассчитываю так, чтобы ток через стабилитрон не превышал значение 20-25 миллиампер, в случае стабилитрона на пол ватта и 40-45 миллиампер в случае если стабилитрон одноваттный.

Если под рукой не оказалось нужного стабилитрона, то можно использовать несколько последовательно соединенных с меньшим напряжением, в итоге сумма их напряжения будет равняться конечному напряжению стабилизации.
Схема стабилизатора работает в линейном режиме, поэтому силовой транзистор VT 2 нуждается в радиаторе.

А теперь давайте проверим конструкцию в работе

и как видим напряжения плавно регулируется от нуля до пятнадцати вольт

Теперь проверим функцию ограничения тока, обратите внимание без выходной нагрузки вращая регулятор тока, напряжение у нас не будет меняться, что свидетельствует о корректной работе функции ограничения.

Выходной ток также регулируется достаточно плавно, минимальная граница 180 миллиампер.

Максимальный выходной ток в моём случае, составляет около полутора ампер, этого вполне достаточно для средних нужд большинства радиолюбителей.Несмотря на простоту конструкции, при токах около одного Ампера, наблюдаем просадку выходного напряжения меньше 200 милливольт, это очень хороший показатель для стабилизаторов такого класса.

Введите электронную почту и получайте письма с новыми поделками.

Блок питания может переносить короткие замыкания с продолжительностью не более 5 секунд, в этом режиме ток ограничивается в районе одного — семи Ампер.

Монтаж при желании можно сделать навесным,но более красиво смотрится конструкция на печатной плате, тем более, что я ее для вас нарисовал,а файл платы также можете скачать с общим архивом проекта.

В качестве индикаторов советую использовать стрелочные приборы, чтобы не путаться с подключением, хотя можно и цифровые.

По мне, это довольно годный вариант в качестве первого блока питания, так что смело собирайте.

Архив к статье: скачать…
Автор; АКА КАСЬЯН

Лабораторный блок питания от 0 — 30 Вольт от 0,002 — 3 А

Вступление

Сегодня мы соберем лабораторный блок питания своими руками. Разберемся в устройстве блока, подберем правильные компоненты, научимся правильно паять, собирать элементы на печатные платы.

Это — высококачественный лабораторный (и не только) блок питания с переменным регулируемым напряжением от 0 до 30 вольт. Цепь также включает электронный ограничитель по току на выходе, который эффективно регулирует выходной ток 2 мА из максимально возможного в этой цепи (3 А). Данная характеристика делает этот блок питания незаменимым в лаборатории, так как она дает возможность регулировать мощность, ограничивать максимальный ток, который подключаемое устройство может потреблять, без боязни ее повреждения, если что-то пойдет не так.
Есть также визуальный признак того, что этот ограничитель действует (светодиод), чтобы Вы могли видеть, что ваша цепь превышает допустимые пределы.

Принципиальная схема лабораторного блока питания представлена ниже:

Технические характеристики лабораторного блока питания

Особенности

— Небольшой размер, легко сделать, простая конструкция.
— Выходное напряжение легко регулируется.
— Ограничение выходного тока с визуальной индикацией.
— Защита от перегрузки и неправильного подключения.

Принцип работы

Начнем с того, что для лабораторного блока питания используется трансформатор с вторичной обмоткой 24В/3А, который подключается через входные зажимы 1 и 2 (качество выходного сигнала пропорционально качеству трансформатора). Напряжение переменного тока с вторичной обмотки трансформатора выпрямляется диодным мостом, сформированным диодами D1-D4. Пульсации выпрямленного напряжения DC на выходе диодного моста сглаживает фильтр, образованный резистором R1 и конденсатором С1. Цепь имеет некоторые особенности, которые делают этот блок питания отличным от других блоков этого класса.

Вместо использования обратной связи для управления выходным напряжением, в нашей цепи используется операционный усилитель, чтобы обеспечивать необходимое напряжение для стабильной работы. Это напряжение падает на выходе U1. Цепь работает благодаря зенеровскому диоду D8 — 5.6 V, который здесь работает при нулевом температурном коэффициенте тока. Напряжение на выходе U1 падает на диоде D8 включая его. Когда это происходит цепь стабилизируется также напряжение диода (5.6) падает на резисторе R5.

