Электрификация

Справочник домашнего мастера

Крен 12 схема

Блок питания необходимая вещь для каждого радиолюбителя, потому, что для питания электронных самоделок нужен регулируемый источник питания со стабилизированным выходным напряжением от 1.2 до 30 вольт и силой тока до 10А, а также встроенной защитой от короткого замыкания. Схема изображенная на этом рисунке построена из минимального количества доступных и недорогих деталей.

Схема регулируемого блока питания на стабилизаторе LM317 с защитой от КЗ

Микросхема LM317 является регулируемым стабилизатором напряжения со встроенной защитой от короткого замыкания. Стабилизатор напряжения LM317 рассчитан на ток не более 1.5А, поэтому в схему добавлен мощный транзистор MJE13009 способный пропускать через себя реально большой ток до 10А, если верить даташиту максимум 12А. При вращении ручки переменного резистора Р1 на 5К изменяется напряжения на выходе блока питания.

Так же имеется два шунтирующих резистора R1 и R2 сопротивлением 200 Ом, через них микросхема определяет напряжение на выходе и сравнивает с напряжением на входе. Резистор R3 на 10К разряжает конденсатор С1 после отключения блока питания. Схема питается напряжением от 12 до 35 вольт. Сила тока будет зависеть от мощности трансформатора или импульсного источника питания.

А эту схему я нарисовал по просьбе начинающих радиолюбителей, которые собирают схемы навесным монтажом.

Схема регулируемого блока питания с защитой от КЗ на LM317

Сборку желательно выполнять на печатной плате, так будет красиво и аккуратно.

Печатная плата регулируемого блока питания на регуляторе напряжения LM317

Печатная плата сделана под импортные транзисторы, поэтому если надо поставить советский, транзистор придется развернуть и соединить проводами. Транзистор MJE13009 можно заменить на MJE13007 из советских КТ805, КТ808, КТ819 и другие транзисторы структуры n-p-n, все зависит от тока, который вам нужен. Силовые дорожки печатной платы желательно усилить припоем или тонкой медной проволокой. Стабилизатор напряжения LM317 и транзистор надо установить на радиатор с достаточной для охлаждения площадью, хороший вариант это, конечно радиатор от компьютерного процессора.

Желательно прикрутить туда и диодный мост. Не забудьте изолировать LM317 от радиатора пластиковой шайбой и тепло проводящей прокладкой, иначе произойдет большой бум. Диодный мост можно ставить практически любой на ток не менее 10А. Лично я поставил GBJ2510 на 25А с двойным запасом по мощности, будет в два раза холоднее и надёжнее.

А теперь самое интересное… Испытания блока питания на прочность.

Регулятор напряжения я подключил к источнику питания с напряжением 32 вольта и выходным током 10А. Без нагрузки падение напряжения на выходе регулятора всего 3В. Потом подключил две последовательно соединенные галогеновые лампы H4 55 Вт 12В, нити ламп соединил вместе для создания максимальной нагрузки в итоге получилось 220 Вт. Напряжение просело на 7В, номинальное напряжение источника питания было 32В. Сила тока потребляемая четырьмя нитями галогеновых ламп составила 9А.

Радиатор начал быстро нагреваться, через 5 минут температура поднялась до 65С°. Поэтому при снятии больших нагрузок рекомендую поставить вентилятор. Подключить его можно по этой схеме. Диодный мост и конденсатор можно не ставить, а подключить стабилизатор напряжения L7812CV напрямую к конденсатору С1 регулируемого блока питания.

Схема подключения вентилятора к блоку питания

Что будет с блоком питания при коротком замыкании?

При коротком замыкании напряжение на выходе регулятора снижается до 1 вольта, а сила тока равна силе тока источника питания в моем случае 10А. В таком состоянии при хорошем охлаждении блок может находится длительное время, после устранения короткого замыкания напряжение автоматически восстанавливается до заданного переменным резистором Р1 предела. Во время 10 минутных испытаний в режиме короткого замыкания ни одна деталь блока питания не пострадала.

Радиодетали для сборки регулируемого блока питания на LM317

  • Стабилизатор напряжения LM317
  • Диодный мост GBJ2501, 2502, 2504, 2506, 2508, 2510 и другие аналогичные рассчитанные на ток не менее 10А
  • Конденсатор С1 4700mf 50V
  • Резисторы R1, R2 200 Ом, R3 10K все резисторы мощностью 0.25 Вт
  • Переменный резистор Р1 5К
  • Транзистор MJE13007, MJE13009, КТ805, КТ808, КТ819 и другие структуры n-p-n

Друзья, желаю вам удачи и хорошего настроения! До встречи в новых статьях!

Рекомендую посмотреть видеоролик о том, как сделать регулируемый блок питания своими руками

Стабилизированный регулируемый блок питания с защитой от перегрузок

Множество радиолюбительских блоков питания (БП) выполнено на микросхемах КР142ЕН12, КР142ЕН22А, КР142ЕН24 и т.п. Нижний предел регулировки этих микросхем составляет 1,2…1,3 В, но иногда необходимо напряжение 0,5…1 В. Автор предлагает несколько технических решений БП на базе данных микросхем.

