Электрификация

Справочник домашнего мастера

Как сжать пружину

Содержание

Как увеличить жёсткость пружины?

Naeel Maqsudov 3182 2 года назад Эксперт TQ по темам: IT, телеком, телефония, базы данных, интеграционные решения, естествознание, образование.

Пружины бывают разные. Кроме того, непонятно, требуется ли изменить свойства абстрактной пружины (пружины вообще), или нужно изменить работу пружины в уже существующем механизме, не заменяя там эту пружину. Рассмотрим несколько кейсов.

Цилиндрическая витая пружина (абстрактная), работающая на растяжение или сжатие. Чтобы пружина стала жёстче можно: 1) намотать её из более толстой проволоки; 2) намотать меньшее количество витков; 3) использовать сталь с бо̀льшим предельным напряжением кручения; 4) если сталь из которой сделана пружина позволяет, то можно выполнить закалку пружины (нагреть до некой критической температуры и резко охладить)

Цилиндрическая витая пружина в существующем механизме, работающая на растяжение или сжатие. 1) вынуть и закалить пружину, затем поставить на место; 2) заблокировать часть витков пружины (например, если она работает на сжатие, то можно попросту воткнуть что-то твёрдое между несколькими витками); 3) вместе с имеющейся пружиной вставить параллельно еще одну, если механизм это позволяет.

Пластинная пружина (абстрактная), работающая на изгиб (например, пластинчатые автомобильные рессоры). Увеличение жёсткости такой пружины достигается 1) увеличением числа пластин, сложенных вместе; 2) увеличением толщины пластин; 3) изменением формы пластин (вместо увеличения толщины можно согнуть пластину вдоль, создать на ней ребро жёсткости); 3) изменением свойств материала (закалка пластин).

Как утверждают специалисты, изготовить пружину с высокими эксплуатационными характеристиками и с соблюдением всех необходимых параметров возможно только на специальном заводском оборудовании. Тем не менее сам технологический процесс не представляет собой ничего сложного.

Вопрос, как сделать пружину в домашних условиях, достаточно актуальный. Обусловлено это тем, что бывают ситуации, когда под рукой у домашнего мастера может не оказаться пружины нужного диаметра. В таком случае изготавливать ее приходится самостоятельно. Как сделать пружину своими руками? Какие для этого понадобятся инструменты? Информацию о том, как сделать пружину в домашних условиях, вы найдете в данной статье.

Что понадобится для работы?

Перед тем как сделать пружину, нужно обзавестись следующими расходными материалами и оборудованием:

  • Стальной проволокой.
  • Слесарными тисками.
  • Обычной газовой горелкой.
  • Оправкой, на которую будет наматываться проволока.
  • Термической или бытовой печью.

О проволоке

Желательно, чтобы это была закаленная высокоуглеродистая сталь. Можно воспользоваться специальными углеродистыми и легированными или цветными сплавами: 60ХФА, 70С3А, 65Г, 60С2А и др. Судя по отзывам, многие домашние умельцы переделывают старые ненужные пружины. Данный способ считается самым оптимальным, поскольку в таком изделии обычно используется проволока с отличными техническими характеристиками.

О диаметре

Как сделать пружину? Какой диаметр проволоки выбрать? Специалисты рекомендуют использовать расходный материал с диаметром не более 0,2 см. Ввиду того что такая проволока легко гнется, для нее не требуется предварительная термическая обработка. Перед наматыванием на оправку она разгибается и тщательно выравнивается. При выборе диаметра для оправки следует исходить из размеров будущей пружины. Иными словами, нужно учитывать внутреннее поперечное сечение изделия. Многие мастера компенсируют упругие деформации проволоки, подбирая оправки заведомо меньшего диаметра. При работе с проволокой толще 0,2 см часто возникают трудности при наматывании ее на оправку. В таком случае придется выполнить ее предварительный отжиг.

С чего нужно начать?

Специалисты рекомендуют использовать проволоку от какой-либо старой пружины, диаметр которой не устраивает владельца. Мастеру останется только ее выровнять и намотать на оправку с сечением нужного размера. Для этого проволока должна быть абсолютно ровной. Она будет намного пластичнее, если ее обработать в специальной печи. При отсутствии таковой подойдет любое другое устройство, которое можно растопить с помощью дров. Как утверждают опытные мастера, достаточное количество тепла для обжига дает береза. После растопки печи нужно дождаться, чтобы в ней прогорели дрова. Оставаться должны одни угли. В них следует положить старую пружину. Если изделие достаточно раскалилось, оно приобретет красный цвет. Теперь пружину можно отодвигать в сторону, чтобы она остывала на воздухе. После этой процедуры метал станет пластичным и с ним легко будет работать.

Как сделать пружину?

Дождавшись, когда старое изделие достаточно остынет, приступают к его разматыванию. На оправку следует наматывать абсолютно ровную проволоку. Тем, кто не знает, как сделать пружину, специалисты рекомендуют располагать витки вплотную. На данном этапе мастеру придется приложить физическое усилие. Оправка зажимается в слесарных тисках.

Работать будет гораздо легче, если использовать плоскогубцы. Судя по отзывам опытных мастеров, очень часто у новичков возникают трудности при подборе размера оправки. Не исключено, что работать придется не с одной оправкой, а с несколькими с различными сечениями. Диаметр для самодельной пружины в таком случае подбирается опытным путем.

