Электрификация

Справочник домашнего мастера

Как сделать ракету в

Между Главным конструктором наших ракет Сергеем Королевым и Главным конструктором наших ракетных двигателей Валентином Глушко шла негласная борьба за звание Самого Главного: кто же действительно важнее, конструктор ракет или двигателей для них? Глушко приписывают крылатую фразу, якобы брошенную им в разгар такого спора: «Да я к своему двигателю забор привяжу — он на орбиту выйдет!» Впрочем, эти слова — отнюдь не пустое бахвальство. Отказ от «глушковских» двигателей привел к краху королевской лунной ракеты H-1 и лишил СССР каких-либо шансов на победу в лунной гонке. Глушко же, став генеральным конструктором, создал сверхмощную ракету-носитель «Энергия», превзойти которую до сих пор никому не удается.

Содержание

Двигатели из патронов

Та же закономерность работала и в любительском ракетостроении — выше летала ракета, у которой был более мощный двигатель. Несмотря на то что первые ракетомодельные двигатели появились в СССР еще до войны, в 1938 году, Евгений Букш, автор вышедшей в 1972 году книги «Основы ракетного моделизма», взял за основу такого двигателя картонную гильзу охотничьего патрона. Мощность определялась калибром исходной гильзы, а производились двигатели двумя пиротехническими мастерскими ДОСААФ вплоть до 1974 года, когда было принято решение об организации в стране ракетомодельного спорта. Для участия в международных соревнованиях потребовались двигатели, подходящие по своим параметрам под требования международной федерации.

Их разработка была поручена Пермскому НИИ полимерных материалов. Вскоре была выпущена опытная партия, на основе которой и начал развиваться советский ракетомодельный спорт. С 1982 года с перебоями заработало серийное производство двигателей на государственном казенном заводе «Импульс» в украинской Шостке — в год выпускали 200−250 тысяч экземпляров. Несмотря на жесткий дефицит таких двигателей, это был период расцвета советского любительского модельного ракетостроения, который закончился в 1990 году одновременно с закрытием производства в Шостке.

Двигательный тюнинг

Качество серийных двигателей, как нетрудно догадаться, для серьезных соревнований не годилось. Поэтому рядом с заводом в 1984 году появилось мелкосерийное опытное производство, обеспечивавшее своей продукцией сборную страны. Особенно выделялись двигатели, частным образом изготовленные мастером Юрием Гапоном.

Технологии

А в чем, собственно, сложность производства? По своей сути ракетомодельный двигатель — простейшее устройство: картонная трубка с запрессованным внутри дымным порохом марки ДРП-3П (дымный ружейный порох 3-й состав для прессованных изделий) с керамической заглушкой с соплом-дыркой с одной стороны и пыжом с вышибным зарядом — с другой. Первая проблема, с которой не справлялось серийное производство, — точность дозировки, от которой зависел и конечный суммарный импульс двигателя. Вторая — качество корпусов, которые часто давали трещины при прессовании под давлением в три тонны. Ну и третья — собственно, качество запрессовки. Впрочем, проблемы с качеством возникали не только в нашей стране. Не блещут им и серийные ракетомодельные двигатели другой великой космической державы — США. А лучшие модельные двигатели делают микроскопические предприятия в Чехии и Словакии, откуда их контрабандой провозят для особо важных мероприятий.

Тем не менее при социализме двигатели, пусть неважные и с дефицитом, но были. Сейчас же их нет вообще. Отдельные детские ракетомодельные студии летают на старых, еще советских запасах, закрывая глаза на то, что срок годности давно вышел. Спортсмены пользуются услугами пары мастеров-одиночек, а если повезет, то и контрабандными чешскими двигателями. Любителям же остается единственный путь — перед тем как стать Королевым, сначала стать Глушко. То есть делать двигатели самим. Чем, собственно, и занимались я и мои друзья в детстве. Слава богу, пальцы и глаза у всех остались на месте.

Из всех искусств

Из всех искусств для нас важнейшим является кино, любил поговаривать Ильич. Для ракетомоделистов-любителей середины прошлого века — тоже. Ибо кино- и фотопленка того времени делалась из целлулоида. Туго свернутая в небольшой рулончик и засунутая в бумажную трубку со стабилизаторами, она позволяла взлететь простейшей ракете на высоту пятиэтажного дома. У таких двигателей было два главных недостатка: первый — небольшая мощность и, как следствие, высота полета; второй — невозобновимость запасов целлулоидной пленки. Например, фотоархива моего отца хватило всего на пару десятков запусков. Сейчас, кстати, жалко.

Максимальная высота при фиксированном суммарном импульсе двигателя достигалась при кратковременном четырехкратном скачке мощности на старте и дальнейшем переходе на ровную среднюю тягу. Скачок тяги достигался формированием отверстия в топливном заряде.

Второй вариант двигателей собирался, так сказать, из отходов деятельности Советской армии. Дело в том, что при стрельбах на артиллерийских полигонах (а один из них как раз находился неподалеку от нас) метательный заряд при выстреле выгорает не до конца. И если хорошенько поискать в траве перед позициями, можно было найти довольно много трубчатого пороха. Самая несложная ракета получалась в результате простого заворачивания такой трубки в обычную фольгу от шоколадки и поджигания с одного конца. Летала такая ракета, правда, невысоко и непредсказуемо, зато весело. Мощный двигатель получался при собирании длинных трубок в пакет и заталкивании их в картонный корпус. Из обожженной глины изготавливалось и примитивное сопло. Работал такой двигатель очень эффектно, поднимал ракету довольно высоко, но часто взрывался. К тому же на артиллерийский полигон не особо походишь.

Третий вариант представлял собой попытку почти промышленного изготовления ракетомодельного двигателя на самодельном дымном порохе. Делали его из калиевой селитры, серы и активированного угля (он постоянно заклинивал родительскую кофемолку, на которой я его измельчал в пыль). Признаюсь честно, мои пороховые двигатели работали с перебоями, поднимая ракеты всего на пару десятков метров. Причину я узнал лишь пару дней назад — запрессовывать двигатели нужно было не молотком в квартире, а школьным прессом в лаборатории. Но кто бы, спрашивается, меня в седьмом классе пустил запрессовывать ракетные двигатели?!

Последние из МРД Два редчайших двигателя, которые удалось достать «ПМ»: МРД 2, 5−3-6 и МРД 20−10−4. Из советских запасов ракетомодельной секции в Детском доме творчества на Воробьевых горах.

Работа с ядами

Вершиной же моей двигателестроительной деятельности стал довольно ядовитый двигатель, работавший на смеси цинковой пыли и серы. Оба ингредиента я выменял у одноклассника, сына директора городской аптеки, на пару резиновых индейцев, самую конвертируемую валюту моего детства. Рецепт я почерпнул в жутко редкой переводной польской ракетомодельной книжке. И двигатели набивал в папином противогазе, который хранился у нас в кладовке, — в книжке особый упор делался на токсичность цинковой пыли. Первый пробный запуск был проведен в отсутствие родителей на кухне. Столб пламени из зажатого в тисках двигателя с ревом устремился к потолку, прокоптив на нем пятно диаметром в метр и наполнив квартиру таким вонючим дымом, с каким не сравнится и коробка выкуренных сигар. Вот эти-то двигатели и обеспечили мне рекордные запуски — метров, наверное, на пятьдесят. Каково же было мое разочарование, когда через двадцать лет я узнал, что детские ракеты нашего научного редактора Дмитрия Мамонтова летали в разы выше!

