Электрификация

Справочник домашнего мастера

Кварцевый резонатор для чего?

Что такое кварцевый резонатор и как он работает?

Кварцевый резонатор является электронным прибором, построенным на пьезоэффекте, а также механическом резонансе. Применяется радиостанциями, где задает несущую частоту, в часах и таймерах, фиксируя в них интервал в 1 секунду.

Что это такое, и зачем он нужен

Прибор является источником, обеспечивающим гармонические колебания высокой точности. Имеет, при сравнении с аналогами, большую эффективность работы, стабильные параметры.

Первые образцы современных устройств появились на радиостанциях в 1920-1930 гг. как элементы, имеющие стабильную работу, способные задавать несущую частоту. Они:

  • пришли на смену кристальным резонаторам, работавшим на сегнетовой соли, появившимся в 1917 в результате изобретения Александра М. Николсона и отличавшимся нестабильностью;
  • заменили использовавшуюся ранее схему с катушкой и конденсатором, которая не отличалась большой добротностью (до 300) и зависела от температурных изменений.

Чуть позже кварцевые резонаторы стали составной частью таймеров, часов. Электронные компоненты с собственной резонансной частотой 32768 Гц, которая в двоичном 15-разрядном счетчике задает временной промежуток равный 1 секунде.

Приборы используются сегодня в:

  • кварцевых часах, обеспечивая им точность работы независимо от температуры окружающей среды;
  • измерительных приборах, гарантируя им высокую точность показателей;
  • морских эхолотах, которые применяются при исследованиях и создании карт дна, фиксации рифов, отмелей, поиска объектов, находящихся в воде;
  • схемах, соответствующих опорным генераторам, синтезирующим частоты;
  • схемах, применяемых при волновом указании SSB или сигнала телеграфа;
  • радиостанциях с DSB-сигналом с промежуточной частотой;
  • полосовых фильтрах приемников супергетеродинного типа, которые более стабильны и добротны, чем LC-фильтры.

Устройства изготавливаются с разными корпусами. Делятся на выводные, применяемые в объемном монтаже, и SMD, используемые в поверхностном монтаже.

Их работа зависит от надежности схемы включения, влияющей на:

  • отклонение частоты от необходимого значения, стабильность параметра;
  • темп старения прибора;
  • нагрузочную емкость.

Свойства кварцевого резонатора

Превосходит ранее существовавшие аналоги, что делает прибор незаменимым во многих электронных схемах и объясняет сферу использования устройства. Это подтверждается тем, что за первое десятилетие с момента изобретения в США (не считая другие страны) выпущено больше 100 тыс. штук приборов.

Среди положительных свойств кварцевых резонаторов, объясняющих популярность, востребованность устройств:

  • хорошая добротность, значения которой — 104-106 — превышают параметры ранее использовавшихся аналогов (имеют добротность 300);
  • небольшие габариты, которые могут измеряться долями миллиметра;
  • устойчивость к температуре, ее колебаниям;
  • долгий срок службы;
  • простота изготовления;
  • возможность построения каскадных фильтров высокого качества без использования ручной настройки.

Кварцевые резонаторы имеют и недостатки:

  • внешние элементы позволяют подстраивать частоту в узком диапазоне;
  • обладают хрупкой конструкцией;
  • не переносят чрезмерного нагрева.

Принцип работы кварцевого резонатора

Работает прибор на основе пьезоэффекта, проявляющегося на пластинке из кварца, причем низкотемпературного. Элемент вырезают из цельного кристалла кварца, соблюдая задаваемый угол. Последний определяет электрохимические параметры резонатора.

Пластинки с обеих сторон покрывают слоем серебра (подходит платина, никель, золото). Затем их прочно фиксируют в корпусе, который герметизируется. Устройство представляет колебательную систему, которая обладает собственной резонансной частотой.

Когда электроды подвергаются переменному напряжению, пластинка из кварца, обладающая пьезоэлектрическим свойством, изгибается, сжимается, сдвигается (зависит от типа обработки кристалла). Одновременно в ней появляется противо-ЭДС, как это происходит в катушке индуктивности, находящейся в колебательном контуре.

Когда подается напряжение с частотой, совпадающей с собственными колебаниями пластинки, то в устройстве наблюдается резонанс. Одновременно:

  • у элемента из кварца увеличивается амплитуда колебаний;
  • сильно уменьшается сопротивления резонатора.