Закалка изделия

Тому, кто интересуется, как сделать пружину самому, опытные мастера советуют также уделить внимание ее закаливанию. Данная процедура заключается в термической обработке изделия с целью придать ему требуемую упругость.

Пружина, прошедшая закалку, по сравнению со своим первоначальным состоянием становится гораздо тверже и прочнее. Термообработка выполняется в специальных печах при температуре от 830 до 870 градусов. Справиться с этой работой можно также и в домашних условиях при помощи обычной газовой горелки. Поскольку температурные датчики в таких устройствах обычно отсутствуют, домашнему умельцу контролировать процесс придется визуально. В качестве ориентира можно использовать цвет раскаляемого изделия. Металл при нагреве до 800 градусов становится вишнево-красным. Это значит, что вынимать изделие из печи пока рано. Если пружина достаточно нагрелась (870 градусов), она станет светло-красной. Теперь ее следует охладить. Для этой цели подойдет трансформаторное или веретенное масло. В специальных заводских термических печах металлы подвергаются нагреву до 1050 градусов. Изделия при таком температурном режиме приобретают оранжевые оттенки.

Завершающий этап

После процедуры закаливания пружину следует сжать и оставить в таком положении на двое суток. Затем, используя точильный станок, обрабатываются ее концы. Это придаст кустарному изделию требуемый размер. После выполнения всех вышеперечисленных действий пружина считается готовой к эксплуатации. Как утверждают специалисты, кустарные самоделки не сравнить с аналогичными изделиями заводского производства.

Тем не менее нестандартные пружины широко используются в различных механизмах. Если их эксплуатировать в щадящем режиме, то пружины прослужат достаточно долго.

Пружины – упругие элементы конструкций, служащие для накопления или рассеяния механической энергии. Они окружают нас со всех сторон — под клавишами клавиатуры компьютера, в подвеске автомобиля и в подъемном механизме дивана. Наиболее распространены витые пружины сжатия. Существует несколько способов сделать их.

Витые пружины сжатия

Упругие элементы могут иметь различные пространственные формы. Исторически первыми пружинами освоенными человеком, были листовые. Их и сегодня можно видеть — это рессоры у большегрузных грузовиков. С развитием технологий люди научились изготавливать более компактные витые пружины, работающие на сжатие. Кроме них, используются и пространственные упругие элементы.

Особенности конструкции

Такие пружины при работе принимают нагрузку вдоль своей оси. В начальном положении между их витками существуют просветы. Приложенная внешняя сила деформирует пружину, длина ее уменьшается до тех пор, пока витки не соприкоснуться. С этого момента пружина представляет собой абсолютно жесткое тело. По мере уменьшения внешнего усилия форма изделия начинается возвращаться к первоначальной вплоть до полного восстановления при исчезновении нагрузки.

Основными характеристиками, описывающими геометрию детали, считают:

  • Диаметр прутка, из которого навита пружина.
  • Число витков.
  • Навивочный шаг.
  • Внешний диаметр детали.

Внешняя форма может отличаться от цилиндрической и представлять собой одну из фигур вращения: конус, бочку (эллипсоид) и другие

Шаг навивки бывает постоянный и переменный. Направление навивки – по часовой стрелке и против нее.

Сечение витков бывает круглым, плоским, квадратным и др.

Концы витков стачиваются до плоской формы.

Область эксплуатации

Шире других используются цилиндрические винтовые пружины постоянного внешнего диаметра и постоянного шага. Они применяются в таких областях, как

  • Машиностроение.
  • Приборостроение.
  • Транспортные средства.
  • Добыча полезных ископаемых промышленность.
  • Бытовая техника .

и в других отраслях.

Применение пружины в быту

Требования к пружинам

Для эффективного функционирования работы требуются следующие свойства:

  • высокая прочность;
  • пластичность;
  • упругость;
  • износостойкость.

Чтобы обеспечить проектные значения этих параметров, требуется правильно выбрать материал, точно рассчитать размеры, разработать и соблюсти технологию изготовления.

Государственными стандартами определяются требования к изготовлению пружин. По допустимым отклонениям они относятся к одной из точностных групп:

Схематическое изображение пружины

Строгие требования предъявляются к точности соблюдения геометрии, чистоте поверхности.

Не соответствуют стандарту изделия с царапинами и прочими наружными дефектами, снижающими ресурс изделия и срок его эксплуатации

Требования к материалу

Прочностные параметры и отказоустойчивость изделия во многом определяются материалом, из которого его решили сделать. Металлурги выделяют в классификации сталей специальные рессорно-пружинные стали. Они обладают специфической кристаллической структурой, определяемой как химическим составом, так и проводимой термической обработкой изделий. Высоколегированные сплавы повышенной чистоты и высокого металлургического качества обеспечивают высокую упругость и пластичность, способны сохранять свои физико-механические свойства после многократных деформаций.

Популярность среди конструкторов механизмов приобрели пружинные сплавы 60С2А, 50ХФА и нержавейка 12Х18Н10Т

Особенности технологии

Технологический процесс изготовления упругих элементов зависит от технических требований, предъявляемых к конструкции. Сделать пружину не так просто, как обычную деталь, которая не должна обладать особыми упругими свойствами. Для этого требуется специальное оборудование и оснастка.

Навивка пружин с круглым сечением витка проводится следующими методами:

  • Холодная. Применяется для малых и средних размеров (диаметр проволоки до 8 миллиметров).
  • Горячая. Для больших диаметров.