Интегральная микросхема (ИМС) КР142ЕН12А (рис.1) представляет собой регулируемый стабилизатор напряжения компенсационного типа в корпусе КТ-28-2, который позволяет питать устройства током до 1,5 А в диапазоне напряжений 1,2…37 В. Этот интегральный стабилизатор имеет термостабильную защиту по току и защиту выхода от короткого замыкания.


Рис.1. ИМС КР142ЕН12А

На основе ИМС КР142ЕН12А можно построить регулируемый блок питания, схема которого (без трансформатора и диодного моста) показана на рис.2. Выпрямленное входное напряжение подается с диодного моста на конденсатор С1. Транзистор VT2 и микросхема DA1 должны располагаться на радиаторе. Теплоотводящий фланец DA1 электрически соединен с выводом 2, поэтому если DA1 и транзистор VD2 расположены на одном радиаторе, то их нужно изолировать друг от друга. В авторском варианте DA1 установлена на отдельном небольшом радиаторе, который гальванически не связан с радиатором и транзистором VT2.


Рис.2. Регулируемый БП на ИМС КР142ЕН12А

Мощность, рассеиваемая микросхемой с теплоотводом, не должна превышать 10 Вт. Резисторы R3 и R5 образуют делитель напряжения, входящий в измерительный элемент стабилизатора, и подбираются согласно формуле:
Uвых = Uвых.min ( 1 + R3/R5 ).

На конденсатор С2 и резистор R2 (служит для подбора термостабильной точки VD1) подается стабилизированное отрицательное напряжение -5 В. В авторском варианте напряжение подается от диодного моста КЦ407А и стабилизатора 79L05, питающихся от отдельной обмотки силового трансформатора.

Для защиты от замыкания выходной цепи стабилизатора достаточно подключить параллельно резистору R3 электролитический конденсатор емкостью не менее 10 мкФ, а резистор R5 зашунтировать диодом КД521А. Расположение деталей некритично, но для хорошей температурной стабильности необходимо применить соответствующие типы резисторов. Их надо располагать как можно дальше от источников тепла. Общая стабильность выходного напряжения складывается из многих факторов и обычно не превышает 0,25% после прогрева.

После включения и прогрева устройства минимальное выходное напряжение 0 В устанавливают резистором Rдоб. Резисторы R2 (рис.2) и резистор Rдоб (рис.3) должны быть многооборотными подстроечными из серии СП5.


Рис.3. Схема включения Rдоб

Возможности по току у микросхемы КР142ЕН12А ограничены 1,5 А. В настоящее время в продаже имеются микросхемы с аналогичными параметрами, но рассчитанные на больший ток в нагрузке, например LM350 — на ток 3 A, LM338 — на ток 5 А. Данные по этим микросхемам можно найти на сайте National Semiconductor .

В последнее время в продаже появились импортные микросхемы из серии LOW DROP (SD, DV, LT1083/1084/1085). Эти микросхемы могут работать при пониженном напряжении между входом и выходом (до 1…1,3 В) и обеспечивают на выходе стабилизированное напряжение в диапазоне 1,25…30 В при токе в нагрузке 7,5/5/3 А соответственно. Ближайший по параметрам отечественный аналог типа КР142ЕН22 имеет максимальный ток стабилизации 7,5 А.

При максимальном выходном токе режим стабилизации гарантируется производителем при напряжении вход-выход не менее 1,5 В. Микросхемы также имеют встроенную защиту от превышения тока в нагрузке допустимой величины и тепловую защиту от перегрева корпуса.

Данные стабилизаторы обеспечивают нестабильность выходного напряжения 0,05%/В, нестабильность выходного напряжения при изменении выходного тока от 10 мА до максимального значения не хуже 0,1 %/В.

На рис.4 показана схема БП для домашней лаборатории, позволяющая обойтись без транзисторов VT1 и VT2, показанных на рис.2. Вместо микросхемы DA1 КР142ЕН12А применена микросхема КР142ЕН22А. Это регулируемый стабилизатор с малым падением напряжения, позволяющий получить в нагрузке ток до 7,5 А.


Рис.4. Регулируемый БП на ИМС КР142ЕН22А

Максимально рассеиваемую мощность на выходе стабилизатора Рmax можно рассчитать по формуле:
Рmax = (Uвх — Uвых) Iвых ,
где Uвх — входное напряжение, подаваемое на микросхему DA3, Uвых — выходное напряжение на нагрузке, Iвых — выходной ток микросхемы.

Например, входное напряжение, подаваемое на микросхему, Uвх=39 В, выходное напряжение на нагрузке Uвых=30 В, ток на нагрузке Iвых=5 А, тогда максимальная рассеиваемая микросхемой мощность на нагрузке составляет 45 Вт.

Электролитический конденсатор С7 применяется для снижения выходного импеданса на высоких частотах, а также понижает уровень напряжения шумов и улучшает сглаживание пульсаций. Если этот конденсатор танталовый, то его номинальная емкость должна быть не менее 22 мкФ, если алюминиевый — не менее 150 мкФ. При необходимости емкость конденсатора С7 можно увеличить.