Энергия, которая необходима для поддержания колебаний, в случае равенства частот низкая.

Обозначение кварцевого резонатора на электрической схеме

Прибор обозначается аналогично конденсатору. Отличие: между вертикальными отрезками помещен прямоугольник — символ пластинки, изготовленной из кварцевого кристалла. Боковые стороны прямоугольника и обкладки конденсатора разделяет зазор. Рядом на схеме может присутствовать буквенное обозначение прибора — QX.

Как проверить кварцевый резонатор

Проблемы с небольшими приборами возникают, если они получают сильный удар. Такое происходит при падении устройств, содержащих в конструкции резонаторы. Последние выходят со строя и требуют замены по тем же параметрам.

Проверка резонатора на работоспособность требует наличия тестера. Его собирают по схеме на основе транзистора КТ3102, 5 конденсаторов и 2 резисторов (устройство подобно кварцевому генератору, собранному на транзисторе).

Прибор необходимо в подключаемых соединениях, подключениях подключить к базе транзистора и отрицательному полюсу, защищая установкой защитного конденсатора. Питание схемы включения постоянное — 9В. Плюс подключают на вход транзистора, к его выходу — через конденсатор — частотомер, который фиксирует частотные параметры резонатора.

Схемой пользуются при настройке контура колебаний. Когда резонатор исправный, он при подключении выдает колебания, которые приводят к появлению переменного напряжения на эмиттере транзистора. Причем частота напряжения совпадает с аналогичной характеристикой резонатора.

Прибор неисправен, если частотомер не фиксирует возникновение частоты или определяет наличие частоты, но она — либо намного отличается от номинала, либо при нагреве корпуса паяльником сильно изменяется.

Прибор для проверки кварцевых резонаторов+кварцевый калибратор

Здравствуйте, уважаемые Авторы, Журналисты, Читатели!
В этой статье я расскажу, как изготовил простой прибор, позволяющий проверять исправность кварцевых резонаторов и генерировать сигналы образцовых частот в широком диапазоне. А также определять частоту кварцевых резонаторов, если она не известна.

Повторить прибор не составит большого труда. Достаточно базовых знаний, навыков и минимума материалов и инструментов.
В настоящее время кварцевые резонаторы можно встретить на каждом шагу. Они применяются в часах, радиоприёмниках, телевизорах, компьютерах, мобильных телефонах, автомобилях и даже в некоторых стиральных машинах и холодильниках!
Разумеется, мастера — самодельщики тоже используют «кварцы» в своих конструкциях.
Много лет назад я собрал по схеме из какого-то журнала примитивный приборчик. В панельку вставлялся кварцевый резонатор и на выходе получалась точная, стабильная частота, указанная на корпусе кварца. Помогало проверить и настроить приёмники и другие приборы.
Со временем появился большой выбор кварцев и, казалось бы,теперь можно генерировать множество образцовых частот. Однако, я стал замечать, что далеко не каждый кварц работает в этом приборе. К тому же возникла необходимость проверять кварцевые резонаторы на исправность перед их установкой в свои конструкции и при ремонте различной аппаратуры. Прибор меня разочаровал и я его продал или просто подарил кому-то, точно не помню.
Недавно я решил изготовить подобный прибор, используя накопленные знания и опыт. По моей задумке, новый прибор должен быть в разы лучше, сохранив простоту в изготовлении. Вот что у меня получилось.
Это принципиальная электрическая схема прибора.