Из патронной гильзы 1, 2, 4) При наличии заводского ракетного двигателя с постройкой простейшей ракеты справится и школьник начальных классов. 3) Продукт самодеятельного творчества — двигатель из патронной гильзы.

На удобрениях

Двигатель Дмитрия был проще и технологичнее. Основной компонент его ракетного топлива — это натриевая селитра, которая продавалась в хозяйственных магазинах как удобрение в мешках по 3 и 5 кг. Селитра служила окислителем. А в качестве горючего выступала обычная газета, которая и пропитывалась перенасыщенным (горячим) раствором селитры, а затем высушивалась. Правда, селитра в процессе сушки начинала кристаллизоваться на поверхности бумаги, что приводило к замедлению горения (и даже гашению). Но тут вступало в действие ноу-хау — Дмитрий проглаживал газету горячим утюгом, буквально вплавляя селитру в бумагу. Это стоило ему испорченного утюга, но зато такая бумага горела очень быстро и стабильно, выделяя большое количество горячих газов. Набитые свернутой в тугой рулон селитрованной бумагой картонные трубки с импровизированными соплами из бутылочных пробок взлетали на сотню-другую метров.

Карамель

Параноидальный запрет российских властей на продажу населению разных химреактивов, из которых можно изготовить взрывчатку (а ее можно изготовить практически из всего, хоть из древесных опилок), компенсируется доступностью через интернет рецептов практически всех видов ракетного топлива, включая, например, состав горючего для ускорителей «Шаттла» (69,9% перхлората аммония, 12,04% полиуретана, 16% алюминиевой пудры, 0,07% оксида железа и 1,96% отвердителя).

Картонные или пенопластовые корпуса ракет, топливо на основе пороха кажутся не очень серьезными достижениями. Но как знать — может, это первые шаги будущего конструктора межпланетных кораблей?

Безусловным хитом любительского ракетного двигателестроения сейчас являются так называемые карамельные двигатели. Рецепт топлива прост до неприличия: 65% калиевой селитры KNO3 и 35% сахара. Селитра подсушивается на сковородке, после чего измельчается в обычной кофемолке, медленно добавляется в расплавленный сахар и застывает. Итогом творчества становятся топливные шашки, из которых можно набирать любые двигатели. В качестве корпусов двигателей и форм прекрасно подходят стреляные гильзы от охотничьих патронов — привет тридцатым! Гильзы в неограниченном количестве есть на любом стрелковом стенде. Хотя признанные мастера рекомендуют использовать не сахарную, а сорбитовую карамель в тех же пропорциях: сахарная развивает большее давление и, как следствие, раздувает и прожигает гильзы.

Назад в будущее

Ситуация, можно сказать, вернулась в 1930-е годы. В отличие от других видов модельного спорта, где недостаток отечественных двигателей и прочих комплектующих можно компенсировать импортом, в ракетомодельном спорте это не проходит. У нас ракетомодельные двигатели приравниваются к взрывчатым веществам, со всеми вытекающими условиями по хранению, транспортировке и провозе через границу. Не родился еще на земле русской человек, способный наладить импорт таких изделий.

Выход один — производство на родине, благо технология тут вовсе не космическая. Но заводы, имеющие лицензии на производство таких изделий, за них не берутся — им этот бизнес был бы интересен лишь при миллионных тиражах. Вот и вынуждены начинающие ракетомоделисты из крупнейшей космической державы летать на карамельных ракетах. Тогда как в Соединенных Штатах сейчас стали появляться уже многоразовые модельные ракетные двигатели, работающие на гибридном топливе: закись азота плюс твердое горючее. Как вы думаете, какая страна лет через тридцать полетит к Марсу?

Статья опубликована в журнале «Популярная механика» (№3, Март 2008).

ПОРОХОВОЙ РАКЕТНЫЙ ДВИГАТЕЛЬ

Юный моделист-конструктор 1963 №5

Для модели ракеты вам требуется изготовить пороховой двигатель. Для такого двигателя удобно использовать картонную ружейную гильзу 12-го калибра под капсюль «Жевело». Внутрь гильзы набивается смесь дисперсной серы, калийной селитры и древесного угля. Вместо древесного угля можно использовать угольные таблетки «Карболен».

Приготовление смеси и набивка ею патрона является самой сложной операцией при изготовлении модели ракеты. Каждая из составных частей этой смеси в отдельности не опасна^ Так, например, селитра не горит, а сера и уголь горят очень медленно. Если же эти вещества смешать, то их свойства к воспламенению изменяются. Нам надо приготовлять смесь с большим содержанием угля,

иначе она может вспыхнуть от малейшей искры. Необходимо помнить, что запуск моделей ракет — дело совершенно безопасное лишь в том случае, если вы строго соблюдаете все правила приготовления заряда двигателя и его запуска при старте модели. О них вы узнаете из этой статьи.

Смесь для двигателя модели ракеты должна состоят из 75 г селитры, 12 г серы и 35 г угля. Предварительно, до смешивания, все компоненты должны быть тщательно размельчены в порошок в фарфоровой ступке либо в кожаном мешочке. Образовавшийся порошок следует просеять через мелкое сито. Чем мельче крупинки составных частей, тем полнее будет использоваться энергия топлива для полета ракеты.

Начинать приготовление заряда надо с угля, а затем готовить селитру и серу. Уголь и селитра обладают способностью впитывать влагу, поэтому готовый состав следует хорошо просушить до сыпучести и сохранять в сухом месте. Когда подготовка отдельных составных частей закончена, можно приступать к взвешиванию и смешиванию. Взвешивать полученный порошок каждой состав-нон части надо на аптекарских весах и подгонять вес составных частей в соответствии с указанным выше весом (75, 12, 35 г). После взвешивания смесь тщательно перемешивается на листке бумаги, пока весь состав не будет однороден. Затем перед набивкой эту смесь смачивают спиртом (на каждые 100-150 г смеси 3-5 г спирта). Сухой, не смоченный спиртом состав не следует употреблять в дело. После смачивания спиртом смесь тщательно перетирается и перемешивается. При изготовлении смеси нельзя спешить. При этой операции надо особенно строго соблюдать все меры предосторожности и особенно порядок выполнения работ.

Рис.1

Рис.2

Рис.3

Рис.4

Для того чтобы приготовленной смесью набить гильзу, необходимо заготовить следующие приспособления: штырь (рис. 1), матрицу (рис. 2), фиксатор (рис. 3), молоток весом 400 г, два набойника — один с отверстием (рис. 4, справа), другой без него (слева) и охотничью «закрутку» (рис. 6). Закрутку можно купить в магазине охотничьих принадлежностей. В матрицу вставляется гильза, в которую снизу вводится штырь, закрепляющийся в матрице фиксатором. Поверхность верхней шпильки штыря должна быть тщательно обработана и отшлифована, так как иначе канал в заряде двигателя может осыпаться. Нижняя шпилька стержня вставляется в массивный деревянный чурбак или пень. В гильзу надо засыпать 2-3 г смеси. Затем взять набойник с отверстием (рис. 4, справа), вставить его в гильзу и 15-20 раз ударить по нему молотком; причем вначале нанести 3-4 слабых удара, чтобы вышел воздух, находящийся в составе, а затем более сильные. Примерное размещение всех приспособлений и деталей для сборки двигателя показано на рисунке 5. Чтобы набивка получилась одинаковой плотности, количество ударов молотка по набойнику на каждую засыпку должно быть одинаковым. Пользуются набойником с отверстием лишь до тех пор, пока не утоплена шпилька штыря. Как только уплотненная смесь полностью закроет шпильку штыря, надо продолжать набивку набойником, по уже без отверстия. Состав смеси запрессовывают в гильзу так, чтобы он не доходил до краев на 10 мм. На запрессованный состав накладывается картонный пыж с отверстием 4-5 мм в центре.