Если электролитический конденсатор С7 расположен на расстоянии более 155 мм и соединен с БП проводом сечением менее 1 мм, тогда на плате параллельно конденсатору С7, ближе к самой микросхеме, устанавливают дополнительный электролитический конденсатор емкостью не менее 10 мкФ.

Емкость конденсатора фильтра С1 можно определить приближенно, из расчета 2000 мкФ на 1 А выходного тока (при напряжении не менее 50 В). Для снижения температурного дрейфа выходного напряжения резистор R8 должен быть либо проволочный, либо металло-фольгированный с погрешностью не хуже 1 %. Резистор R7 того же типа, что и R8. Если стабилитрона КС113А в наличии нет, можно применить узел, показанный на рис.3. Схемное решение защиты, приведенное в , автора вполне устраивает, так как работает безотказно и проверено на практике. Можно использовать любые схемные решения защиты БП, например предложенные в . В авторском варианте при срабатывании реле К1 замыкаются контакты К1.1, закорачивая резистор R7, и напряжение на выходе БП становится равным 0 В.

Печатная плата БП и расположение элементов показаны на рис.5, внешний вид БП — на рис.6. Размеры печатной платы 112×75 мм. Радиатор выбран игольчатый. Микросхема DA3 изолирована от радиатора прокладкой и прикреплена к нему с помощью стальной пружинящей пластины, прижимающей микросхему к радиатору.


Рис.5. Печатная плата БП и расположение элементов

Конденсатор С1 типа К50-24 составлен из двух параллельно соединенных конденсаторов емкостью 4700 мкФх50 В. Можно применить импортный аналог конденсатора типа К50-6 емкостью 10000 мкФх50 В. Конденсатор должен располагаться как можно ближе к плате, а проводники, соединяющие его с платой, должны быть как можно короче. Конденсатор С7 производства Weston емкостью 1000 мкФх50 В. Конденсатор С8 на схеме не показан, но отверстия на печатной плате под него есть. Можно применить конденсатор номиналом 0,01…0,1 мкФ на напряжение не менее 10…15 В.


Рис.6. Внешний вид БП

Диоды VD1-VD4 представляют собой импортную диодную микросборку RS602, рассчитанную на максимальный ток 6 А (рис.4). В схеме защиты БП применено реле РЭС10 (паспорт РС4524302). В авторском варианте применен резистор R7 типа СПП-ЗА с разбросом параметров не более 5%. Резистор R8 (рис.4) должен иметь разброс от заданного номинала не более 1 %.

Блок питания обычно настройки не требует и начинает работать сразу после сборки. После прогрева блока резистором R6 (рис.4) или резистором Rдоп (рис.3) выставляют 0 В при номинальной величине R7.

В данной конструкции применен силовой трансформатор марки ОСМ-0,1УЗ мощностью 100 Вт. Магнитопровод ШЛ25/40-25. Первичная обмотка содержит 734 витка провода ПЭВ 0,6 мм, обмотка II — 90 витков провода ПЭВ 1,6 мм, обмотка III — 46 витков провода ПЭВ 0,4 мм с отводом от середины.