Условно я разбил её на две части.
Генераторная. При подключении испытуемого кварца, если он исправен, возникает генерация. Частота генерации определяется кварцевым резонатором. Получается маломощный передатчик, в спектре сигнала которого, помимо основной частоты, присутствуют её гармоники, то есть частоты, кратные основной. Например, если подключить кварц на частоту 10 МГц, в спектре так же будут частоты 20 МГц, 30 МГц и так далее. Это позволяет проверять и точно настраивать различную аппаратуру.
Индикаторная. Определяет наличие генерации и зажигает светодиод.
К генераторной части предъявляются весьма жёсткие требования. Генерация должна возникать при подключении любого исправного кварца, любого конструктивного исполнения. В тоже время не должна возникать «паразитная» генерация, то есть при отсутствии кварца или при подключении неисправного резонатора.
Я решил применить не биполярный, как можно встретить в большинстве подобных устройств, а полевой транзистор. Так схема получается проще и стабильнее в работе. Режим работы транзистора VT1 по постоянному току задан резисторами R1 и R2. Проверяемый кварц через конденсатор C1 подключается к затвору и стоку транзистора. При исправном резонаторе создаётся положительная обратная связь и возникает генерация. Для подключения кварца решил использовать небольшие зажимы типа «крокодил» с проводами небольшой длины. Такие зажимы позволяют легко подключать кварцы с самыми разными выводами. Провода также выполняют функцию передающей антенны. Конденсатор C2 закорачивает по высокой частоте провод питания на общий провод. Корпус транзистора соединён с общим проводом.
Индикаторная часть.
Чтобы сделать её максимально простой, я решил применить так называемый транзисторный детектор. Раньше его называли триодным детектором. Его изредка можно встретить в схемах старых радиоприёмников. В отличие от диодного детектора, триодный не только детектирует, но и усиливает продетектированный сигнал. Колебания с выхода генераторной части через конденсатор небольшой ёмкости C3 поступают на базу транзистора VT2. При положительных полупериодах колебаний транзистор открывается и в его коллекторной цепи протекают импульсы тока. Этими импульсами заряжается конденсатор С4. Параллельно конденсатору через ограничительный резистор R4 подключен светодиод HL1, который начинает светиться. База транзистора через резистор R3 подключена к общему проводу, поэтому в отсутствие сигнала транзистор закрыт и светодиод не светится. Таким образом, индикаторная часть однозначно показывает наличие или отсутствие генерации, то есть исправность проверяемого кварцевого резонатора.
Цепь питания прибора состоит из колодки для подключения батарейки 9 В типа «Крона», выключателя S1, диода VD1 защиты от переплюсовки и конденсатора C5.
Далее я расскажу, как изготовить этот прибор.
Детали и материалы:
Транзистор КП307Б
Транзистор КТ325В
Диод Д310
Конденсатор керамический малогабаритный 47 нФ — 2 шт.
Конденсатор керамический малогабаритный 20 пФ
Конденсатор электролитический 47мкФ х 16В
Конденсатор электролитический 470мкФ х 16В
Резистор 10 МОм
Резистор МЛТ-0,125 560 Ом
Резистор МЛТ-0,125 100 кОм
Резистор МЛТ-0,125 470 Ом
Светодиод
Переключатель или кнопка с фиксацией
Колодка под батарейку типа «Крона»
Зажим «крокодил» — 2шт.
Пластиковый прозрачный контейнер для мелочей
Стеклотекстолит фольгированный
Провод монтажный многожильный
Припой
Канифоль
Поролон
Клей
Растворитель 646
Ветошь
Инструменты:
Паяльник 25-40 Вт
Кусачки
Ножницы
Нож
Шило
Пинцет
Пассатижи
Лобзик
Напильник
Мини дрель с насадками
Перманентный фломастер
Линейка
Лупа
Швейная иголка
Мультиметр
Процесс изготовления.
Шаг 1.
Изготовление платы.
В качестве заготовки я решил использовать самодельную плату из фольгированного стеклотекстолита, которую я изготовил много лет назад. На ней были собраны макеты нескольких устройств. Хороша она тем, что имеются небольшие кружочки «пятачки», окруженные фольгой, выполняющей функцию общего провода. Такая плата идеально подходит для изготовления ВЧ устройств, каковым и является данный прибор. Также на этой плате имеется провод питания в виде дорожки. Если у Вас подобной платы нет, её легко изготовить, вырезав кружочки при помощи мини дрели с насадкой наподобие зубоврачебного бора. Или при помощи линейки и резака изготовленного из ножовочного полотна. В этом случае надо вырезать не кружочки, а квадратики.