Рис.5

Рис.6

Рис.7

Рис.8

Гильза извлекается из матрицы. Для этого вынимается фиксатор, а затем с лёгким поворотом вниз убирается штырь и снимается матрица с гильзы. После этого гильзу вставляют в закрутку и заправляют. При этом пыж прижимают сверху, а кромки гильзы загибают внутрь пробкой закрутки. Эта пробка опускается на винте. Двигатель готов.

Несколько слов о запуске порохового ракетного двигателя. Для воспламенения состава, находящегося внутри гильзы, надо применять электровоспламенитель, или, как его называют, электрозапал. Простейший электрозапал состоит из низковольтного трансформатора, проводов, зажимов и вилки (рис. 8). Тонкая проволока, способная накаливаться докрасна, вводится в канал двигателя. Включается ток, и двигатель начинает работать. Расстояние от стартующей ракеты до включателя тока должно быть не меньше 10м. На площади этого радиуса перед стартом никого не должно быть. Если нельзя подключить переменный ток, то можно сделать батарейный электрозапал. На рисунке 9 изображена схема устройства электрозапала с контрольной лампочкой для проверки цепи и с миниатюрным рубильником.

В. ЕСЬКОВ

Для самодельной модели ракеты немаловажным моментом является двигатель…

Среди многообразия вариантов его изготовления самым распространенным является использование отработанных гильз от охотничьих патронов.

Попробовал такой вариант моторчика и я. Результат превзошел самые оптимистичные ожидания!

Итак, строим мотор из гильзы

в калибрах я слабо разбираюсь, на металлической части этой гильзы написано «12», а на пластике корпуса «12/70». Внешний диаметр около 20 мм, длина 70 мм.

Изнутри отверткой выбиваем остатки капсюля, получается как бы сопло диаметром чуть меньше 6 мм.

Делаем подставку для установки гильзы для заливки в нее топлива. Это кусок фанерки толщиной 8 мм. В ней сверлим дыру 4 мм и ввинчиваем в нее винт М5 длиной 50 мм. Получаем примерно следующее:

Оборачиваем резьбу винта газетой (3-4 слоя) и скотчем. Эти процедуры нужны для облегчения изъятия получившегося стержня из гильзы.

Надеваем на конструкцию гильзу:

Теперь она ровно стоит, а стержень внутри расположен строго вертикально и по центру будущего двигателя. Готовим карамель (процесс много где описан, если коротко, то смешиваем измельченную калиевую селитру с сорбитом (пропорция по массе 65/35) и плавим ее на сковородке до состояния жидкой кашицы). Заливаем ее в гильзу, периодически постукивая по ее корпусу «тяжеленьким предметом» — это нужно для устранения пустот в топливной массе.

В верхней части оставляем миллиметров 7-10 незаполненными. Это пространство надо чем-нибудь заткнуть…

Верхнюю заглушку делаем из эпоксидной смолы. На следующий день снимаем гильзу с «нашего станка», вынимаем газету со скотчем двумя спицами. В верхней части шилом делаем дырки в корпусе гильзы: это даст возможность эпоксидной смоле затечь в них и более надежно «заткнуть» гильзу. Оборачиваем скотчем верхний край гильзы, подготовив, тем самым, «ванночку» для смолы. Заливаем эпоксидный клей, получаем следующее:

Еще через день все застывает — двигатель готов!

Теоретические расчеты показывают следующие параметры мотора

Тяга — целый килограмм! Честно говоря, не верилось!

Масса пустой гильзы 6,8 г; масса готового двигателя 28,8 г. Топлива — всего 22 грамма! Теория на уровне 5 класса средней школы показывает, что ракету массой 150 грамм этот движок может зашвырнуть аж на 300 м!

В реальности результат был скромнее. Но, главное! ракета вообще смогла оторваться от земли. Например, РП-8 (140 грамм) залетела на 130 м.

ИТОГ: очень легко, из подручного (по полям России таких гильз можно мешок насобирать в охотсезон) материала можно изготовить вполне приличный двигатель!

Замечу, что после полета от такого двигателя останется только «сопло»

и эпоксидная верхняя заглушка

пластиковый корпус гильзы исчезает 🙁

Позднее металлические остатки пригодились при изготовлении двигателя из корпусов отработанных БРДП20-ххх

Подробное описание изготовления такого мотора в седьмом полете РП-8.

Ракета из бумаги и картона своими руками для детей: пошаговая инструкция

Для многих людей, как взрослых, так и малышей мир бумажно-картонного творчества предлагает широкие возможности для воплощения своих идей. Если необходимо принести композицию на тематический урок, выставку, конкурс в школе или просто есть желание порадовать близких оригинальной самоделкой, то ракета из бумаги и картона своими руками для детей станет отличным решением поставленной задачи.

Ее можно выполнить в любой из ниже представленных техник, каждая из которых предполагает использование определенного набора инструментов, расходных материалов и принадлежностей для украшения своего творения. Здесь вы обязательно найдете подходящий вариант поделки ко дню Космонавтики, для детского сада и школы. Помимо поделки ракеты вы с ребенком можете выучить стихи ко Дню Космонавтики, которые мы выкладывали ранее .

Ракета из бумаги и картона для детей с шаблонами

При помощи образца можно без лишних усилий и за короткое время сделать красивую модель. Чтобы уже через четверть часа на вашем столе стояла ракета, способная впечатлить школьника или дошкольника, необходимо точно следовать инструкции и заранее подготовить:

  • цветную бумагу;
  • клей ПВА;
  • картон в черном цвете;
  • карандаш, линейку, ножницы.

Предлагаемая для детей инструкция может быть использована на уроке труда в школе либо на творческом занятии в детском саду. Если необходимо выполнить домашнее задание по созданию модели ракеты, то представленный ниже вариант тоже подойдет для исполнения — готовая космическая композиция обязательно будет благосклонно оценена учителем.

Пошаговое изготовление межзвездного корабля:

  1. Определитесь с цветом листа цветной бумаги для базы. Он должен быть ярким и привлекательным, например, пурпурным.
  2. Из подготовленного прямоугольника скрутите трубу. Склейте края.
  3. Приступайте к изготовлению верхушки. Используя банку, циркуль или что-либо круглое, нарисуйте на желтом листке соответствующую фигуру. Вырежьте и разрежьте потом пополам получившийся круг.
  4. Используйте красную цветную бумагу для вырезания полоски. Соедините ее со втулкой, выступающей в роли основы.
  5. Скрутите из готового полукруга конус. Склейте контуры, чтобы зафиксировать фигуру.
  6. Приклейте конус к красному ободу.
  7. Создайте иллюминатор для просматривания Земли из космоса. Сделайте круг иного оттенка или присоедините к желтой трубочке свой фотоснимок.
  8. Украсьте низ корабля. Используя бумагу голубого тона вырежьте 3 полукруга.
  9. Скрутите каждый из экземпляров в конус, заклеив края.
  10. Прикрепите три заготовки к трубе по диаметру.
  11. Подготовьте площадку для взлета/посадки. На черный квадрат приклейте круг (желтый либо белый на выбор).