Диодную сборку RS602 можно заменить диодами, рассчитанными на ток не менее 10 А, например, КД203А, В, Д или КД210 А-Г (если не размещать диоды отдельно, придется переделать печатную плату). В качестве транзистора VT1 можно применить транзистор КТ361Г.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
Регулируемый БП на ИМС КР142ЕН12А
DA1 Линейный регулятор LM78L12 1 КР142ЕН12А Поиск в Utsource В блокнот
VT1 Биполярный транзистор КТ814Г 1 Поиск в Utsource В блокнот
VT2 Биполярный транзистор КТ819Г 1 Поиск в Utsource В блокнот
VD1 Стабилитрон КС113А 1 Поиск в Utsource В блокнот
С1 Электролитический конденсатор 4700 мкФ 50 В 1 Поиск в Utsource В блокнот
С2 Конденсатор 0.1 мкФ 1 Поиск в Utsource В блокнот
С3 Электролитический конденсатор 47 мкФ 50 В 1 Поиск в Utsource В блокнот
R1 Резистор 2.2 Ом 1 1 Вт Поиск в Utsource В блокнот
R2 Подстроечный резистор 470 Ом 1 Поиск в Utsource В блокнот
R3 Переменный резистор 2.2 кОм 1 Поиск в Utsource В блокнот
R4 Резистор 240 Ом 1 2 Вт Поиск в Utsource В блокнот
R5 Резистор 91 Ом 1 1 Вт Поиск в Utsource В блокнот
Схема включения Rдоб
С2 Конденсатор 0.1 мкФ 1 Поиск в Utsource В блокнот
R2 Резистор 210 Ом 1 Поиск в Utsource В блокнот
R доб. Подстроечный резистор 470 Ом 1 Поиск в Utsource В блокнот
Регулируемый БП на ИМС КР142ЕН22А
DA1 Линейный регулятор LM7805 1 Поиск в Utsource В блокнот
DA2 Линейный регулятор LM79L05 1 Поиск в Utsource В блокнот
DA3 Линейный регулятор LT1083 1 КР142ЕН22А Поиск в Utsource В блокнот
VT1 Биполярный транзистор КТ203А 1 Поиск в Utsource В блокнот
VD1-VD4 Диодный мост RS602 1 Поиск в Utsource В блокнот
VD5-VD8 Диодный мост КЦ407А 1 Поиск в Utsource В блокнот
VD9, VD10 Диод КД522Б 2 Поиск в Utsource В блокнот
VD11 Стабилитрон КС113А 1 Поиск в Utsource В блокнот
VS1 Тиристор КУ103Е 1 Поиск в Utsource В блокнот
С1 Электролитический конденсатор 10000 мкФ 50 В 1 Поиск в Utsource В блокнот
С2, С3 Электролитический конденсатор 470 мкФ 25 В 2 Поиск в Utsource В блокнот
С4, С5 Электролитический конденсатор 22 мкФ 16 В 2 Поиск в Utsource В блокнот
С6 Конденсатор 0.1 мкФ 1 Поиск в Utsource В блокнот
С7 Электролитический конденсатор 1000 мкФ 50 В 1 Поиск в Utsource В блокнот
R1 Резистор 12 кОм 1 Поиск в Utsource В блокнот
R2 Резистор 0.1 Ом 1 3 Вт Поиск в Utsource В блокнот
R3 Резистор 510 Ом 1 Поиск в Utsource В блокнот
R4 Резистор 1 кОм 1 подбор Поиск в Utsource В блокнот
R5 Резистор 5.1 кОм 1 0.5 Вт Поиск в Utsource В блокнот
R6 Подстроечный резистор 1 кОм 1 Поиск в Utsource В блокнот
R7 Переменный резистор 2.2 кОм 1 Поиск в Utsource В блокнот
R8 Резистор 91 Ом 1 2 Вт Поиск в Utsource В блокнот
HL1 Светодиод АЛ307Б 1 Поиск в Utsource В блокнот
Л1 Реле РЭС 10 1 Поиск в Utsource В блокнот
Т1 Трансформатор ОСМ-0.1УЗ 1 Поиск в Utsource В блокнот
FU1 Предохранитель 5 А 1 Поиск в Utsource В блокнот
SB1 Кнопка 1 Поиск в Utsource В блокнот
Добавить все

Скачать список элементов (PDF)

Теги:

  • Блок питания

Стабилизаторы крен 142 — описание, характеристики и типовая схема

Трехвыводные стабилизаторы напряжения бывают фиксированные или регулируемые. Первые разработаны на конкретное выходное напряжение (в нашем случае 5 В). Вторые – регулируемые стабильники, которые позволяют установить необходимое напряжение в заявленных пределах.

Если вам не нужно ограничивать выходные параметры или настраивать сигнал на нестандартные параметры, то обратите внимание на стабилизатор с фиксированным напряжением КРЕН 142, который позволит использовать меньше деталей и поэтому станет лучшим выбором.

Схема КРЕН 142

Как выбрать стабилизатор по току? Устройство должно быть выбрано с номиналом, довольно близким к значению максимально возможного тока в цепи. Если стабилизатор будет слегка загружен, то со стабильностью часто бывает не всё в порядке. Однако схема должна быть подобрана оптимально и полезно во всех смыслах. То есть номинальный ток с большим запасом тоже ни к чему, поскольку ток короткого замыкания будет также слишком большим для того, чтобы защитить цепь.

Типовая схема включения КР142ен5а

Стабилизатор серии КР142ен5а с постоянным положительным напряжением на выходе в 5 В имеет широкое применение в самых различных электронных приборах. Сфера его использования – в качестве источника питания для логических систем, аппаратов высокоточного воспроизведения и других радиоэлектронных приборов. Электрическая схема КР142ЕН5А показана на рисунке ниже.

Емкости С1, С2 играют корректирующую роль. С2 предназначена для сглаживания пульсации, а С1 – для защиты от вероятного высокочастотного возбуждения микросхемы. Ток нагрузки стабилизатора рассчитан до 2 А.

Если добавить в схему вспомогательные детали можно преобразовать её в источник с регулированием напряжения. При удалённом расположении КРЕН 142 (с длиной соединительных проводов один метр и более) от фильтрующих конденсаторов выпрямителя, к его входу следует присоединить конденсатор. Для регулирования напряжения на выходе используется внешний делитель. Для правильной работы устройства потребуется применение дополнительного радиатора. Эти модели являются аналогами импортных регуляторов серии 78xx.

Цоколевка и схема включения

Микросхема КР142ен5а рассчитана на максимальный ток 5 А, и она может его обеспечить. Но превышение тока грозит выходом устройства из строя. Ниже приводится вариант включения микросхемы. Разрешается производить монтаж микросхемы два раза, демонтаж один раз.

Крепёж схемы к печатной плате выполняется методом распайки выводов корпуса, см. цоколевку микросхемы на рисунке.