Технология навивки пружины

После навивки упругие элементы подвергают различным видам термообработки. В ее ходе изделие приобретает заданные свойства.

Технология холодной навивки без закалки

Сначала необходимо сделать подготовительные операции. Перед тем, как из проволоки навивать заготовку, ее подвергают процедуре патентирования. Она заключается в нагреве материала до температуры пластичности. Такая операция готовит проволоку к предстоящему изменению формы.

В ходе операции навивки должны быть выдержаны следующие параметры:

  • Внешний диаметр изделия (для некоторых деталей нормируется внутренний диаметр).
  • Число витков.
  • Шаг навивки.
  • Общая длина детали с учетом последующих операций.
  • Соблюдение геометрии концевых витков.

Холодная навивка без отпуска

Далее проводится стачивание концевых витков до плоского состояния. Это необходимо сделать для обеспечения качественного упора в другие детали конструкции, предотвращения их разрушения и выскальзывания пружины.

Следующий этап технологического процесса — термообработка. Холодная навивка пружин предусматривает только отпуск при низких температурах. Он позволяет усилить упругость и снять механические напряжения, возникшие в ходе навивки.

Исключительно важно точно соблюдать проектный график термообработки, тщательно контролируя температуру и время выдержки.

После термообработки необходимо сделать испытательные и контрольные операции.

Далее по необходимости могут наноситься защитные покрытия, предотвращающие коррозию. Если они наносились гальваническим методом, изделия подвергаются повторному нагреву для снижения содержания водорода в приповерхностном слое.

Технология холодной навивки с закалкой и отпуском

Первые этапы технологии совпадают с предыдущим процессом. На стадии термообработки начинаются изменения. Она проводится в несколько этапов:

  • Закалка. Заготовку нагревают до заданной температуры, выдерживают от 2 до 3 часов. Далее подвергают скоростному охлаждению, погружая в емкость с минеральным маслом или солевым раствором. В ходе стадии закалки заготовки должны находиться в горизонтальном положении. Это позволит избежать из деформации
  • Отпуск. Заготовку нагревают до 200-300° и выдерживают несколько часов для снятия внутренних напряжений и улучшения упругих свойств.

Далее также проводятся измерительные и контрольные операции. Прошедшие контроль заготовки направляют на пескоструйную обработку для снятия окалины. При необходимости следует сделать также и дробеструйную обработку для повышения прочности поверхностного слоя металла.

Завершает процесс нанесение защитного покрытия.

Технология горячей навивки с закалкой и отпуском

Перед навивкой заготовку нагревают до температуры пластичности одним из следующих методов

  • муфельная печь;
  • газовая горелка;
  • высокочастотный нагрев.

Далее заготовка поступает на навивочное оборудование, Проводится корректировка геометрии и формирование плоских торцов.

Термическая обработка включает в себя закалку и низкотемпературный отпуск.

Графики термообработки строятся исходя из свойств материала и размеров заготовки.

Рабочий режим линии печи закалки и отпуска

Далее следует контрольно- измерительный этап. Заканчивается изготовление нанесением антикоррозионной защиты.

Используемое оборудование и оснастка

Чтобы сделать упругий элемент, требуется специализированное оборудование. Это навивочные станки. Сделать деталь можно и на обычном токарном станке, но потребуется его дооборудование специальной оснасткой. Средние и крупные серии изготавливают на полуавтоматических установках, работающих с минимальным вмешательством оператора. Сделать пружину из проволоки можно и вручную. Для этого также потребуется специальная оснастка.

На следующем этапе механической обработки торцы шлифуются на торцешлифовочных станках. При единичном производстве или малых сериях это можно сделать шлифовальном круге.

Термообработка проводится с применением оправок, предотвращающих деформацию изделия, в специализированных печах для закалки и отпуска. Обе операции можно сделать и в универсальной печи.

Используемое оборудование и оснастка

Для контроля качества используются нагрузочные установки и измерительные комплексы. При единичном производстве измерения можно сделать и универсальным инструментом.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Закалить пружину – это значит подвергнуть ее термической обработке с целью повышения прочности, упругости, твердости и пластичности изделия, что в результате отразится на физико-химических свойствах и сроке эксплуатации. Сущность процесса заключается в нагреве до температуры, при которой структура металла переходит в особое состояние, и высокоскоростном охлаждении в различных средах, включая охлаждение на воздухе. Выбор технологии закалки зависит от марки стали, из которой изготовлена пружина и диаметра проволоки. Такую операцию выполняют в производственных и домашних условиях.

Самодельную пружину не рекомендуется использовать в устройствах, работающих при повышенных нагрузках.

Требования к проволоке и ее диаметру

Стальная проволока для изготовления пружины, которая впоследствии будет подвергаться закалке, должна соответствовать требованиям, указанным в ГОСТ 14963-78. Согласно документу она классифицируется по таким признакам:

  • способу навивки (холодным способом и горячим);
  • способу отделки поверхности (без отделки и с отделкой);
  • точности изготовления (нормальная и повышенная);
  • классу механических свойств (общего и ответственного назначения);
  • диаметру (от 0,5 до 14 мм);
  • виду поставки (в прутках или мотках).

На промышленных предприятиях методом холодной навивки изготавливают пружины из проволоки, диаметр которой не превышает 16 мм, горячим способом – вплоть до 80 мм. При этом на производстве они навиваются с помощью вращающейся оправки, подающих роликов и одного или двух упорных штифтов.