Смастерив стартовую площадку, ее можно применять для успешных полетов и приземлений как изготовленной ракеты, так и подобных ей моделей.

Аппликация бумажная ракета со схемами и шаблонами для детей (нужно распечатать, вырезать и склеить)

Еще одна легкая поделка бумажной ракеты можно сделать для детского сада или школы. Сделать ее несложно, справится даже дошкольник. Ниже я добавлю шаблоны и схемы ракеты, которые нужно будет распечатать, вырезать и склеить.

Для изготовления ракеты нам понадобится:

  • цветная бумага
  • ножницы
  • карандаш
  • клей ПВА

Пошаговая инструкция:

  1. Для начала из бумаги голубого цвета вырезаем полоску
  2. Один из конец полученного прямоугольника заостряем, как видно на фото ниже — это будет корпус ракеты
  3. Из листа красного цвета вырезаем крылья и нос будущей ракеты.
  4. Приклеиваем красные детали (нос и крылья) приклеиваем к корпусу ракеты
  5. Из листов красного цвета вырезаем небольшого размера кружочки — это иллюминаторы и приклеиваем их к ракете
  6. Завершающим этапом — вырезаем пламя для ракеты из трех цветов — желтый, оранжевый и красный
  7. Полученные детальки пламени склеиваем, накладывая одну на другую
  8. Осталось приклеить пламя к корпусу ракеты. Вот и все, наша поделка бумажная ракета готова, можно запускать в космос.

Ниже, как и обещала, выкладываю схемы и шаблоны по изготовлению ракеты из бумаги и картона:

Пошаговый мастер класс: ракета из бумаги в технике оригами

Если вы хотите отнести поделку в детский сад, мастеров ее с малышом возрастом 3-4 лет, то сделать это очень просто при помощи легкого двухстороннего картона. Чтобы ребенку было интересно, используйте цветной материал.

Все действия выполняйте поэтапно:

  1. Вырежьте квадрат. Сложите заготовку пополам и разверните. Два противоположных края подведите к середине, где они соприкоснутся, и потом разверните лист — должно получиться три вертикальные складки. Теперь заготовку сложите так, чтобы образовалась диагональная полоса-складка и разверните лист.
  2. Два верхних угла загните к середине.
  3. В двух сантиметрах от центра верхнего края загните правую сторону листика к середине и выверните часть обратно.
  4. Повторите описанный выше шаг с левой стороной заготовки, а затем переверните экземпляр.

Для украшения оригами можно сделать аппликацию — приклеить бушующее пламя, смотровые окна и даже поселить в одном из иллюминаторов пассажира.

Как сделать ракету из втулки от туалетной бумаги для детей

Чтобы смастерить поделку, потребуется взять три картонных рулона, оставшихся после использования туалетной бумаги, цветной и серебристый скотч. Стандартная схема создания ракеты такова:

  1. Тубы скрепляют цветной липкой лентой.
  2. Непокрытую поверхность обклеивают серебристым скотчем — корпус готов.
  3. Вырезают два треугольника. Так из картона создаются крылья космического корабля.
  4. Декорируют подготовленные элементы серебристым скотчем.
  5. Надрезают заготовки до середины вдоль длинной стороны треугольника, расположенной под 90° относительно другой стороны.
  6. Делают два параллельных надреза на одном конце серебристой трубы.
  7. Вставляют крылья в корпус насечкой в насечку.

Завершающим шагом будет вклеивание красных тканевых или бумажных полос внутрь конуса. Они будут имитировать пламя, вырывающееся из ракеты.

Вот и все еще одна ракета из подручных материалов (втулок от туалетной бумаги) готова. Ниже можете посмотреть еще один вариант изготовления ракеты из картона.

Поделки на День космонавтики: ракеты из бумаги и картона для детского сада и школы

Ниже опубликую несколько интересных идей для поделок ко Дню Космонавтики, который наступит 12 апреля. Все перечисленные поделки можно сделать самостоятельно вместе с ребенком для детского сада и школы. После этого продолжу публиковать пошаговые мастер-классы, как еще можно сделать ракеты с детьми.

SONY DSC

Как сделать поделку ракету из гофрированного картона на 23 февраля и День Космонавтики

На тематических выставках, приуроченных к торжественным датам, всегда привлекают внимание и вызывают интерес модельки из гофркартона. Вместе с ребенком можно смастерить объемную ракету. Малыш непременно с удовольствием включится в процесс и порадует усердием.

Делается ракета из картона следующим образом:

  1. Подготавливаются полоски шириной 15-20 мм (вырезаются из гофрированного картона).
  2. Делается корпус ракеты. Скручиваются трубы из 10 полосок. Заготовки фиксируются клеем.
  3. Готовым роллам придается форма конуса продавливанием серединной части вовнутрь.
  4. Скручивается круг из пары полос шириной 4 см. Его диаметр должен соответствовать диаметру конуса.
  5. Делаются турбины из полос шириной 15 мм. На скручивание ролл используется 5 полос. Нужно смастерить всего 6 экземпляров — белых и оранжевых в равном количестве.Их склеивают вместе.
  6. Формируются конусы из трех белых заготовок.
  7. Собирается корпус космического судна путем склейки деталей. Для маскировки стыков используется полоса белого цвета.
  8. Приклеиваются иллюминаторы. Также к корпусу присоединяют склеенные между собой турбины — белые и оранжевые.

Такая поделка на День Космонавтики — 12 апреля или ко Дню защитника Отечества может прослужить долгие годы. Можно совершенно не переживать, что она поломается или деформируется. Даже если малыш наиграется картонной ракетой, она обязательно займет почетное место в домашнем интерьере — на столе или полке.

Как сделать ракету из бутылки и подручных материалов, которая летает в домашних условиях

Функциональность — это то, за что мальчишки любят технику. Если стоит задача отправить ракета ну если не в космос, то хотя бы высоко в небо, то можно сделать корабль из пары пластиковых бутылок и винной пробки, которая будет удерживать давление в агрегате.

Посмотрите, как эта модель выглядит в реальности, и какие пируэты она способна совершать. Конечно, такую ракету в школу не возьмешь, но летом во дворе с друзьями поиграть можно — это будет очень весело.

Большая (объемная) ракета из бумаги своими руками для детей

Такое необычное решение, как смастерить в домашних условиях целый домик-ракету, обязательно придется по душе каждому ребенку. Маленькие макеты, безусловно, приносят много радости малышам, но участие в реализации масштабного проекта вызывает у детей настоящий восторг. К тому же потом в самодельной постройке можно играть и чувствовать себя настоящим космонавтом, отправляющимся на Луну, в межзвездное пространство или путешественником, стремящимся к далеким и загадочным планетам.

Итак, как сделать своими руками для детей такой вот космос-дом?

Чтобы смастерить ракету, потребуется взять картон (довольно плотный) и цветную бумагу. Задача взрослого — нарисовать, вырезать и склеить части космического корабля. Дети пусть самостоятельно украшают домик — предоставьте им возможность рисовать, клеить наклейки и использовать для оформления другой, подготовленный декор.

Вот так выглядит схема.

Еще одна модель, изготовленная по подобной технологии.

А это мастер-класс создания объемной самоделки. В сюжете описывается очень интересная идея создания бумажной ракеты. Только не стоит забывать, что работа с плотным картоном предполагает участие взрослого, и сделать такой космо-дом смогут дети от 12 лет. Ребята младшего возраста привлекаются к делу только в качестве помощников родителям.