Характеристики стабилизатора

Микросхема кр142ен5а представляет собой стабилизатор компенсационного типа с регулируемым выходным напряжением положительной полярности.

Основные характеристики:

  • защита от перегрева;
  • ограничение по току КЗ;
  • масса не более 1,4 г;
  • габариты 14,48х15,75 мм.

Предельные значения параметров режима эксплуатации и условий окружающей среды:

  • Температура хранения -55 … +150 С;
  • Температур кристалла в рабочем режиме -45 … +125 С.

Стабилизатор напряжения на 5 вольт своими руками.

Стабилизатор крен8б

В настоящее время интегральные стабилизаторы напряжения распространены достаточно широко. Источники питания с использованием таких стабилизаторов имеют небольшое количество дополнительных элементов, низкую стоимость и обладают отличными техническими характеристиками. Линейный стабилизатор крен8б – один из наиболее распространённых вариантов отечественного производства, являющийся аналогом импортных стабилизаторов линейки 78хх.

Действие стабилизатора

Стабилизатор кр1428б даёт возможность снабжения каждой платы сложного прибора отдельным стабилизирующим устройством и воспользоваться для его питания общим источником, не обеспеченным стабилизацией.

Поскольку поломка одного из стабилизаторов приводит к выходу из строя только подключенного к нему блока, это повышает общую надёжность устройств. Также такая схема подключения смогла решить проблему борьбы с помехами импульсного характера и наводками на длинные питающие провода.

Следует знать, что превышение значения тока, на которое рассчитано устройство, может повлечь за собой выход стабилизатора из строя. Однако современные стабилизаторы имеют защиту по току – в случае превышения максимальной нагрузки тока они просто отключаются.

К минусам линейных стабилизаторов можно отнести и сильный нагрев при повышенной нагрузке. Так повышение входного напряжения влечёт за собой перегрев стабилизатора. При разработке стабилизаторов крен8б эта проблема была решена обеспечением защиты по перегреву.

Технические характеристики:

  • Стабилизатор кр1428б имеет следующие характеристики:
  • допустимая величина выходного тока 1 Ампер;
  • наличие внутренней термозащиты;
  • защищённый выходной транзистор;
  • отсутствие необходимости во внешних компонентах;
  • внутренние ограничения токов короткого замыкания.

Применение

Применяться такой стабилизатор может в таких устройствах, как:

  1. в радиоэлектронных устройствах как источник питания логических систем;
  2. в устройствах воспроизведения высокого качества;
  3. в измерительных приборах.

При добавление в типовые схемы дополнительных элементов можно превратить стабилизатор из источника напряжения в источник с регулировкой как напряжения, так и тока.

Если длина соединительных проводов стабилизатора с фильтрующими конденсатами выпрямителя превышает 1 метр, тогда на его входе требуется установка электролитического конденсатора.

Выбор линейного стабилизатора крен1428б поможет решить проблему со стабилизацией напряжения в большом спектре радиоэлектронный и других устройств и продлит срок использования приборов.

Крен 12 вольт

Стабилизатор напряжения крен 12 вольт, расположенный в блоке питания, является немаловажным узлом радиоэлектронной техники. Не так давно подобные узлы были основаны на стабилитронах и транзисторах, на смену которым пришли специализированные микросхемы.

Плюсами таких схем стали способность в широких диапазонах выходного тока и выходного напряжения, а также присутствие системы, защищающей от перегрузок по электрическому току и перегревания – при превышении допустимого температурного значения кристалла микросхемы производится остановка тока на выходе.

Технические характеристики

К основным характеристикам стабилизатора крен 12 вольт относятся:

  • отсутствие необходимости в дополнительных внешних компонентах;
  • наличие внутренней системы термозащиты;
  • присутствие защитной схемы выходного транзистора;
  • внутренние ограничители тока коротких замыканий;
  • лёгкость и малые габариты.

Выходной ток в стабилизирующих устройствах крен 12 может быть 1 или 1,5 А, максимальное напряжение – 30 или 35 В. Разность входного напряжения с выходным в таких стабилизаторах всегда одинакова и составляет 2,5 В.

КР142ЕН12А

Стабилизатор КР142ЕН12А и его аналог LM317 являются регулируемыми стабилизирующими устройствами компенсационного типа. Работают они с внешним разделителем напряжения в элементе измерения, что позволяет регулирование напряжения на выходе в диапазоне 1,3 В – 37 В.
Элемент регулирования находится в плюсовом проводе питания. Предел тока нагрузки не превышает 1 А.

Данные стабилизаторы считаются самыми «высоковольтными» в линейке К142, обладают высокой стойкостью к импульсным мощностным перегрузкам. Также они имеют систему, защищающую от перегрузок по току на выходе.

Прибор защищается пластмассовым корпусом, с вмонтированным удлинённым фланцем для теплоотведения. Массы подобных приборов не превышает 2,5 г.

Стабилизаторы на 12В широко используются в схемах электронных устройств как составляющие источников их электропитания. Это может быть бытовая и измерительная техника, радиоэлектронная аппаратура и прочие конструкции.