Изготавливают изделия из проволоки марок 51ХВА, 70С3А, 65С2ВА, 60С2А, 65Г, 60ХВА с поверхностью шлифованной, полированной или без шлифования и полировки. По этому признаку и способу изготовления проволока выпускается в прутках или мотках таких групп:

  • А, Б, В, Г, Е – со специальной отделкой;
  • Н – без отделки.

Условное обозначение проволоки в технической документации и на сопроводительных бирках состоит из цифр и букв:

ХХХХХ (1) – Х (2) – Х (3) – Х (4) – ХХ (5) – ХХ (6) ГОСТ 14963-78 (7)

  • 1 – марка стали;
  • 2 – способ отделки поверхности;
  • 3 – точность изготовления;
  • 4 — класс механической точности;
  • 5 — способ навивки;
  • 6 — диаметр в мм;
  • 7 — обозначение стандарта.

Например, проволока с полированной поверхностью, изготовленная из стали 60С2А повышенной точности I класса для пружин горячей навивки диаметром 2,0 мм будет иметь следующее обозначение:

60С2А – А – П – I – ГН – 2,0 ГОСТ 14963-78

В государственном стандарте оговариваются допустимые предельные отклонения, овальность и недопустимость наличия определенных видов дефектов, а также способы упаковки и транспортировки.

Изготовление пружины своими руками

Чтобы изготовить пружину в домашних условиях, необходимо определиться с такими характеристиками:

  • маркой стали, из которой будет изготавливаться изделие;
  • диаметром проволоки;
  • количеством навиваемых витков;
  • шагом витка.

Самодельное изделие может изготавливаться на оправке и с помощью шуруповерта. Понадобятся еще кусачки, молоток, тиски, источник нагрева (печь, газовая горелка, костер), среда для охлаждения и дополнительные приспособления.

Самый простой способ изготовления – это намотать провод на какой-либо стержень подходящего диаметра вручную. При этом необходимо следить за тем, чтобы витки плотно прилегали друг к другу.

Процесс изготовления пружины с помощью шуруповерта можно посмотреть на видео:

При изготовлении изделия своими руками необходимо придерживаться следующих простых правил:

  1. Проволока должна быть абсолютно ровной. Если изделие изготавливают из неровной или старой пружины, она обязательно должна быть выровнена.
  2. Проволока должна быть очищена от ржавчины, масел и других загрязнений. Для этого используют содовый раствор или химические средства, позволяющие растворить масла и снять ржавчину. Протирать проволоку рекомендуется опилками.
  3. Проволока диаметром более 2 мм перед навивкой должна быть подвергнута процедуре отжига путем нагрева докрасна (температура в пределах 400 °C) и охлаждения на воздухе.
  4. При намотке необходимо контролировать положение витков относительно друг друга. Они должны плотно прилегать один к одному.

Закалка пружин в домашних условиях может выполняться несколькими способами: с помощью газовой горелки, нагревом в печи, изготовленной из кирпича или камня, или просто в костре. Нагрев должен производиться до температуры около 870 °C. На глаз это определяется цветом проволоки: она в процессе нагрева делается почти белого цвета. Затем ее необходимо поместить в масло (трансформаторное, веретенное или другую жидкую среду), которое обеспечит медленное охлаждение. Напомним, что быстрое охлаждение может вызвать возникновение трещин, которые отрицательно скажутся на качестве пружины.

В производственных условиях пружины укладывают в сетчатую корзину, иногда предварительно прогрев их (зависит от марки стали). Эту корзину помещают в закалочную печь, которая нагрета до необходимой температуры и выдерживают определенное время с целью прогрева материала по всему сечению. С этой же целью пружины скрепляют проволокой или помещают в специальную обойму. Время выдержки для каждой марки стали рассчитывается и выбирается с учетом материала пружины и ее диаметра. На производстве обычно пользуются специальными диаграммами. Закалочная среда подбирается также в зависимости от этих параметров. Это может быть масло, жидкая закалочная среда, воздух и др. Жидкая среда представляет собой воду, в которую добавлены мел, известь или мыло в определенных количествах. Наличие в водной среде этих элементов позволяет уменьшить скорость охлаждения и избежать возникновения трещин в металле пружины.

В домашних условиях обычно используют в качестве жидкой среды мыльный раствор или трансформаторное масло, которое налито в достаточном количестве в емкость. Пружины должны полностью погружаться в нее и остывать там до комнатной температуры.

Изготовленную кустарным способом пружину рекомендуется выдержать на протяжении некоторого времени в сжатом состоянии. Обычно время выдержки лежит в пределах от 20 до 40 часов.

Качество изготовления и надежность работы изготовленной в домашних условиях пружины зависит от технологии ее изготовления. Грамотно выполненная термообработка уменьшит остаточные деформации, увеличит упругость и вязкость. Закалить – это значит получить высокие качественные показатели, которые позволят использовать пружину в изделиях ответственного назначения.