Шаг 2.
Монтаж деталей на плату.
Залудив выводы деталей, я распаял их на плате, как показано на фотографиях. При монтаже старался выводы деталей сделать по возможности короткими, это важно для ВЧ устройств. Затем лобзиком аккуратно отпилил с двух сторон ненужные части платы и обработал края напильником. Конечно, это неправильно, эти операции нужно делать до монтажа деталей. Но всё дело в том, что я точно не знал, сколько деталей и каких потребуется для этой самоделки. Определился в процессе работы. Используя лупу осмотрел монтаж, особое внимание уделил отсутствию замыканий «пятачков» с окружающей их фольгой. При помощи швейной иголки и тряпочки смоченной растворителем очистил плату от остатков канифоли. В результате у меня получилась плата размерами 65 х 40 мм.




Здесь обозначение выводов транзисторов, в том положении, как они распаяны на плате. Также обозначены аноды диода, светодиода и плюсовые выводы электролитических конденсаторов.

Шаг 3.
Изготовление корпуса.
Сначала я хотел изготовить или подобрать готовый металлический корпус. Но мне попался на глаза небольшой пластиковый контейнер для мелочей. Вот такой.


Решил его использовать. У него 4 небольших и одно большое отделение. Прикинул, что в одном отделении можно будет разместить плату, в другом батарейку, в третьем выключатель питания, в четвёртом зажимы с проводами и подключенным кварцем. В пятом (большом) отделении можно разместить набор резонаторов. Кроме того, корпус полупрозрачный, поэтому не надо будет думать, где и как разместить светодиод, чтобы он был виден с разных сторон. Корпус будет свободно пропускать радиоволны, излучаемые прибором, при этом можно будет закрыть крышку, никакие провода снаружи болтаться не будут и можно будет легко перемещать прибор в нужное место.
Первым делом я наметил маркером место отверстия для крепления выключателя питания и три места прорезей для проводов. Сделал отверстие и прорези.
Шаг 4.
Для того,чтобы батарейка и набор кварцев не болтались в корпусе, вырезал 4 подкладки из поролона.
И приклеил их на соответствующие места.
Шаг 5.
Монтаж всего прибора.
Отмерил необходимое количество провода,чтобы соединить плату с колодкой и выключателем, а также зажимы «крокодил» с платой. Провода взял разных цветов. Спаял согласно схеме. Провода свил между собой.
Шаг 6.
Сборка в корпусе.
Закрепил выключатель питания гайкой, плату закреплять не стал, она хорошо держится в своём отделении корпуса. Уложил провода в соответствующие прорези. Прибор готов!
Шаг 7.
Проверка работоспособности прибора.
Результаты испытаний.
Прибором было проверено большое количество кварцевых резонаторов в диапазоне частот от 1,000 МГц до 79,000 МГц, самого разного конструктивного исполнения. Разных лет изготовления, начиная с 1961 года. Прибор чётко определил неисправные резонаторы. Кроме того, один исправный кварц был умышленно выведен из строя. Для этого на пластину была нанесена капля клея. Прибор показал, что резонатор неисправен.
Излучаемый прибором сигнал (при частоте кварца 24,200 МГц) фиксировался простейшим индикатором поля на расстоянии 10 см, а радиоприёмником (на третьей гармонике) на расстоянии не менее 15 м.
Работоспособность прибора сохранялась при снижении напряжения батареи питания до 4,0 Вольт (с уменьшением яркости свечения индикатора).
Потребляемый ток при напряжении питания 9,0 В составлял 10-13 мА.
В дальнейшем я планирую усовершенствовать это изделие.
1) Сделать выход для подключения частотомера.
2) Сделать отключаемую модуляцию сигналом звуковой частоты (встроенный генератор).
Свободного места в корпусе для этого достаточно.
Я доволен своей самоделкой и активно пользуюсь ей. Также давал на время знакомому радиолюбителю. Отзыв положительный.
Надеюсь, эта статья будет Вам полезна.
Буду рад Вашим комментариям и пожеланиям.
С уважением, R555.

Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. .

ТЕСТЕР КВАРЦЕВЫХ РЕЗОНАТОРОВ

Предлагаем к рассмотрению очередное устройство, которое было сделано несколько дней назад. Это тестер кварцевых резонаторов для проверки эффективности (работоспособности) кварцев, используемых во многих приборах, хотя бы в электронных часах. Вся система предельно простая, но именно эта простота и требовалась.

Тестер состоит из нескольких электронных компонентов:

  • 2 транзисторы NPN BC547C
  • 2 конденсаторы 10nF
  • 2 конденсаторы 220pF
  • 2 резисторы 1к
  • 1 резистор 3k3
  • 1 резистор 47k
  • 1 светодиод

Питание от 6 батареек AA 1.5 В (или Кроны). Корпус изготовлен из коробочки от конфет и оклеен цветной лентой.