Как сделать водяную ракету на 12 апреля

Ракета из цветной бумаги в домашних условиях: аппликация

Этот вариант создания космического корабля вполне по силам малышам возрастом 5-7 лет. Использоваться аппликация и шаблоны могут воспитателями и учителями начальных классов, педагогами дополнительного образования и творческими родителями. Предлагаемая здесь поделка для детей станет прекрасным оформлением интерьера, подарком, тематическим плакатом или открыткой ко Дню Космонавтики. Для изготовления аппликации из геометрических фигур понадобятся такие материалы и инструменты:

  • белый карандаш;
  • клей ПВА;
  • ножницы;
  • цветная бумага;
  • картон черного цвета.

Делается аппликация пошагово. Чтобы у малыша получилась ракета из бумаги, нужно контролировать весь процесс. Технология выглядит так:

  1. Заранее подготовить необходимые материалы.
  2. Использовать шаблоны для изготовления аппликации.
  3. Вырезать по шаблону элементы космо-корабля, его хвоста и звездного неба.
  4. Отметить границу нижней части межзвездного судна белым карандашом.
  5. Завернуть, пользуясь карандашом или ножницами, края треугольников, из которых будет состоять хвостовая часть корабля.
  6. Приклеить треугольники в три слоя.
  7. Последовательно присоединить детали ракеты и оформить звездное небо

Сделать такую аппликацию ребенок может как дома, то и в школе на уроке. Она у него обязательно получится и станет настоящей гордостью своего владельца.

Как видите, есть множество вариантов изготовления поделок на тему космос. Стоит только определиться с подходящим из них и дать ребенку возможность реализовать свой творческий потенциал. Готовый экземпляр— ракета из бумаги и картона своими руками для детей —принесет радость малышу, взбудоражит его фантазию и сподвигнет на покорение новых высот, ведь теперь у него будет собственное судно, которое способно отправить своего владельца в любой уголок галактики.

Еще несколько вариантов аппликация из бумаги:

Как сделать ракету из подручных материалов для детей

И на последок еще пара видео-идей, как можно сделать ракету самостоятельно с детьми из подручных материалов

Благодарим за интерес к статье «Ракета из бумаги и картона своими руками для детей: как сделать своими руками поделку ракету». Если она оказалась полезной, то просьба сделать следующее:

Всем привет.

Ракеты мы будем делать из гильз 12 калибра. Гильза имеет в донной части чашечку, которая играет в нашем случае роль сопла.

Наше ракетное топливо состоит из:

Калиевой селитры — это окислитель;

Фруктозы — это горючее;

И оксида железа 3. Оксид железа это катализатор, который увеличивает скорость горения топлива.

Так же мы использовали один электрод и бамбуковые палочки в качестве стабилизаторов.

Компоненты топлива хорошо перемешали и нагрели до 120 градусов. Фруктоза расплавилась, и наше топливо стало пластичным.

По мере остывания, топливо твердеет, и при комнатной температуре, это ракетное топливо на фруктоза становится твердым.

Давайте посмотрим как горит такой кусочек ракетного топлива.

С помощью электрода через донную часть гильзы мы сделали канал в топливной шашки на 2/3 ее длины. Верх мы залили термоклеем.

Наши ракетные двигатели готовы.

Для стабилизации ракеты в полете мы использовали бамбуковые палочки. В качестве фитиля для воспламенения мы вставили в канал ракетного двигателя охотничью спичку.

Следующие запуски ракет были неудачными. Раскаленные газы прожигали тонкую пластиковую оболочку гильзы и реактивная сила ракеты падала до нуля.

Мы решили исправить ситуацию и увеличить оболочку ракеты. Для этого мы сделали 3 варианта оболочки.

В первом и втором варианте в начале мы обмотали гильзы серпянкой. Серпянку зафиксировали нитками.

Первую пару гильз мы обмазали клеем пва. Вторую пару гильз обмазали алебастром.И еще 4 гильзы обклеили бумагой используя клей пва.

Мы слепили из ракетного топлива две шашки, первая сплошная без канала. Во второй шашке мы сделали внутренний канал.

В итоге бумажный корпус оказался лучше.

Всем спасибо за просмотр.

Самодельная ракета с системой спасения


Ниже будет рассмотрен пример создания летающей ракеты. Ее длина составляет целых два метра, и диаметр 90 мм. Летает ракета на твердом топливе. В самоделке предусмотрена система спасения. Собирается модель довольно быстро и требует минимальное количество материалов и знаний.
Материалы и инструменты для изготовления:
— эпоксидная смола;
— секлоткань;
— гипс;
— бальза;
— веревки;
— сахар и селитра для топлива.

Из инструментов будут нужны: паяльник, ножовка, дрель, клей и отвертки.
Процесс изготовления ракеты:
Шаг первый. Изготовление корпуса
Для изготовления корпуса понадобится стеклопластик. В качестве оправки используется водопроводная ПВХ-труба.


Шаг второй. Как сделать стабилизаторы
Стабилизаторы нужно вырезать из бальзы.
Шаг третий. Устройство системы спасения
Чтобы ракета не разбивалась о землю при падении, в ней предусмотрена система спасения. Эта система представляет собой парашют, который высвобождается вышибным зарядом. В итоге ракета не падает, а плавно приземляется. Чтобы активировать систему спасения, предусмотрена специальная электроника с альтиметром.
Ракета состоит из двух частей, в одной располагается двигатель, ну а во второй система спасения. Вышибной заряд находится в заглушке, как именно, можно увидеть на фото. Как работает система спасения, можно увидеть на видео ниже.

Шаг четвертый. Установка электроники
Для того чтобы установить электронику, в корпусе ракеты нужно сделать небольшой люк. Ну а весь процесс монтажа можно увидеть на фото.
Шаг пятый. Двигатель ракеты
Двигатель самоделки изготавливается из стеклопластика. В качестве заряда применяется карамельное топливо в форме шашек.
Крепится двигатель к корпусу снаружи с помощью саморезов.
Шаг шестой. Заключительный этап сборки и запуск ракеты
На последнем этапе автор окончательно собирает ракету. Весь процесс доработок хорошо видно на фото.
Вот как выглядит обтекатель ракеты.
Вот и все, самоделка готова. Как все работает, можно увидеть на видео.

Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. .

Самое главное в ракетостроении, по мнению легендарного конструктора ракетных двигателей академика Валентина Глушко, — именно двигатели. Его фраза «Если есть ракетный двигатель, то к нему хоть забор привяжи — он полетит!», пожалуй, одна из самых цитируемых в отрасли. Чтобы вы не повторяли все наши ошибки молодости, главный конструктор по системам управления «Лин Индастриал» Андрей Суворов расскажет, как сделать один из самых доступных, безопасных и эффективных домашних ракетных двигателей, работающих на карамельном топливе. Все начинали с этого.

Поговорим о классике

Классикой ракетомоделисты называют топливо, состоящее по весу из 35% сорбита и 65% калийной селитры, без каких-либо добавок. Это топливо достаточно хорошо изучено, имеет характеристики не хуже, чем у черного пороха, но изготовить его гораздо проще, чем правильный порох.