Термообработка пружины с применением доступных средств показана на видео:

Настройка жёсткости пружин химическим способом


Сегодня я хотел бы рассказать Вам о том, как можно уменьшить жёсткость пружины в домашних условиях.
Для того, чтобы было понятнее, я снял видео

Для данного способа нам понадобится:
— Сама пружина, которую необходимо обработать.
— Ёмкость под травящий раствор.
— Сам травящий раствор (о растворах будет дальше)

— Провод в изоляции, за который мы будем вытягивать пружину из раствора.
— Ацетон или спирт для обезжиривания (в самом крайнем случае обезжирить можно обычным мылом или моющим средством)
— Ватные диски или тряпочка.
В качестве травящего раствора можно применять:
— Садовый медный купорос + немного соли
— Отработанный раствор хлорного железа (лучше)
— Разбавленная до 20% соляная или азотная кислота (очень быстрое и равномерное травление)
— Насыщенный подогретый раствор лимонной кислоты (очень медленное травление, но в итоге пружина получает стойкое и красивое химическое оксидирование)
Пружину необходимо оттереть от масла и обезжирить с помощью ватного диска и ацетона, затем просто надеваем её на провод и окунаем в травящий раствор.

Если в качестве раствора использовать азотную кислоту, то каждую минуту нужно вытаскивать заготовку и протирать её от окислов — это ускоряет процесс. Травление в этом случае занимает от двух до десяти минут в среднем. Использование лимонной кислоты затянет процесс на весь день, но результат также получится чистым и красивым. Стирать окисел нужно будет примерно раз в 30-60 минут.

Готовая пружина стала вдвое мягче.
Применение данного метода довольно обширно и ограничено лишь вашей фантазией и необходимостью.
Допустим, я ослаблял пружину для электроискрового маркера, которым можно нанести гравировку на нож. Также этот метод выручил меня при изготовлении кнопки отсечки на электрогитару.
Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. .

Как ослабить жесткость пружины? Для ленивых)

Мне для одной самоделки потребовалась пружина, я нашел подходящую по размеру пружину, но она оказалась слишком жесткой. Как ее ослабить? Нести к токарю, что бы он ее Расточить? – Не вариант
Искать другую пружину ?– Тоже как то не радует.

Решил я медленно но верно ее ослабить, делюсь этим способом, может кому-то тоже потребуется чего-нибудь доработать. На пример подвеску по мягче сделать))) на свой страх и риск)))
Мне потребуется кислотный электролит, такой есть у любого автолюбителя.
Кладу пружину в стеклянную емкость и наполняю наливаю туда электролит. Пружину нужно обезжирить для надежности.
Серная кислота такой высокой концентрации мне не нужна, поэтому я разбавлю ее вдвое обычной водой.
Сразу же на поверхности пружины появились пузырьки газа.
В таком состоянии я оставляю пружину ровно на сутки.
спустя сутки раствор поменял свой цвет и в нем появились темные хлопья. Пузырьки газа по-моему выделяются еще сильнее чем сутки назад.
Я достал пружину и положил ее рядом с обрезком той же пружины, но только не обработанной в кислоте. Сразу в глаза бросается отличие в толщине металла.
Давайте измерим толщину на которую похудела пружина.
Толщина пружины до обработки – 2,5 мм.
А после суток в разбавленном электролите, ее диаметр составил примерно 2,1 мм.
это значит что кислота за сутки съела две десятых миллиметра с поверхности металла. В итоге получилось 4 десятых миллиметра ведь пружина растворилась сразу со всех сторон.
Конечно стало лучше, но этого маловато.
Я закинул пружину в раствор еще на сутки. За прошлые сутки раствор кислоты частично потерял свою насыщенность и стал не таким едким.
Спустя вторые сутки пружина стала прям совсем мягкой, то что мне как раз нужно.
а диаметр составляет уже примерно 1,7 – 1,8 миллиметра.
После обработки кислотой нужно обязательно хорошо промывать металл в мыльном растворе либо в растворе пищевой соды, что бы точно смыть все остатки кислоты. Ну и чем-нибудь против ржавчины тоже не мешает пройтись.
Если какие-то участки металла не требуют обработки кислотой, то их можно замотать синей изолентой, окунуть в расплавленный парафин, либо покрыть химически стойким лаком.
Я уезжал на неделю и оставил раствор кислоты стоять в таком виде. За это время в растворе начали образовываться кристаллы сульфата железа.
Вот такой маленький бонус) Надеюсь вам в жизни не пригодится этот совет и вас будут только подходящие пружины, рессоры, железяки всякие)

Мои инструментики

При создании различных устройств очень полезно иметь под рукой пружины. Само собой возникает вопрос: сколько, какого типа и размера могут понадобиться в следующий раз и как сделать пружину своими руками?

При этом иногда возникает ситуация, когда сложно найти пружину, которая идеально соответствует твоим требованиям. Так почему бы не сделать свою собственную?

Создание пружин может показаться пугающим, но при помощи базового инструмента и с простой инструкцией каждый из вас сможет создать ее.

В этой статье я покажу вам, как сделать некоторые из них, сначала самые простые, а затем я перейду к некоторым «продвинутым» инструментам, но это не добавит процессу создания сложности.

Шаг 1: Типы

Вот несколько из множества типов пружин, которые мы научимся делать. Слева направо:

Шаг 2: Начнём работу при помощи базовых инструментов

Вы сможете начать создавать множество разных типов при помощи инструментов, обозначенных в списке:

  • штырь диаметром 1.4 см
  • струна для пианино или проволока
  • плоскогубцы с кусачками
  • пила
  • зажимы
  • беспроводная дрель

Шаг 3: Обрежем штырь

Сначала возьмите деревянный штырь и обрежьте его до длины примерно 12 см. Затем прорежьте в одном из его концов паз, он будет предназначаться для струны. Штырь диаметром примерно 1.4 см подойдёт лучше всего потому, что он хорошо крепится в патроне дрели.