Принципиальная схема тестера кварцев

Схема выглядит следующим образом:

Второй вариант схемы:

Для проверки вставляем в SN1 кварц, после чего переключаем переключатель в положение ON. Если светодиод горит ярким светом — кварцевый резонатор исправен. А если после включения светодиод не горит или горит очень слабо, значит мы имеем дело с поврежденным радиоэлементом.

Конечно эта схема скорее для начинающих, представляющая из себя простой кварцевый тестер без определения частоты колебаний. T1 и XT сформировали генератор. C1 и C2 — делитель напряжения тока для генератора. Если кварц живой, то генератор будет работать хорошо, и его выходное напряжение будет выпрямлено элементами С3, С4, D1 и D2, транзистор Т2 откроется и светодиод зажгётся. Тестер подходит для тестирования кварцев 100 кГц — 30 МГц.

Схемы измерительных приборов

Простые испытатели тиристоров и кварцев

Простой испытатель тиристоров можно легко собрать из типовых радиоэлементов, имеющихся в мастерской и в обиходе радиолюбителя. Основной из них — понижающий трансформатор Тр1, принципиальная схема которого изображена на рис. 90. Со вторичной обмотки трансформатора Тр1 снимается напряжение 6,3 В при токе нагрузки около 0,5 А. Выбор постоянного или переменного испытательного напряжения осуществляется переключателем В2. Электроды тиристора подключаются к испытателю с помощью зажимов, например типа “крокодил”. Индикатором исправности тиристора служит лампа накаливания 6,3 В X 0,28 А.

Рис. 90. Принципиальная электрическая схема испытателя тиристоров

Прежде всего тиристор проверяют постоянным током. Для этого переключатель рода испытаний В2 устанавливают в нижнее по схеме положение. Если кнопка Кн1 не нажата, то при исправном тиристоре лампа Л1 гореть не должна. При замыкании контактов этой кнопки на управляющий электрод тиристора поступит включающее напряжение. Он мгновенно перейдет из закрытого состояния в открытое, и на контрольную лампу Л1 поступит питание. После отпускания кнопки лампа остается включенной. Чтобы ее выключить, нужно снять питание с анода тиристора. Для этого испытывают тиристор переменным током. Переключатель В2 переводят в верхнее по схеме положение. Теперь контрольная лампа будет включена только при нажатой кнопке Кн1, так как при разомкнутых контактах первая же отрицательная полуволна переменного тока ее выключит.

Если тиристор пробит, то контрольная лампа будет гореть при не нажатой кнопке как от переменного, так и от постоянного тока. Если же в тиристоре обрыв, то никакими манипуляциями включить контрольную лампу не удастся. Выпрямительный диод может быть любым, на ток 300-400 мА, например Д7А — Д7Ж, Д202 — Д205, Д226, Д229.

Испытатель кварцевого резонатора, схема которого показана на рис. 91, дает возможность быстро убедиться в его работоспособности. Схема прибора состоит из генератора Т1, детектора Д1, Д2 и усилителя постоянного тока Т2. Подсоединив кварц к двум зажимам генератора, включают питание. Если резонатор исправен, на резисторе R2 появляется высокочастотное напряжение, которое затем поступает на диоды Д1, Д2 для детектирования. Выделенная при этом постоянная составляющая открывает транзистор усилительного каскада. Нагрузкой УПТ служат миллиамперметр ИП1 и лампа Л1. Свечение лампы свидетельствует о работоспособности кварца. А о его активности судят по показаниям миллиамперметра. Для активных резонаторов ток составляет 70-90 мА, для малоактивных — 30-40 мА.

Испытатель кварцев можно питать и от батареи напряжением 9-12 В, которая подключается вместо выпрямителя.

Рис. 91. Испытатель кварцев

Данные деталей приведены на схеме. Конденсаторы С1,СЗ,С4 — КДС, С2 — КТК, С5 — К50-6. Миллиамперметр типа М5-2 с током полного отклонения стрелки 100 мА. В качестве Тр1 использован телевизионный унифицированный трансформатор ТВК — 70. Л1- коммутаторная лампа на 12 В X 60 мА.