Также эти стабилизаторы используются автолюбителями при необходимости ограничения тока заряда аккумулятора, проверки источника питания, установке LED-лент в автомобильные фары во избежание частого сгорания светодиодов.

Простота схемного решения стабилизатора делает его лёгким в использовании даже для обычного обывателя, не обладающего специальными знаниями.

Стабилизатор типа КРЕН – это радиоэлектронное изделие, основное предназначение которого заключается в выравнивании напряжения на выходе. Устройство оснащено токовой защитой, отключающей аппарат при превышении порогового тока в нагрузке, и защитой по перегреву. Микросхема имеет невысокую стоимость и хорошие технические характеристики.

2.Микросхема кр142ен22а

КР142ЕН22А — линейный регулируемый стабилизатор напряжения положительной полярности. Корпус микросхемы изображен на рисунке 2. Схема включения данной микросхемы представлена на рисунке 3.

Рисунок 2 Корпус микросхемы

Рисунок 3 Типовая схема включения микросхемы

Особенности включения микросхемы КР142ЕН22А:

  1. Выходное напряжение рассчитывается по формуле: Uвых=1,25*(1+R1/R2)+Iрег*R2

где 1,25 В — опорное напряжение(Uвых), Iрег – ток в цепи регулирующего вывода (100мA max);

  1. Сопротивление R1 выбирается в пределах 100-1000 Ом (типовое 240 Ом). R2 служит для задания выходного напряжения.

  2. На схеме указаны минимальные значения фильтрующих ёмкостей C1 и C2, необходимые для устойчивой работы стабилизатора. На практике значения емкостей составляют от десятков до тысяч микрофарад. Ёмкости должны располагаться как можно ближе к микросхеме КР142ЕН22А. С1 может совмещаться с ёмкостью фильтра выпрямителя. При больших емкостях рекомендуется C1>>C2.

  3. Ёмкость Cadj устанавливается в случае необходимости дополнительно снизить пульсации выходного напряжения. Рекомендуется Cadj<<C2.

  4. Микросхема КР142ЕН22А защищена от кратковременного замыкания выхода, но не защищена от замыкания входа — такая ситуация, равно как и любое превышение выходного напряжения над входным, приводит к выходу микросхемы из строя. В случае возможности возникновения такой ситуации, в частности, если ёмкость на выходе стабилизатора превышает ёмкость на входе, устанавливают защитный диод VD1.

  5. Защитный диод VD2 устанавливают только при установленной ёмкости Cadj для защиты стабилизатора от разряда этой ёмкости.

  6. Фланец(радиатор) корпуса микросхемы КР142ЕН22А соединен в выходным выводом и поэтому должен быть при монтаже изолирован от общего провода.

  7. Конструктор схемы должен понимать, что максимальный выходной ток стабилизатора ограничен также максимальной рассеиваемой мощностью микросхемы (в данном случае 30Вт). Iвых<Pmax/(Uin-Uout)

Назначение выводов КР142ЕН22А

Регулировка

Выход

Вход

Фланец

Соединен с Out (вывод 2)

Основные технические характеристики КР142ЕН22А

3. Блок питания с импульсным стабилизатором 1,2…25В

Линейные стабилизированные источники питания имеют низкий КПД, значительные габариты и вес. Экономичность линейных стабилизированных ИП (линейных стабилизаторов) оказывается особенно низкой в случае изменения величины выходного напряжения в широких пределах, так как на регулирующем (проходном) транзисторе, работающем в непрерывном режиме и являющимся активным своеобразным гасящим резистором, рассеивается значительная мощность. Коэффициент полезного действия стабилизаторов повышается, если регулирующий элемент работает в ключевом (импульсном) режиме. При этом за счет увеличения частоты переключения (до 20 – 50 кГц вместо50 Гц) значительно уменьшаются массы и габариты трансформаторов и конденсаторов фильтра импульсного ИП.

Рисунок 4 Блок питания с импульсным стабилизатором 1,2…25В

Мощный лабораторный блок питания с импульсным стабилизатором напряжения, оснащённый узлом защиты от перегрузки на самовосстанавливающихся предохранителях и звуковым сигнализатором наличия короткого замыкания или перегрузки его выхода рассмотрен в .

Устройство собрано с примене­нием популярной интегральной микросхемы типа LM2576HVT-ADJ, представляющей собой импульсный регулируемый импульсный стабилизатор напряжения постоянного тока. Микросхема LM2576HVT-ADJ способна отда­вать ток в нагрузку до 3 А. Максимальное входное напряжение постоянного тока может быть до 63 В, минимальное выходное напряжение 1.2 В. КПД стабилизатора при максимальном токе нагрузки около 85 %. Этот блок питания оснащён эффективной системой фильтрации выходного напряжения от шумов и сетевых помех, что позволяет питать от него различные звуковоспроиз­водящие, теле и радиоприёмные устройства.