Для классики годится только калийная селитра. Если вы не найдете ее в продаже, придется изготовить самостоятельно из натриевой или аммиачной и сульфата или хлорида калия. Все это легко купить в магазинах, торгующих минеральными удобрениями. Раньше в фотомагазинах продавали еще поташ (карбонат калия), он тоже годится для получения калийной селитры из аммиачной. При смешивании горячих насыщенных растворов натриевой селитры и хлорида калия калийная селитра сразу выпадет в осадок. Самодельную селитру придется очистить перекристаллизацией, для этого ее нужно растворить в небольшом количестве горячей кипяченой воды, профильтровать через вату и поставить раствор в холодильник. Затем слить раствор, селитру высушить на батарее, а потом и в духовке при примерно 150 °C один-два часа. Тут главное — соблюдение температурного режима. При более высокой температуре селитра расплавится и станет непригодна к дальнейшему процессу.

В слетавшей ракете использовалось улучшенное топливо на базе сорбита. Но ради улучшения энергетики (удельного импульса) нитрат калия был заменен перхлоратом калия. Такая замена потребовала введения еще двух компонентов — катализатора, стабилизирующего горение, и активированного угля, задерживающего тепловое излучение. В отличие от «классики», такое топливо нежелательно плавить. Поэтому компоненты придется измельчить и перемешать как можно тщательнее. Для этого пригодится фарфоровый пестик — он инертен почти ко всем веществам и не дает искр, что важно для приготовления пиротехнических составов. Подготовленная порошкообразная смесь загружается в корпус двигателя.

Сорбит (заменитель сахара) продается и в аптеках, и в продуктовых супермаркетах. Температура плавления чистого сорбита — 125 °C, и по этой температуре его можно отличить от моногидрата сорбита, который иногда продается тоже под видом сорбита. Моногидрат плавится при 84 °C и для топлива не годится.

Несмотря на несерьезное название, карамельное ракетное топливо — это в первую очередь ракетное топливо, и обращаться с ним надо уважительно. Первое и главное правило техники безопасности — ни в коем случае не готовьте карамель на открытом огне! Только электроплитка с закрытым нагревателем и регулятором температуры. Если нет подходящей электроплитки, можно воспользоваться обычным утюгом, только нужно сделать подставку, удерживающую его в перевернутом положении, подошвой вверх. Положение регулятора «три точки» отлично подходит для изготовления карамели.

Не следует отмеривать компоненты на глазок или по объему — только на весах. На вид кучки в 35 г сорбита и 65 г калийной селитры по объему почти одинаковы. И это нам на руку, так как легче смешивать топливо. Если селитра крупная, ее придется растолочь в ступке или смолоть в кофемолке. Но не перестарайтесь: кристаллики должны быть как у мелкой соли — если смолоть селитру в пыль, с топливом будет трудно работать, так как оно станет слишком вязким. 20 секунд — то что надо.

Заготовка двигателя, заполненная порошком, вставляется в алюминиевый цилиндр, где и будет происходить термовакуумное прессование. Алюминиевый стержень в центре — для приложения усилия к пуансону, а короткая трубка рядом — для подключения вакуумного насоса. Подготовленный для прессования цилиндр погружается в водяную баню с раствором хлористого лития, который кипит примерно при 130 °C.

Теперь можно смешать порошки селитры и сорбита и выложить слоем не больше сантиметра толщиной на сковороду. Желательно мешать смесь непрерывно. Для перемешивания удобно использовать деревянную палочку от эскимо. Постепенно сорбит начнет плавиться, через некоторое время, по мере перемешивания, порошок превратится в однородную субстанцию, похожую на жидкую манную кашу. В расплавленном сорбите часть селитры растворяется, поэтому готовое топливо остается достаточно жидким и при 95 °C. Перегревать топливо не следует, потому что при 140 °C растворимость селитры скачком увеличивается и так же, скачком, увеличивается вязкость этого состава.

Как только последние комочки селитры размешаны, топливо готово — теперь его надо заливать в форму. Идеальная простота! Хорошо бы и двигатель сделать максимально простым, и такой вариант существует — если не требуются рекордные параметры, предпочтительным становится бессопловик. Он состоит только из корпуса и заряда. Несмотря на то что без сопла часть энергии топлива расходуется впустую, за счет экономии веса корпуса и сопла можно залить больше топлива и скомпенсировать потери.

После окончания прессования, когда объем, занимаемый топливом, уменьшится почти вдвое, цилиндр с двигателем нужно вынуть из бани и остудить в обычном ведерке с водой. Готовый двигатель выглядит так. Для того чтобы привести его в такой вид, придется отрезать часть картонной трубы (топливо теперь занимает лишь половину), оставив лишь несколько сантиметров для сопла. Сопло в этом двигателе керамическое, держится на шести винтах и герметизируется заливкой эпоксидной смолы.

Для корпуса понадобится картонная трубка с толщиной стенок 1−2 мм. Диаметр ее может быть от сантиметра до трех, но для первых опытов лучше брать не самую маленькую, так как с маленькими двигателями неудобно работать — и топливо застывает быстрее, и сложно его упаковать в маленькую трубку. Длина ее должна быть в 7−15 раз больше диаметра. Можно и в 20, но заливать топливо уже очень неудобно.

Еще потребуется стержень для формирования канала в топливе — в двигателях на карамели топливо горит по поверхности канала, а не с торца заряда, у торца не хватает площади. А для центрирования стержня потребуется деревянная или пластиковая бобышка, подходящая по диаметру и к картонной трубе, и к центральному стержню. Диаметр канала должен быть примерно втрое меньше внутреннего диаметра трубы.

Вставив бобышку в нижний конец трубы и стержень в нее, в оставшееся пространство заливаем «манную кашу» из селитры и сорбита. Топливо остывает и затвердевает, но не до конца. Из его остатков надо скатать палочку-образец — обычно размером с мужской мизинец. По ней измеряют скорость горения получившегося топлива — для этого ее снимают на видео и по видео засекают время. Конечно, длину палочки надо измерить до поджигания. Нормально изготовленная сорбитовая карамель должна гореть со скоростью от 2,6 до 2,8 мм/с, то есть палочка длиной 5 см сгорит за 17−19 с.

Скорость белой струи выхлопа на этом снимке намного больше километра в секунду! К сожалению, сама ракета не так быстра, но зато не очень сложно искать её после приземления.

Примерно через шесть часов — пока топливо еще мягкое — нужно вынуть бобышку и стержень. Осталось сделать заглушку из эпоксидной смолы там, где была бобышка: на обнажившуюся поверхность топлива наклеить кружок скотча, чтобы прикрыть канал, и из скотча сделать бортик вокруг картонной трубки, после чего залить туда эпоксидную смолу с отвердителем. Уровень смолы должен быть на 0,5 см выше края трубки, чтобы смола впиталась в торец. Иногда еще делают три-четыре отверстия диаметром 3 мм, в свободной от топлива части трубки, чтобы эпоксидная пробка лучше держалась. После затвердевания клея двигатель к запуску готов. Для его воспламенения отлично подходят китайские «электрические спички», продающиеся в интернет-магазинах, надо лишь удлинить провода и вставить запал в двигатель до упора, до эпоксидной заглушки — если двигатель загорится в середине, полной тяги он не выдаст.

Но, полетав на «классике», ракетолюбитель часто чувствует потребность ее как-то усовершенствовать. Тут и начинается изобретение разных составов и технологий. Волшебное слово «перхлорат» волнует сердца конструкторов-самодельщиков. Но напрямую заменить нитрат калия на перхлорат калия не получится — топливо будет иметь другие характеристики. Без третьего компонента — катализатора — состав демонстрирует пульсирующее горение вплоть до взрыва. А с катализатором плавить топливо опасно, вот и приходится использовать вакуумное прессование с подогревом и прочую экзотику, большинству любителей недоступную.