Ток который течет через опер. усилитель изменяется незначительно, а значит тот же ток будет течь через резисторы R5, R6, и так как оба резистора имеют одинаковую величину напряжения, то общее напряжение будет суммироваться как при их последовательном соединении. Таким образом напряжение, полученное на выходе опер. усилителя будет равно 11.2 вольт. Цепь с опер. усилителем U2 имеет постоянный коэффициент усиления приблизительно равный 3,согласно формуле A=(R11+R12)/R11 увеличивает напряжения 11.2 вольт приблизительно до 33 вольт. Триммер RV1 и резистор R10 использованы для установки выходных параметров напряжения, чтобы оно не уменьшилось до 0 вольт, независимо от величины других компонентов в цепи.

Другая очень важная характеристика цепи — это возможность получить максимальный выходной ток, который можно получить из p.s.u. Чтобы сделать это возможным напряжение падает на резисторе (R7), который связан последовательно с нагрузкой. IC отвечающий за эту функцию цепи — U3. Инвертированный сигнал на вход U3 равный 0 вольт подается через R21. В то же самое время, не изменяя сигнала того же самого IC можно задать любое значение напряжения посредством P2. Допустим, что для данного выхода напряжение равно несколько вольт, P2 установлен так, чтобы на входе IC был сигнал в 1 вольт. Если нагрузку усилить выходное напряжение будет постоянным и наличие R7 последовательно соединенного с выходом будет иметь незначительный эффект из-за своей низкой величины и из-за своей позиции за пределами цикла обратной связи управляющей цепи. Пока нагрузка и выходное напряжение постоянны цепь стабильно работает. Если нагрузку увеличить, чтобы напряжение на R7 было больше, чем 1 вольт, U3 включен и стабилизируется в исходные параметры. U3 работает не изменяя сигнал к U2 через D9. Таким образом напряжение через R7 постоянно и не увеличивается выше заданной величины (1 вольт в нашем примере) уменьшая выходное напряжение цепи. Это под силу устройству — поддерживать выходной сигнал постоянным и точным, что дает возможность получать на выходе 2 mA.

Конденсатор C8 делает цепь более устойчивой. Q3 необходим для управления LED всякий раз, когда вы используете индикатор ограничителя. Чтобы сделать это возможным для U2 (изменял выходное напряжение вплоть до 0 вольт) необходимо обеспечить отрицательную связь, которая делается посредством цепи C2 и C3. Та же отрицательная связь использована для U3. Отрицательное напряжение подается стабилизируясь посредством R3 и D7.

Для избежания неконтролируемых ситуаций есть своеобразная цепь защиты, построенная вокруг Q1. IC имеет внутреннюю защиту и не может быть поврежден.

U1- источник опорного напряжения, U2 — регулятор напряжения, U3 — стабилизатор тока.

Конструкция блока питания.

Прежде всего, давайте рассмотрим основы в построении электронных цепей на печатных платах — основы любого лабораторного блока питания. Плата сделана из тонкого изоляционного материала покрытого тонким проводящим слоем меди, которая формируется таким образом, чтобы элементы цепи можно было соединить проводниками как показано на принципиальной схеме. Необходимо правильно спроектировать печатную плату для избежания неправильной работы устройства. Для защиты платы в дальнейшем от окисления и сохранения ее в отличном состоянии ее необходимо покрыть специальным лаком, который защищает от окисления и облегчает пайку.
Пайка элементов в плату — единственный способ собрать лабораторный блок питания качественно и от того как вы это сделаете, будет зависеть успех вашей работы. Эта не очень сложно, если вы будете следовать нескольким правилам и тогда у вас не будет никаких проблем. Мощность паяльника, который вы используете, не должна превышать 25 Ватт. Жало должно быть тонким и чистым на протяжении всей работы. Для этого есть влажная своеобразная губка и время от времени вы можете очищать горячее жало, чтобы удалить все остатки, которые накапливаются на нем.

Прочитайте про правильный выбор паяльника, а также про основы пайки.

  • НЕ пытайтесь очистить напильником или наждачной бумагой грязное или изношенное жало. Если оно не может быть очищено, замените его. На рынке есть много разнообразных паяльников, и вы также можете купить хороший флюс, чтобы получить хорошее соединение элементов во время пайки.
  • НЕ используйте флюс если вы пользуетесь припоем, который уже содержит его. Большое количество флюса — одна из основных причин сбоя цепи. Если тем не менее вы должны использовать дополнительный флюс как при лужении медных проводов, необходимо очистить рабочую поверхность после окончания работы.