Принципиальная схема блока питания представлена на рисунке 2. Выходное напря­жение блока питания, собранного по этой схе­ме, можно регулировать от 1,2 до 25 В. Максимальный допустимый ток подключа­емой нагрузки может достигать 3 А во всём диапазоне выходных напряжений. Размах пульсаций выходного напряжения не превы­шает 20 мВ при максимальном токе нагрузки. Напряжение сети переменного тока посту­пает на первичную обмотку силового понижа­ющего трансформатора Т1 через замкнутые контакты выключателя питания SA1, плавкий предохранитель FU1 и резистор R2. Варистор RU1 защищает устройство от всплесков напряжения сети. Резистор R2 уменьшает вероятность повреждения варистора. Со вто­ричной обмотки трансформатора Т1 снима­ется пониженное до 32 В напряжение пере­менного тока, которое поступает на мостовой выпрямитель VD1. Пульсации выпрямлен­ного напряжения сглаживаются оксидными конденсаторами большой ёмкости С14 и С1. Фильтр C13L4C18 снижает уровень сетевых помех, а также устраняет возможность проникновения в сеть высокочастотных по­мех от работающего импульсного преобразо­вателя. Полимерный самовосстанавливаю­щийся предохранитель FU2 защищает трансформатор и мостовой выпрямитель от перегрузки. Выпрямленное отфильтрованное напряжение поступает на вход интегральной микросхемы DA1, вывод 1. Выходное напря­жение импульсного стабилизатора регули­руют переменным резистором R6. Дроссель L1 — накопительный. Установка двух диодов Шотки VD2, VD3, включенных параллельно, повышает надёжность стабилизатора при его работе на максимально допустимом токе нагрузки. Трёхзвенный фильтр низких частот на дросселях L2, L3, L5 и конденсаторах их обвязки сглаживает пульсации и уменьшает уровень шумов выходного напряжения. Светодиод HL1 индицирует наличие выход­ного напряжения. Полевой транзистор VT2 работает как генератор стабильного тока, что обеспечивает стабильную яркость свечения HL1 при изменении выходного напряжения. Диод VD4 и резистор R5 защищают микро­схему DA1 от повреждения. Резистор R14 выполняет роль нагрузки стабилизатора напряжения.

Выходное регулируемое стабилизирован­ное напряжение подаётся на гнездо XS2. Чтобы этот блок литания можно было использовать в качестве лабораторного, на его выходе установлен модуль защиты на самовосстанавливающихся предохранителях FU3 — FU5. Когда контакты ни одной из кно­пок переключателя SB1 не замкнуты, ток про­текает через самый слаботочный предохра­нитель FU5 на номинальный рабочий ток 0,1 А. Сопротивление этого предохранителя в холодном состоянии около 3 Ом. При замы­кании контактов кнопки SB1.1 параллельно ему подключается самовосстанавливаю­щийся предохранитель FU3, рассчитанный на номинальный рабочий ток 0,4 А, имеющем сопротивление в холодном состоянии 0,6 Ом. При замыкании контактов кнопки SB1.3 параллельно FU5 подключается предохрани­тель FU4 на ток 0,9 А сопротивлением 0,1 Ом. При двукратной перегрузке время сра­батывания самовосстанавливающихся предохранителей будет около 30 с, при четырёхкратной не более 3 с. При замыкании контактов кнопки SB1.3 защита нагрузки и узлов БП от перегрузки обеспечивается встроенными средствами защиты микро­схемы LM2576HVT-ADJ и предохранителем FU2. В этом случае, выходное сопротив­ление БП будет не более 50 мОм. С по­мощью выключателя SB2 с двумя группами контактов можно полностью отключить нагрузку от блока питания, что позволяет производить с ней различные манипуляции с минимальным риском повредить чувстви­тельные к статическому электричеству и утечкам сетевого напряжения радиодеталям. Нестабилизированное напряжение около 44 В постоянного тока подаётся на гнездо XS1, может быть использовано для питания дру­гих стабилизаторов напряжения, УМЗЧ, освети­тельных ламп накаливания на рабочее на­пряжение 36 В общей мощностью 60…90 Вт, электропаяльников на рабочее напряжение 42 В мощностью 40 Вт.

На стрелочном микроамперметре PV1 собран вольтметр выходного напряжения блока питания. Стабилитрон VD5 необходим для линеа­ризации шкалы вольтметра. Светодиоды HL2 — HL5 белого цвета свечения подсвечивают шкалу вольтметра. На МОП микросхеме DD1 собран узел звукового сигнализатора наличия короткого замыкания на выходе XS3. Когда в нагрузке или на выходе блока питания нет короткого замыкания, транзистор VT1 открыт, на одном из входов DD1.1 лог. 0, сигна­лизатор заторможен. При возникновении КЗ транзистор VT1 закрывается, на выв. 13 DD1.1 поступает лог. 1, генератор низкочас­тотных импульсов, реализованный на DD1.1, DD1.2 запускается, что приводит к периодическому запуску звукового генератора, реа­лизованному на DD1.3, DD1.4. Пьезокерамический излучатель звука НА1 начинает издавать громкие прерывистые звуковые сигналы частотой около 2 кГц, следующие с частотой 4 Гц. Микросхема DD1 получает питание напряжением 11 В от параметричес­кого стабилизатора, собранного на транзис­торе VT3, стабилитроне VD6 и элементах их обвязки. Диод VD5 защищает транзистор VT3 от повреждения обратным напряжением.