Статья «Карамельная ракета» опубликована в журнале «Популярная механика» (№9, Сентябрь 2016).

Недостатками этого топлива по сравнению с обычным сорбитовым, являются: сложность в изготовлении, низкая пластичность, невозможность заливки состава в корпус двигателя, быстрая скорость затвердевания, при недостаточном нагревании сорбита топливо быстро затвердевает. Опыт показал, что данное топливо хорошо приготавливать и использовать в холодное время года, так как влажность в воздухе значительно ниже, чем в летнее время. Пожалуй самой главной проблемой этого топлива является быстрая скорость затвердевания и невозможность заливки топлива прямо в корпус двигателя. Ещё у этого топлива есть очень неприятная вещь — при недостаточном уплотнении массы внутри топливного заряда образуются пустоты, что сильно сказывается на равномерности горения всего заряда. Проще говоря, структура становится пористой, что способствует возникновению аномального горения — неустойчивое прерывистое горение, вызванное уменьшением подвода тепла к непрореагировавшему топливу, длящееся от нескольких долей до 2 секунд. Особенно эта проблема характерна только для малых двигателей, с зарядом топлива 30 — 35 грамм — запрессовка «Мощной карамели» в такие двигатели — работа весьма кропотливая и сложная, ну а на больших двигателях такая вещь практически не сказывается, т.к относительно всего объёма топлива воздушные пустоты незначительны. Хоть это топливо и быстро затвердевает, но эту проблему можно легко устранить, поставив ёмкость с топливом на разогретую песчаную баню. Это очень удобный способ, ну смотрите не переборщите с температурой, а то сера в топливе расплавится и смесь станет неоднородной.
ИЗГОТОВЛЕНИЕ

По началу, при его изготовлении, возникали серьёзные проблемы. Трудно было найти баланс между температурой плавления сорбита и температурой плавления серы, а при смешивании расплавов обоих компонентов топливо получалось крайне не однородным. Был рассмотрен вариант с использованием глицерина, чтобы масса сохраняла пластичность длительное время. Но использование глицерина приводило к снижению прочности топливной шашки и повышенной гидроскопичности.

Сорбит при сильном нагревании и последующим охлаждении затвердевает не сразу и сохраняет пластичность достаточно длительное время, которого хватает на заправку 2 — 3 небольших двигателей. Сорбит должен быть разогрет до достаточно высокой температуры (около tкип). Когда я его разогреваю до такой температуры, то он немного дымит, становится прозрачным (слегка желтоватым), и на дне образуются небольшие пузырьки, что свидетельствует о начале кипения.

Перед тем, как вы начнёте плавить сорбит следует заранее приготовить все компоненты.

1. Сначала отвесьте необходимую порцию сорбита и отложите его подальше от места работы
Перед тем, как вы начнёте плавить сорбит следует заранее приготовить все компоненты

2. Далее вам нужно будет измельчить нитрат калия. Перед помолом его следует тщательно просушить, можно на батарее, но я просушивал в печке при t ≈ 2000C, больше этой температуры нельзя, т.к. начинается его плавление и затем разложение. Просушенный нитрат калия легче измельчается и меньше прилипает к стенкам электрокофемолки, нежели влажный. Помол я производил в электрокофемолке где-то секунд 40. Если он прилип к стенкам, то его можно соскоблить ватными палочками или руками, только не голыми, а используя одноразовые перчатки.
Далее вам нужно будет измельчить нитрат калия

Помол я производил в электрокофемолке где-то секунд 40

3. После помола отвесьте необходимую порцию селитры и поместите в чистую баночку, я использовал пластиковую, т.к. к стеклу он у меня прилипал.
После помола отвесьте необходимую порцию селитры и поместите в чистую баночку

4. Затем вам нужно отвесить серу.
Затем вам нужно отвесить серу

Сера, которая я используется в топливе, содержит уголь в следующем соотношении: 100% (S) + 5% (С) (по массе).
При использовании угля масса образует меньше комочков, становится более рассыпчатой и практически не прилипает к стенкам электрокофемолки во время помола. Однако нужно молоть с перерывами, чтобы сера не расплавилась от излишнего трения. После помола она остаётся сильно наэлектризованной и будет образовывать комочки. Как я заметил, требуется достаточно длительное время, чтобы сера стала рассыпчатой после помола, так что производить её помол следует заранее.

5. Только после того, как вы всё отмерили можно плавить сорбит. Для этих целей я использовал мою любимую миниатюрную печь, но когда у меня её не было я обходился плитой. Сорбит помещается в металлическую ёмкость, а лучше в ёмкость из нержавеющей стали (лично я использую кружку из нержавейки, которую я приобрёл в магазине «Всё для рыбалки и охоты») и нагревается до температуры, приближённой к температуре его кипения.

Только после того, как вы всё отмерили можно плавить сорбит

6. Затем в него добавляется мелкоизмельчённый и просушенный нитрат калия (калийная селитра). Перед тем как вы её будете засыпать, хорошенько встряхните пузырёк с селитрой, чтобы она стала более рассыпчатой.

Затем в него добавляется мелкоизмельчённый и просушенный нитрат калия (калийная селитра).

7. Смесь перемешивается до полной однородности. При таком соотношении селитры и сорбита смесь начинает быстро затвердевать, поэтому вам придётся снова разогреть содержимое стакана, до тех пор пока смесь не станет пригодной к перемешиванию.

Смесь перемешивается до полной однородности

8. После того как смесь остынет до температуры, которая ниже температуры плавления серы, в неё добавляют саму серу. Температуру можно проверить, бросив небольшое количество серы в выше полученную смесь селитры и сорбита, если температура слишком велика, то сера будет плавиться и образовывать мелкие, блестящие капельки на поверхности. Перемешивать все компоненты нужно очень быстро, чтобы смесь не успела затвердеть.

После того как смесь остынет до температуры, которая ниже температуры плавления серы, в неё добавляют саму серу

10. После этого вытащить пластичную массу (желательно использовать одноразовые полиэтиленовые перчатки) ножом или другим металлическим предметом. Смесь также следует соскоблить и со стенок кружки и всё ещё раз перемять руками для большей однородности (использовать полиэтиленовые перчатки!).

Хочу заметить, что топливо начинает быстро затвердевать, поэтому я снова помещаю его кружку и ставлю в прогретую печь, но только уже выключенную, т.к. она сохранила в себе тепло и отлично помогает сохранять температуру расплава топлива и оно не остаётся пластичным достаточно долгое время. В печь можно также положить какие-нибудь теплоёмкие материалы: чистый сухой песок, металлически гайки, гвозди, отлично подойдёт свинец. По мере необходимости кусочки топлива отщипываются от основной массы и тщательно запрессовываются в корпус двигателя.

После этого вытащить пластичную массу (желательно использовать одноразовые полиэтиленовые перчатки) ножом или другим металлическим предметом

Производить запрессовку топлива следует малыми порциями, потому что если топливо запрессовывать не под достаточным давлением, то внутри топливной шашки останется много пузырьков воздуха. Как показал опыт для запрессовки лучше использовать графитовую палочку пропитанную парафином, и с отполированным кончиком. Для этих целей так же подойдёт фторопласт, однако топливо всё равно к нему прилипает и желательно иметь по рукой тряпочку с помощью которой вы будете удалять налёт. Все работы желательно проводить в сухом помещении. Как я уже отметил, данное топливо больше подойдёт на изготовление крупных топливных зарядов (от 70г) для больших двигателей.