Шаг 4: Создание натяжной пружины

Беспроводные дрели хороши тем, что можно настраивать скорость их вращения. Для безопасности всегда пользуйтесь плоскогубцами — если провод соскочит, то он может порезать вам руки.

Закрепите дрель на столе при помощи зажимов. Одна рука лежит на кнопке включения дрели, а вторая зажимает плоскогубцы. Проворачивайте дрель столько, сколько вам нужно, пока не добьётесь необходимого количества витков. Во время намотки удерживайте шнур под напряжением, и пружина будет поворачиваться лучше.

Шаг 5: Сгибание струны

После намотки, я согнул плоскогубцами оставшиеся кончики и получил натяжную пружину. Экспериментируя, вы можете добиться различных размеров петелек.

Шаг 6: Сжимающая

Для нее потребуется более длинный штырь, в котором также будет вырезан паз. Во время намотки, отмеряйте расстояние между витками на глаз. Это потребует от вас практики, но занятие на самом деле очень занимательное.

Когда пружина была готова, я провел тест (см. последнюю фотографию). Я поместил ее на штырь, придавил её сверху небольшим деревянным бруском и быстро отпустил — брусок выстрелил до потолка.

Шаг 7: Коническая

Коническая делается при помощи дрели и ленточной шлифовальной машины.

Используя ту же технику намотки, я посадил струну в пазик на штыре. Когда пружина была полностью намотана, я обрезал её концы, и коническая пружина была готова. Ее я сделал дважды, и второй вариант вышел более хорошим.

Шаг 8: Торсионная

Для изготовления торсионной я использовал латунный стержень, так как деревянный штырь не выдерживал нагрузки и ломался. Чтобы создать пружину, сделайте несколько витков и оставьте прямой участок струны с обоих концов. Изогнув концы струны, вы создадите хорошую торсионную пружину.

Шаг 9: Заключение

На фотографиях вы видите сжимающую и набор различных пружин, которые я сделал в домашних условиях.

Я надеюсь, изготовление окажется для вас простым занятием и поможет вам сделать множество интересных проектов. Если вы используете их постоянно, то это также сэкономит вам деньги.

Рассказываю как сделать какую-либо вещь с пошаговыми фото и видео инструкциями.

Пружины – упругие элементы конструкций, служащие для накопления или рассеяния механической энергии. Они окружают нас со всех сторон — под клавишами клавиатуры компьютера, в подвеске автомобиля и в подъемном механизме дивана. Наиболее распространены витые пружины сжатия. Существует несколько способов сделать их.

Рекомендованные сообщения

175x70R13 ›
Блог ›
Растяжка пружин подвески.

Даже когда машина стоит, пружины подвески находятся под постоянной нагрузкой. Со временем, пружины «устают» и проседают. Это называется — старение. В структуре металла, начинает расти усталостное напряжение, которое рано или поздно ведёт к образованию усталостных микротрещин. А они, перерастают в трещины. Когда это произойдёт (облом витков) через 5 лет или через 10 — предугадать невозможно! Пружина не сообщает про образование микротрещин. Но если клиренс машины уменьшился, это уже сигнал о том, что пружина просела и структуре металла образовалось усталостное напряжение. И чем ниже проседают пружины, тем больше вероятность образования микротрещин. Пружина с микротрещинами обречена и её уже не «вылечить». Она лопнет в любом случае.
Но если в пружине ещё нет усталостных микротрещин, то само по себе усталостное напряжение структуры металла можно снять термической обработкой. Это называется — нормализация. При этом, пружине можно придать новый размер, т.е. — растянуть. При нормализации происходит только нагрев, при котором остаётся заводская закалка! Пружина не отжигается и не перезакаливается. Снимается только усталостное напряжение!
Именно по-этому, мы рекомендуем растягивать только родные пружины, стоявшие на машине с завода и доказавшие своё качество — временем.
Новые пружины, просевшие через месяц или год, после растяжки и нормализации лучше не станут. Они так же просядут, за тот же промежуток времени.

Кто сомневается, что это — РЕАЛЬНО, ниже ссылка на сайт: Пружинно-навивочный завод по производству пружин различной конфигурации.
И конкретно выдержка с сайта про НОРМАЛИЗАЦИЮ…

Для обеспечения комфорта и мягкости хода на автомобиле кроме амортизаторов применяются пружины, которые часто выходят из строя, несмотря на простую конструкцию. Довольно часто усталость пружин обнаруживается случайно, например, при нагрузке машины больше чем обычно, когда пружины проседают и машина начинает касаться днищем дороги. Для решения этой проблемы есть несколько путей. Конечно, самый простой заключается в установке новых пружин, которые служат дольше и доставляют меньше проблем. Но этот способ нельзя назвать самым дешевым, поэтому многие просто занимаются реанимированием старых пружин. Существуют два способа, используемых для восстановления старых пружин: термомеханический и электромеханический. Нужно оговориться, что восстановление пружин — это сложное дело, требующее много сил, терпения и, конечно, наличия специального оборудования.