Для того, чтобы припаять элемент правильно, вы должны делать следующее:
— Зачищать выводы элементов наждачной бумагой (желательно с небольшим зерном).
— Сгибать выводы компонентов на правильном расстоянии от выхода из корпуса для удобного расположения на плате.
— Вы можете встретить элементы, выводы которых толще, чем отверстия в плате. В этом случае необходимо немного расширить отверстия, но не делайте их слишком большими – это затруднит пайку.
— Вставить элемент необходимо так, чтобы его выводы немного выступали от поверхности платы.
— Когда припой расплавится, он равномерно растечется по всей области вокруг отверстия (добиться этого можно при правильной температуре паяльника).
— Пайка одного элемента должна быть не более 5 секунд. Удалите излишки припоя и дождитесь пока припой на плате остынет естественно (не дуя на него). Если все сделали правильно, поверхность должна иметь яркий металлический оттенок, края должны быть гладкими. Если припой выглядит тусклыми, с трещинами, или имеет форму капли, то это называется сухой пайкой. Вы должны удалить его и сделать все снова. Но будьте осторожны, чтобы не перегреть дорожки, иначе они будут отставать от платы и легко ломаться.
— Когда вы паяете чувствительный элемент, необходимо держать его металлическим пинцетом или щипцами, которые будут поглощать лишнее тепло, чтобы не сжечь элемент.
— Когда вы завершаете вашу работу, обрежьте избыток от выводов элемента и можете очистить плату спиртом, чтобы удалить все остатки флюса.

Перед началом сборки блока питания необходимо найти все элементы и разделить их по группам. Для начала установите гнёзда для ICs и выводы для внешних связей и припаяйте их на свои места. Затем резисторы. Не забудьте разместить R7 на определенном расстоянии от печатной платы так как он очень сильно нагревается, особенно когда течет большой ток, и это может повредить её. Это также рекомендуется сделать для R1. затем размещайте конденсаторы не забывая про полярность электролитического и наконец припаивайте диоды и транзисторы, но будьте осторожны, чтобы не перегреть их и припаять их так как показано на схеме.
Установите силовой транзистор в heatsink. Чтобы сделать это необходимо следить за диаграммой и не забывать использовать изолятор (слюда) между телом транзистора и heatsink и специальное очищающее волокно, чтобы изолировать винты от heatsink.

Подсоедините изолированный провод к каждому выводу, будьте осторожны, чтобы сделать хорошее качественное соединение, так как здесь течет большой ток, особенно между эмиттером и коллектором транзистора.
Также при сборке блока питания неплохо было бы прикинуть где какой элемент будет находиться, для того, чтобы вычислить длину проводов, которые будут между PCB и потенциометрами, силовым транзистором и для входной и выходной связей.
Соедините потенциометры, LED и силовой транзистор и подключайте две пары концов для входной и выходной связей. Убедитесь по диаграмме, что вы все делаете правильно, старайтесь ни чего не перепутать, так как в цепи 15 внешних связей и допустив ошибку ее потом сложно будет найти. Также было бы неплохо использовать провода разных цветов.

Печатная плата лабораторного блока питания, ниже будет ссылка на скачивание печатки в формате .lay :

Что такое печатная плата, какие бывают виды плат и как её изготовить самостоятельно читайте в нашей статье.

Схема расположения элементов на плате блока питания:

Схема соединения переменных резисторов (потенциометров) для регулирования выходного тока и напряжения, а также соединение контактов силового транзистора блока питания:

Обозначение выводов транзисторов и операционного усилителя:

Когда все внешние связи сделаны необходимо проверить плату и почистить ее, чтобы удалить остатки припоя. Убедитесь, что нет соединения между смежными дорожками которое может привести к короткому замыканию и если все хорошо — подсоедините трансформатор. И подключите вольтметр .
НЕ КАСАЙТЕСЬ ЛЮБОГО УЧАСТКА ЦЕПИ ПОКА ОН ПОД НАПРЯЖЕНИЕМ.
Вольтметр должен показывать напряжение от 0 до 30 вольт в зависимости от того, в каком положении P1. Поворот P2 против часовой стрелки должен включать LED, показывая, что наш ограничитель работает.

Список элементов.