Испытатель кварцев можно использовать как в ремонтных мастерских, так и в любительских условиях.

Устройство для проверки кварцевых резонаторов

Предлагаемая радиолюбителям для повторения конструкция предназначена для проверки кварцевых и пьезокерамических резонаторов, а также как управляемый генератор частот до 80 МГц.

На интегральной микросхеме DD1 типа КР531ГГ1 построен задающий генератор. Эта микросхема представляет собой два управляемых генератора, частота работы которых задается подключенными к ее выводам С1, С2 кварцевыми, пьезокерамическими резонаторами или конденсаторами. В этом устройстве используется только один генератор этой микросхемы. Подключенный к выводам С1, С2 резистор R1 облегчает запуск генератора с резонаторами с рабочей частотой менее 4 МГц. Все проверяемые резонаторы будут возбуждаться на частоте основного резонанса — первой гармонике. Это следует учитывать при проверке резонаторов, предназначенных для работы в радиоприемных и радиопередающих устройствах. Например, гармониковые кварцы на частоту 27 МГц (третья гармоника) будут возбуждаться на частоте 9 МГц.

На микросхеме DD2 собран делитель частоты на 2 и 4. Сигнал высокой частоты с выхода F DD1.1 через резистор R1 поступает на вход С D-триггера DD2.1, включенным делителем частоты на 2, с выхода этого триггера сигнал с частотой вдвое меньшей частоты задающего генератора поступает на второй D-триггер DD2.1, включенным аналогичным образом. В итоге, на выходе делителя частоты получается сигнал с частотой в 4 раза меньшей частоты задающего генератора. Светодиод HL2 сигнализирует своим свечением то, что проверяемый резонатор возбуждается. Микросхема DD3 используется в качестве буферных элементов, что устраняет влияние подключенной нагрузки на стабильность работы DD1, DD2. К прибору для контроля частоты можно подключить частотомер, способный измерять сигналы с частотой не менее 80 МГц. На частотомер можно подавать сигнал как с частотой работы задающего генератора DD1, так и с частотой вдвое или вчетверо меньшей, что может быть полезным при использовании выносного щупа частотомера и соединительного кабеля с недостаточной полосой пропускания. Все примененные интегральные цифровые микросхемы получают питание от источника стабильного напряжения, построенного на стабилизаторе DA1. При возбуждении генератора на частоте 48 МГц устройство потребляет от источника питания ток около 90 мА. Светодиод HL1 сигнализирует о наличии напряжения питания. Диод VD1 защищает устройство от подачи напряжения питания обратной полярности.

В авторском варианте монтаж элементов выполнен навесным способом тонким монтажным проводом, при этом весь слой фольги используется как общий провод. Следует заметить, что разводка цепей питания и сигнальных цепей требует аккуратности и понимания, поскольку микросхемы серий КР531, 74F весьма высокочастотны и при неудачном монтаже могут генерировать помехи с широким спектром частот.

Детали. Вместо микросхемы КР531ГГ1 можно применить КР1531ГГ1, К531ГГ1П. Возможно, существует импортный аналог из серии 74F124N. Импортную микросхему MC74F74N можно заменить любой из серии 74F74N или отечественной КР531ТМ2. Немного изменив принципиальную схему, можно на месте этой микросхемы установить делитель на 10, например, собранный на микросхеме КР531ИЕ9, 74F160N с любым префиксом. Можно использовать и другие ТТЛ или КМОП делители частоты, способные работать на частоте не менее 80 МГц при напряжении питания +5 В. Микросхему MC74F00N можно заменить любой из серии 74F00N или отечественной КР531ЛАЗ, КР1531ЛАЗ. При применении отечественных микросхем потребляемый устройством ток может немного возрасти. Если не удастся приобрести такие микросхемы, то можно временно вместо DD2 и DD3 установить соответствующие микросхемы серии КР1533, при этом рабочий диапазон частот устройства снизится до 50…70 МГц. Вместо интегрального стабилизатора на фиксированное выходное напряжение +5 В типа L7805ACV можно установить любой из серии 7805 в корпусе ТО-220 или отечественную ИМС КР142ЕН5А, КР142ЕН5В. При использовании некоторых стабилизаторов нижняя граница минимального напряжения питания может увеличиться с 7 В до 8 В. Микросхему стабилизатора напряжения устанавливают на небольшой теплоотвод. Диод 1N4001 можно заменить любым из серий 1 N4001-1 N4007, КД243, КД226. Вместо диодов 1N4148 подойдут диоды серий КД503, КД409, 2Д419. Светодиоды подойдут любого типа общего применения.