При использовании для возврата просевшей пружине былой упругости электрохимическим способом, потребуется токарный станок, оснащенный источником тока для разогрева материала пружин. Сначала в его патроне устанавливается оправка, затем на ней хомутиком закрепляется пружина. Оправку и деформирующий ролик размещается в резцедержателе станка. Далее на направляющей станине закрепляются стойки, раздвижные ролики, которые плотно соединяются с суппортами на токарном станке. Нужно немного поджать оправку, на которой должна быть заранее установлена пружина. Во время обработки через пружину подается электрический ток для ее разогрева, а на обработанные участки — охлаждающая жидкость для закалки.

Для реставрации термомеханическим способом нужно больше времени, навыков и умений. Сначала пружина устанавливается в тисках и сжимается так плотно, чтобы произошло соприкосновение витков между собой. Далее через нее подается электричество, от 200 до 400 А, в течение 20 секунд. Нужно, чтобы металл нагрелся до 850 градусов и начал краснеть. После нагрева просевшей пружины до требуемой температуры, прекращается подача тока и начинается медленное разжимание тисков. После ее удлинения до предела надо позаботиться о фиксации ее торцевых окончаний, после чего требуется еще ее немного растянуть на 20-30%. На выполнение этой процедуры должно уйти не более 30 секунд. После завершения этой операции пружина должна быть закалена, путем помещения в ванну с маслом. Лучше всего для этих целей подходит масло серии АС-8. Пружиной обеспечивается не только комфорт, она играет важное значение для формирования клиренса. Если требуется сделать свое авто более проходимым, можно поставить между пружиной и кузовом авто проставку, тем самым добавляя несколько сантиметров клиренсу. Но нужно помнить, что при любом вмешательстве в конструкцию машины могут произойти неприятности. Поэтому при изменении клиренса, замене пружины или чего-нибудь подобного, что избежать неприятностей при поездках, требуется посетить СТО для того, чтобы специалисты проверили подвеску и настроили развал-схождение.

Комфорт и мягкость хода автомобилю помимо амортизаторов придают пружины, которые, несмотря на лаконичность конструкции, порой выходят из строя.

Способы восстановления пружин

Чаще всего усталость пружин обнаруживается совершенно случайно, например, когда машину нагружают больше обычного, и она в буквальном смысле начинает цеплять дорогу днищем.

Решений подобной проблемы имеется несколько. Естественно, наиболее простым является установка новых пружин, они-то и прослужат дольше и проблем меньше доставят, однако этот метод не самый дешевый, поэтому все чаще автовладельцы пытаются реанимировать старые пружины.

Существует несколько способ восстановления пружин: электромеханический и термомеханический, о которых мы вам и расскажем сегодня.

Сразу оговоримся процесс восстановления пружин не из самых легких и приятных, он требует много сил, крепкого терпения и специального оборудования, среди коего следует отметить тиски, электрический трансформатор, токарный станок и небольшую масляную ванночку с маслом АС-8.

Восстановление пружин

Теперь о процедуре восстановления пружин подробнее. Если вы решили вернуть пружине былую упругость электрохимическим методом, то вам понадобится токарный станок. В начале работы в его патрон нужно установить оправку, позже на ней хомутиком закрепляем пружину. Оправку с деформирующим роликом помещаем в резцедержатель станка. Затем на направляющую станину крепим стойки с раздвижным роликом и плотно соединяем их с суппортами токарного станка. После этого немного поджимаем оправку, на которую заранее следует установить пружину.

Реставрация термохимическим способом требует больше времени, умений и навыков. Итак, в самом начале необходимо поставить пружину в тиски и сжать ее до такой степени плотно, чтобы витки соприкоснулись между собой. После нужно подать через нее электрический ток, 200-400 А будет достаточно, работы в подобном режиме хватит и 20-20 секунд. Если вы не уверены, что силы тока достаточно для нагревания пружины, то в этом можно убедиться визуально – металл должен покраснеть.

И вот, наша пружина нагрелась до нужной температуры, теперь следует прекратить подавать ток и начать медленно разжимать тиски. Как только она удлинилась до предела необходимо зафиксировать ее торцевые окончания, после чего постараться растянуть ее еще немного. Запомните: на описываемую процедуру вам должно потребоваться не менее минуты. После проведенной операции пружину следует закалить, поместив ее в ванну с маслом, для этой цели рекомендуем применять масло из серии АС-8.

Вот такими нехитрыми методами можно постараться вернуть к жизни уставшие пружины, подарив автомобилю былую мягкость и упругость. Однако пружины не только даруют комфорт, как это было сказано выше, но и играют важную роль в формировании дорожного просвета. Так, если вам необходимо сделать свой автомобиль более проходимым, вы можете установить проставки между пружинами, добавив тем самым клиренсу несколько сантиметров. Если же вы предпочитаете пузотерки (извините за выражение, но низкие автомобили именно таковыми и слывут), то достичь поставленной цели можно с помощью нехитрых манипуляций с этими же самыми пружинами. Однако в любом случае, чтобы вы не делали с пружинами, какие бы задачи перед собой и своим железным конем не ставили, помните: любое вмешательство в конструкцию автомобиля влечет за собой негативные последствия. Таким образом, приняв решение изменить клиренс, поменять пружины или сделать что-нибудь другое в этом ключе, знайте: после подобных процедур во избежание возникновения неприятностей во время поездок вам придется чаще заезжать на СТО для диагностики подвески, хотя, вы можете осуществить ее своими силами. В любом случае, прежде чем, принимать такие ответственные решения несколько раз подумайте, стоит ли игра свеч!