R1 = 2,2 кОм 1W
R2 = 82 Ом 1/4W
R3 = 220 Ом 1/4W
R4 = 4,7 кОм 1/4W
R5, R6, R13, R20, R21 = 10 кОм 1/4W
R7 = 0,47 Ом 5W
R8, R11 = 27 кОм 1/4W
R9, R19 = 2,2 кОм 1/4W
R10 = 270 кОм 1/4W
R12, R18 = 56кОм 1/4W
R14 = 1,5 кОм 1/4W
R15, R16 = 1 кОм 1/4W
R17 = 33 Ом 1/4W
R22 = 3,9 кОм 1/4W
RV1 = 100K триммер
P1, P2 = 10KOhm линейный потенциометр
C1 = 3300 uF/50V электролитический
C2, C3 = 47uF/50V электролитический
C4 = 100нФ полиэстр
C5 = 200нФ полиэстр
C6 = 100пФ керамический
C7 = 10uF/50V электролитический
C8 = 330пФ керамический
C9 = 100пФ керамический
D1, D2, D3, D4 = 1N5402,3,4 диод 2A — RAX GI837U
D5, D6 = 1N4148
D7, D8 = 5,6V зенеревский
D9, D10 = 1N4148
D11 = 1N4001 диод 1A
Q1 = BC548, NPN транзистор или BC547
Q2 = 2N2219 NPN транзистор — (Заменяют на КТ961А — все работает)
Q3 = BC557, PNP транзистор или BC327
Q4 = 2N3055 NPN силовой транзистор (заменить на КТ 827А)
U1, U2, U3 = TL081, опер. усилитель
D12 = LED диод

В итоге я самостоятельно собрал лабораторный блок питания, но столкнулся на практике с тем, что считаю нужным подправить. Ну во первых это силовой транзистор Q4 = 2N3055 его нужно в срочном порядке вычеркнуть и забыть. Не знаю как других устройствах, но в данном регулируемом блоке питания он не подходит. Дело в том, что данный тип транзисторов выходит из строя моментально при коротко замыкании и ток в 3 ампера не тянет совершенно!!! Я не знал в чем дело пока не поменял его на наш родной совковый КТ 827 А. После установки на радиатор я и горя не знал и больше не возвращался к этому вопросу.

Что же касается остальной схемотехники и деталей, то трудностей нет. За исключением трансформатор — мотать пришлось. Ну это чисто из-за жадности, пол ведра их стоит в углу — не покупать же =))

Ну и чтобы не нарушать старую добрую традицию, я выкладываю результат своей работы на общий суд 🙂 пришлось по шаманить с колонкой, но в целом получилось не дурно :

Собственно лицевая панель — вынес потенциометры в левую часть в правой разместились амперметр и вольтметр + светодиод красного цвета, для индикации ограничения по току.

На следующей фотографии вид сзади. Тут я хотел показать способ монтажа кулера с радиатором от материнской платы. На этот радиатор с обратной стороны примостился силовой транзистор.

Вот и он, силовой транзистор КТ 827 А. Смонтирован на заднюю стенку. Пришлось просверлить отверстия под ножки, смазать все контактные части теплопроводной пастой и закрепить на гайки.

Вот они….внутренности! Собственно все в куче!

Немного крупнее внутрь корпуса

Лицевая панель с другой стороны

Поближе, тут видно как смонтирован силовой транзистор и трансформатор.

Плата блока питания сверху; тут я схитрил и транзисторы маломощные упаковал снизу платы. Тут их не видно, так что не удивляйтесь если не найдете их.

Вот и трансформатор. Перемотал на 25 вольт выходного напряжения ТВС-250 Грубо, кисло, не эстетично зато все работает как часы =) Вторую часть не использовал. Оставил место для творчества.

Ну вот как-то так. Немного творчества и терпения. Блок работает замечательно уже 2 год. Для написания данный статьи мне пришлось его разобрать и заново собрать. Это просто ужас! Но все для вас, дорогие читатели!

Нет лучше чем один раз увидеть, чем 100 раз услышать, таким видео приятно поделиться, видео сборки и теста блока питания:

Конструкции наших читателей!














Скачать печатную плату:

Печатная плата в .lay

Печатная плата и конструкция от DDREDD — (печатка переработанная и уменьшенная, БП двух полярный и с жк дисплеем). Можно взять отсюда печатку! Остальное по желанию.

Что такое печатная плата и как её сделать самостоятельно

Программа для открытия файлов в формате .lay —

Ссылка на английскую версию с доработками и заменой некоторых деталей — Читать

— Замена 2n2219 возможна на КТ961А, bd139 либо вообще его убрать читайте на форуме

— Простое охлаждение силового транзистора — терморегулятор

— Более усложненный вариант — схема терморегулятора (От Kot)

Если у вас остались вопросы, либо вы в чем-то сомневаетесь можно обсудить статью на форуме

Хочу заметить, что на форме очень много уже разобранных вопросов, возможно ваш вопрос уже обсужден — не ленитесь, прочтите!