От автора: Я не знаю, станет ли данное топливо популярным среди ракетостроителей и химиков, но в ходе длительной работы с ним я пришёл, что это единственное мощное топливо, которое можно получить без особого труда, по сравнению с перхлоратным. А более низкое содержание сорбита делают его немного более выгодным в использовании, если конечно у вас сера стоит дешевле, чем сорбит. С первого раза, приготовить его так как надо, у вас не получится, но в ходе длительной работы с ним, вы действительно увидите разницу. Возможно вам покажется, что данный способ изготовления этого топлива небезопасен, но за всю мою практику не было ни одного ЧП, потому что я строго соблюдаю чистоту реактивов и не допускаю попадания веществ, которые воспламеняются ниже 2000C. При строгом соблюдении чистоты рабочего места данный способ является сравнительно безопасным.

Желаю
удачи!

Желаю
удачи!

Материал сайта http://pyrobase.ucoz.net

Как построить ракету за три простых шага

Итак, вы прочли последние новости об Илоне Маске или Джеффе Безосе (главе Amazon — прим. перев.), а может покопались в книгах по истории и поняли, почему Роберт Годдард и Вернер фон Браун стали легендами. И тут вам в голову пришла гениальная мысль — а почему бы не заняться ракетостроением самостоятельно?

Должен отметить, что текст ниже — это всего лишь подход теоретика-астрофизика к созданию ракет, и в нем, очевидно, не хватает многих… ну, давайте просто назовем их «критически важными деталями». Ракеты — одни из самых сложных творений, которые когда-либо создавались человечеством, и они требуют малость большего описания для их постройки, чем дает эта статья, так что мое уважение инженерам, которые на самом деле проектируют и строят их.
Тем не менее, ракеты полагаются на некоторые удивительно простые физические принципы. Хотя шаги ниже точно не дадут вам полноценного ракетного двигателя, они пояснят, почему мы делаем ракеты так, как мы делаем, и никак иначе.
Шаг первый: сохранение импульса
При движении по поверхности Земли или по воздуху мы полагаемся на сохранение импульса, чтобы двигаться вперед. Когда мы отталкиваемся от земли или машем крыльями в воздухе, то земля или воздух в свою очередь отталкиваются от нас. Поскольку Земля несколько больше нас, сохранение импульса означает, что мы сдвигаемся сильно, а вот Земля — едва ли.
Но космос — это совсем другая история. В этом холодном вакууме не на что давить. Ноги, крылья, пропеллеры и самолеты бесполезны. Но это не означает, что сохранение импульса внезапно перестает работать. Вместо этого, чтобы двигаться вперед, нам, по сути, нужно взять импульс с собой.
Тут тот же принцип, что и в том случае, когда вы находитесь на льду озера или в офисном кресле на колесиках. Если вы возьмете часть массы, которую вы носите с собой (обувь, снежок — что угодно), и отбросите ее от себя, то вы немного проедете в противоположном направлении. Конечно, то, что вы выкинули, имеет вес сильно меньше вашего, поэтому вы проедете в обратном направлении на достаточно небольшое расстояние, но все еще вам удалось сдвинуться, используя только самого себя.
Итак, чтобы иметь летающую в космосе ракету, вам нужно возить с собой ракетное топливо. Оно может быть любым, и когда вы его выбросите через заднюю часть ракеты, вы пролетите немного вперед. Прогресс!
Шаг второй: плывите по течению
Но стратегия «положить топливо в ракету и проделать дырку на задней ее стороне», вероятно, будет не самой эффективной. Вот почему вам нужно заменить свое отверстие соплом: в частности, соплом де Лаваля, названным в честь его изобретателя. Конкретно это сопло сужается до узкой горловины, а затем расширяется в куполообразную камеру, где выходное отверстие намного шире, чем входное. Уникальная форма сопла делает что-то волшебное с потоком ракетного топлива, что привело Годдарда в восторг в начале 1900-ых.

Когда топливо попадает в узкую горловину, оно ускоряется. Это происходит потому, что жидкость крайне плохо сжимается — для этого требуется гигантское давление, но его в сопле нет. Таким образом, чтобы общая масса жидкости протекала с одинаковой скоростью, она должна преобразовываться с «широкой и медленной» на входе в «узкую и быструю» посередине. Каждое вещество имеет свою собственную скорость звука (скорость, с которой распространяются звуковые волны в нем), и если вы правильно настроите горловину сопла, жидкость станет звуковой в момент перемещения по ней.
А звуковые и сверхзвуковые жидкости обладают особым свойством, которое прямо противоположно их дозвуковым собратьям: вместо замедления при повторном расширении из-за сложной динамики жидкости они… ускоряются. Поэтому, когда такая жидкость выходит из сопла, она получает дополнительный импульс. Кроме того, специальная куполообразная форма сопла на выходе позволяет жидкости продолжать прижиматься к его корпусу, еще больше увеличивая итоговый импульс.
Шаг третий: повинуйтесь тирании
Итак, у вас есть топливо и сопло. Что осталось? Правильно, вам нужно что-то, чтобы привести все это в действие: источник энергии, который вам также нужно упаковать с собой. В случае бросания вещей на скользком льду вы принесли свою энергию в виде завтрака, который вы употребили раньше и хранили для последующего использования.
Но зерновые и молоко — не самый лучший источник энергии для космической энергетики, поэтому химические ракеты оказались настолько успешными. Создавая мощную смесь топлива (например, высокоочищенный керосин) и окислителя (например, кислород), можно высвободить и использовать невероятные объемы энергии в последующих экзотермических реакциях. Разумеется, имеются и другие комбинации, и в некоторых случаях топливо самовоспламеняется при правильных условиях или существует в твердой форме перед использованием по назначению.
В любом случае, результат тот же. Еще одна полезная «фишка» химических ракет заключается в том, что смесь топлива служит в качестве движителя — результаты энергетических реакций «запихиваются» в сопло де Лаваля, толкая ракету вперед. Это здорово.

Но тот факт, что вы должны нести свой собственный источник топлива и энергии, резко ограничивает то, что может сделать ракета. Это регулируется формулой Циолковского — простой связью между энергией, необходимой для достижения цели, энергией, запасенной в топливе, и долей общей массы ракеты, занятой топливом.
Если вы хотите улететь дальше или поднять более тяжелый объект на орбиту, вам нужно больше топлива. Но увеличение объемов топлива увеличивает и общий вес ракеты, и именно эта «тирания» объясняет, почему современные ракеты имеют от 80 до 90 процентов топлива по массе — все для того, чтобы вывести совсем небольшую полезную нагрузку в космос. Поэтому и используют многоступенчатые ракеты — убирая используемые ступени, вы тем самым уменьшаете общий вес ракеты, а, значит, ускорение от следующей ступени будет более эффективным.
Можете улетать
Что в итоге? У вас есть все необходимые компоненты ракеты: сохранение импульса, ракетное топливо, сопло причудливой формы и источник энергии. И все, даже самые нестандартные ракеты, следуют тем же основным принципам. Соплом могут быть электрические или магнитные поля, а источником энергии — топливо, ядерные реакции или само Солнце. Но, несмотря ни на что, шаги выше — единственный способ получить ракету в космосе.

admin

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Наверх