Пружины растяжения навивают почти всегда вплотную или даже с натягом между витками, достигаемым смешением проволокопитателя навивочного автомата по отношению к навиваемым виткам ( пружины с межвитковым давлением ).

Концы пружин снабжают зацепами, с помощью которых ее соединяют со стягиваемыми деталями. В отличие от пружин сжатия, нуждающихся в жестком направлении торцов, пружины растяжения работают в свободном состояния, центрируясь только точками опоры (завеса). Крепление зацепами обладает шарнирным свойством, благодаря чему пружина может при растяжении менять пространственное положение в значительных пределах. Это делает пружины растяжения особенно удобными для соединения деталей, угловое положение которых изменяется при работе, например, для завеса рычагов (рис. 891, I, II).

Однако крепление зацепами обладает недостатками. Габаритная длина пружины растяжения за счет зацепов всегда больше, чем пружин сжатия одинаковой гибкости. Зацепами трудно обеспечить центральное приложение нагрузки; пружина подвергается дополнительным изгибающим нагрузкам, а в самих зацепах возникают высокие напряжения изгиба, которые могут привести со временем к появлению остаточных деформаций. Вследствие деформации зацепов и участков перехода зацепов в спираль пружина вытягивается и теряет упругие характеристики. Пружины растяжения могут работать без потери упругих свойств только при пониженных расчетных напряжениях.

По этим причинам пружины растяжения почти никогда не применяют в ответственных силовых механизмах (циклического действия). Пружины сжатия в этих условиях обеспечивают и меньшие габариты, и большую надежность работы.

В случаях, когда по условиям работы упругий элемент должен растягиваться с изменением своего пространственного положения, нередко применяют установку пружин сжатия с реверсорами (рис. 892, I, II, III). Пружины такого типа, однако, малопригодны для механизмов высокочастотного циклического действия, так как масса реверсоров вызывает дополнительные инерционные нагрузки.

Применяемые конструкции зацепов показаны на рис. 893. Наиболее простые способы изготовления зацепов — отгибание половины витка (рис. 893, I, II), целого витка (рис. 893, III, IV) или полутора—двух витков (рис. 893, V) — применяют для неответственных, слабонагруженных пружин, так как зацепы такого вида подвержены изгибу. Также подвержены изгибу и петлевые зацепы (рис. 893, VI—VIII), кроме того, их изготовление значительно сложнее. Несколько прочнее зацепы с концами, заведенными в спираль пружины (рис. 893, IX, X).

Легкие пружины из проволоки малого диаметра крепят в пластинках с отверстиями под витки (рис. 893, XI—XIII). В зацепах этого типа необходимо устранить самовыворачивание пружины из отверстий, а также смещение пластинки с плоскости симметрии пружины, что конструктивно не так просто выполнить.

Иногда пружины устанавливают на ввертных резьбовых пробках (рис. 893, XIV—XVI) с фиксацией конечных витков завальцовкой (рис. 893, XV) или расклепыванием ниток пробки (рис. 893, XVI). В конструкциях этого типа крайне неблагоприятны условия работы витка, сходящего с последней нитки резьбовой пробки; виток работает на излом и избежать этого явления невозможно, если даже свести последнюю нитку на нет или заправить резьбу на конус.

Аналогичное явление происходит в конструкции с закладной пробкой, передающей силу на последний виток пружины, свернутый в кольцо малого диаметра (рис. 893, XVII).

Наиболее равномерную передачу сил на витки обеспечивает заправка конечных витков на конус с отгибом последнего витка на зацеп (рис. 893, XVIII, XIX) или с применением закладных зацепов (рис. 893, ХX—XXII). Изготовление таких пружин, однако, затруднительно, особенно при закладных зацепах, когда навивка конусного конца пружины должна производиться при заранее установленном в пружине зацепе.

Из представленных на рис. 893 конструкций наибольшей прочностью отличается конструкция с коническим зацепом (рис. 893, XXXII). Конус зацепа следует (с учетом упругих деформаций конечных витков) делать несколько более пологим, чем внутренний конус витков.

Пружины растяжения рассчитывают по тем же формулам, что и пружины сжатия. Наличие изгибающих напряжений в зацепах и витках пружины (при внецентренном приложении нагрузки) учитывают снижением расчетных напряжений в 1,2—1,5 раза по сравнению с напряжениями, допускаемыми для пружин сжатия центрального нагружения.

На рис. 894 изображена характеристика пружины растяжения. На рис. 895 показана характеристика пружины с начальным натяжением (пружины с межвитковым давлением).

Длина рабочей части пружины растяжения определяется из выражения

где i — число рабочих витков.

Длина рабочей части пружины в растянутом состоянии

где λ — упругое перемещение пружины.

Длина развертки пружины

где α — угол подъема витков

Lз — развернутая длина зацепов. Приближенно можно считать, что

Пружины растяжения обычно устанавливают с предварительным натягом, обеспечивающим замыкание стягиваемых деталей на упор в начальном положении. Сила предварительного натяга определяется условиями работы механизма. Шаг витков в состоянии предварительного натяга делают не меньше 1,5—2 диаметров проволоки с учетом возможности вытяжки зацепов в эксплуатации.

При растяжении диаметр пружины несколько уменьшается вследствие увеличения угла наклона витков.

admin

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Наверх