На месте понижающего трансформатора применён силовой трансформатор типа ТП-100-7. Используемые вторичные обмотки, намотанные на обоих каркасах, соединяют параллельно, как показано на принципиаль­ной схеме. На его месте можно применить любой трансформатор с габаритной мощ­ностью не менее 90 Вт и напряжением холос­того хода на вторичной обмотке 30…33 В при сетевом напряжении 220 В. Двухобмоточные дроссели L4, L5 содержат по 3…5 витков сложенного вдвое монтажного провода с сечением по меди не менее 1 мм на кольцах К20х12х6 из низкочастотного феррита М2000НМ. Таким же проводом выполняют все сильноточные цепи стабилизатора напряжения. Дроссель L1 и диоды Шотки устанавливают на расстоя­нии не менее 3 см от DA1 и R5 — R7.

Переменный резистор R6 типа СП4-2М. Провод, идущий от этого резистора к резистору R5 должен быть экранированным. Остальные резисторы типов МЛТ. С1-4, С1-14, С2-23, С2-33. Варистор RU1 типа FNR-20К431 можно заменить на FNR-20K471, FNR14K431, FNR-14K471, MYG20-431 или аналогичным. Конденсаторы С1, СЮ, С12. С14, С15, С19. С21 — оксидные алюминие­вые малогабаритные импортные аналоги К50-35, К50-68. Конденсатор С23 — SMD танталовый, монтируется в штекере питания. Остальные конденсаторы можно установить керамические или малогабаритные плёноч­ные на рабочие напряжения не менее указан­ных на принципиальной схеме. Предпочте­ние следует отдать керамическим конденса­торам. Неполярные конденсаторы С2, С5 -С8, С13 должны быть на рабочее напряже­ние не менее 63 В. Соединительные провода или дорожки, идущие от конденсаторов С1, С2 к микросхеме DA1 и диодам Шотки VD2, VD3 должны быть как можно короче. Вместо диодного моста КВРС1010 можно установить KBU8B — KBU8M, КВРС801 — КВРС810, BR151 — BR158 или другие аналогичные на ток не менее 6 А. Если нет подходящего монолитного диодного моста, то его можно собрать из четырёх обычных кремниевых диодов, например, КД206, КД213. Диодный мост устанавливают на дюралюминиевый теплоотвод с площадью охлаждающей поверхности около 80 см.кв. Диод 1N5403 можно заменить любыми из серий 1N5402 -1N5408, КД226Б — КД226Д. Вместо диода КД521А подойдёт любой из серий КД521, КД522, 1N914, 1N4148, 1SS176S. Диоды Шотки SR360 можно заменить на MBR360, DQ06 или одним MBRD660CT, MBR1060, 50WR06. Подойдёт и обычный кремниевый «быстрый» диод КД213А, КД213Б. Стаби­литрон Д814Г1 можно заменить на КС210Ж. 2С211Ж, КС211Ж, 1 N4741 A, 1N4740A. Стабилитрон КС139А можно заменить только отечественными серий КС133. 2С133, 2С139, КС 139. Светодиод RL50-SR113 крас­ного цвета свечения и прямым рабочим напряжением 1,8 В можно заменить любым аналогичным с хорошей яркостью свечения при токе 1 мА, например, на АЛ307КМ, L-1513SURC/E. Сверхъяркие светодиоды RL30-WH744D белого цвета свечения можно заменить на любые аналогичные белые или синие без встроенных резисторов, например, на RL30-CB744D. RL50-WH744D. Транзис­тор КТ315Г можно заменить любым из серий КТ315. КТ312. КТ3102, КТ645. SS9014. Вмес­то полевого транзистора КПЗОЗА подойдёт любой из серии КПЗОЗ. Вместо транзистора КТ646А можно установить любой из серий КТ815. КТ817, КТ961, КТ646, 2SC2331. Микросхему LM2576HVT-ADJ можно заменить на LM2576HVS-ADJ. Эту микросхему необходимо установить на дюралюминиевый теплоотвод с площадью охлаждающей поверхности не менее 150 см.кв. (одна сторона). Микросхема с индексом «Т» выпус­кается в корпусе ТО-220, микросхема с индексом «S» выпускается в корпусе ТО-263. Микросхему в корпусе ТО-263 прикрепляют к теплоотводу с помощью металлического прижимного фланца и двух винтов МЗ. Теплоотводящий фланец микросхемы электрически соединён с выводом 3. В слу­чае применения микросхемы типа LM2576T-ADJ диодный выпрямитель VD1 подключают к выводам 4 и 5 трансформатора ТП-100-7, на которых присутствует напряжение 27 В переменного тока. Вместо КМОП микросхемы К561ЛА7 подойдёт КР1561ЛА7. 564ЛА7, CD4011 А. Пьезокерамический излучатель звука ПВА-1 можно заменить на ЗГИ, ЗП-5 или аналогичным

admin

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Наверх