Оксидные конденсаторы К50-35, К53-19, К53-30 или импортные аналоги. Неполярные конденсаторы — керамические К10-17 или аналогичные импортные. Резисторы любого типа малогабаритные, например С1-4, С2-23, МЛТ. Для проверки резонаторов с разным диаметром выводов установлены две различные панельки. Длина проводников от выводов С1, С2 DD1 должна быть как можно короче. Если вместо резонатора ZQ1 к панелькам подключить малогабаритный переменный конденсатор емкостью 20…540 пФ, то частоту работы генератора можно изменять от 12 МГц до 760 кГц. Устройство можно усовершенствовать, если на место ZQ1 будет подключен частотозадающий конденсатор, вход Е DD1.2 соединяется с общим проводом, выход F DD1.2 соединяется с входом Uд или Uc DD1.1, к выводам 12 и 13 DD1 подключают конденсатор емкостью 0,22 мкФ. После всего этого генератор DD1.2 будет работать на частоте 2 кГц, а на выходе F DD1.1, вывод 7, будет частотно модулированный сигнал. Кроме того, на входы Uд, Uc можно одновременно подавать противофазные модулирующие сигналы, например, с выхода F DD1.1 и выхода инвертора DD3.1. Для уменьшения девиации частоты модулирующие сигналы можно подавать через подстроечные резисторы сопротивлением по 220…470 Ом. В качестве резонаторов можно использовать не только кварцевые или пьезокерамические резонаторы, но и пьезокерамические фильтры, например генератор, очень хорошо возбуждается с фильтрами на 10,7 МГц от УКВ радиоприемников. Устройство можно использовать не только для проверки резонаторов, но и как калибратор, микропередатчик, генератор звуковых эффектов, измеритель емкости конденсаторов. Область применения микросхемы КР531ГГ1 не ограничивается только рассказанными в этой статье вариантами, а дешевизна и доступность этой микросхемы позволяет провести с ней множество экспериментов, что способствует разнообразию радиолюбительских будней и расширению интересов.

Радiоаматор №1, 2009г.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
DA1 Линейный регулятор L7805AB 1 Поиск в Utsource В блокнот
DD1 Микросхема КР531ГГ1 1 Поиск в Utsource В блокнот
DD2 Микросхема MC74F74N 1 Поиск в Utsource В блокнот
DD3 Микросхема MC74F00N 1 Поиск в Utsource В блокнот
VD1 Выпрямительный диод 1N4001 1 Поиск в Utsource В блокнот
VD2, VD3 Выпрямительный диод 1N4148 2 Поиск в Utsource В блокнот
HL1 Светодиод RL34-SR114S 1 Поиск в Utsource В блокнот
HL2 Светодиод RL34-YG414S 1 Поиск в Utsource В блокнот
С1 Электролитический конденсатор 220 мкФ 16 В 1 Поиск в Utsource В блокнот
С2 Электролитический конденсатор 36 мкФ 10 В 1 Поиск в Utsource В блокнот
С3-С8, С10-С12 Конденсатор 0.1 мкФ 9 Поиск в Utsource В блокнот
С9 Электролитический конденсатор 2.2 мкФ 6.3 В 1 Поиск в Utsource В блокнот
R1 Резистор 3.3 кОм 1 Поиск в Utsource В блокнот
R2 Резистор 47 Ом 1 Поиск в Utsource В блокнот
R3, R4, R6 Резистор 1 кОм 3 Поиск в Utsource В блокнот
R5 Резистор 150 Ом 1 Поиск в Utsource В блокнот
ZQ1 Проверяемый кварцевый резонатор 1 Поиск в Utsource В блокнот
Разъём для кварцевого резонатора 1 Поиск в Utsource В блокнот
Джампер 3 Поиск в Utsource В блокнот
Блок питания 7-14 В 1 Поиск в Utsource В блокнот
Добавить все

Скачать список элементов (PDF)

admin

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Наверх