СХЕМА ЛАБОРАТОРНОГО ИСТОЧНИКА ПИТАНИЯ

Необходимость в лабораторном источнике питания с возможностью регулировки выходного напряжения и порога срабатывания защиты по току потребления нагрузкой возникла давно. Проработав кучу материала на просторах интернета и набив шишки на собственном опыте, остановился на нижеследующей конструкции. Диапазон регулирования напряжения 0-30 Вольт, ток отдаваемый в нагрузку определяется в основном примененным трансформатором, в моём варианте спокойно снимаю более 5-ти Ампер. Есть регулировка порога срабатывания защиты по току потребляемого нагрузкой, а также от короткого замыкания в нагрузке. Индикация выполнена на ЖК дисплее LSD16х2. Единственным недостатком данной конструкции считаю невозможность трансформации данного источника питания в двуполярный и некорректность показания потребляемого тока нагрузкой в случае объединения полюсов — вместе. В мои цели ставилась задача питать в основном схемы однополярного питания по сему даже двух каналов, как говорится, с головой. Итак, схема узла индикации на МК с его вышеописанными функциями:

Измерения силы тока и напряжения I — до 10 А, U — до 30 В, схема имеет два канала, на фото показания напряжения до 78L05 и после, имеется возможность калибровки под имеющиеся шунты в наличии. Несколько прошивок для ATMega8 есть на форуме, проверенны мной не все. В схеме в качестве операционного усилителя использована микросхема МСР602, ее возможная замена — LM2904 или LM358, тогда подключать питание ОУ нужно к 12 вольтам. На плате заменил перемычкой диод по входу стабилизатора и дроссель по питанию, стабилизатор необходимо ставить на радиатор — греется значительно.

Для корректного отображения величин токов необходимо обратить внимание на сечение и длину проводников включенных от шунта к измерительной части. Совет такой — длина минимальная, сечение максимальное. Для самого лабораторного источника питания, была собрана схема:

Завелась сразу же, регулировка выходного напряжения плавная, так же, как и порог защиты по току. Печать под ЛУТ пришлось подгонять, вот что получилось:

Подключение переменных резисторов:

Расположение элементов на плате БП Цоколевка некоторых полупроводников
Перечень элементов лабораторного ИП:

R1 = 2,2 KOhm 1W

С дисплеем проверял, работает отлично — как вольтметр, так и амперметр, проблема тут в другом, а именно: иногда возникает необходимость в двухполярном напряжении питания, у меня вторичные обмотки трансформатора отдельные, видно из фото стоят два моста, то есть полностью два независимых друг от друга канала. Но вот канал измерения общий и имеет общий минус, посему создать среднюю точку в блоке питания не получится, из-за общего минуса через измерительную часть. Вот и думаю либо делать на каждый канал собственную независимую измерительную часть, или может не так уж часто мне нужен источник с двухполярным питанием и общим нулем… Далее привожу печатную плату, та что пока вытравилась:

После сборки, первое: выставляем фьюзы именно так:

Собрав один канал, убедился в его работоспособности:

Пока сегодня включен левый канал измерительной части, правая висит в воздухе, посему ток показыват почти максимум. Кулер правого канала ещё не поставил, но суть ясна из левого.

Вместо диодов пока что в левом канале (он снизу под платой правого) диодного моста который в ходе экспериментов выкинул, хоть и 10А, поставил мост на 35А на радиатор под кулер.

Провода второго канала вторички трансформатора пока висят в воздухе.

Итог: напряжение стабилизации прыгает в пределах 0.01 вольт во всем диапазоне напряжений, максимальный ток который смог снять — 9.8 А, хватит с головой, тем более, что рассчитывал получить не больше трёх ампер. Погрешность измерения — в пределах 1%.

Недостаток: данный блок питания не могу трансформировать в двухполярный из-за общего минуса измерительной части, да и поразмыслив решил, что оконечники мне не настраивать, поэтому отказался от схемы полностью независимых каналов. Ещё одним из недостатков, на мой взгляд, данной измерительной схемы считаю то, что если соединить полюса — вместе по выходу мы теряем информативность по току потребления нагрузкой из-за общего корпуса измерительной части. Происходит это в следствии запараллеливания шунтов обоих каналов. А в общем источник питания получился совсем не плохой и скоро будет статья о его модернизации. Автор конструкции: ГУБЕРНАТОР
Форум по схеме

Обсудить статью СХЕМА ЛАБОРАТОРНОГО ИСТОЧНИКА ПИТАНИЯ

admin

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Наверх