Электрификация

Справочник домашнего мастера

Как сделать прозвонку?

Как своими руками сделать тестер

Любителям сделать все своими руками предлагается простой тестер на основе микроамперметра М2027-М1, у которого диапазон измерения 0-300 мкА, внутреннее сопротивление 3000 Ом, класс точности 1,0.

Необходимые детали

Это тестер, имеющий магнитоэлектрический механизм для измерения тока, поэтому он мерит только постоянный ток. Подвижная катушка со стрелкой крепится на растяжках. Применяется в аналоговых электроизмерительных приборах.

Найти на блошином рынке или купить в магазине радиодеталей проблем не составит. Там же можно приобрести и остальные материалы и компоненты, а также приставки к мультиметру. Кроме микроамперметра потребуется:

  • десяток постоянных резисторов;
  • один переменный резистор;
  • гнездовой разъем на 12-16 контактов;
  • кусок одностороннего стеклотекстолита;
  • пара метров медного многожильного провода сечением 1 кв. мм;
  • 40 см одножильного медного провода сечением 4 кв. мм;
  • припой, канифоль, паяльник на 60 Вт.

Если человек решил сделать себе мультиметр своими руками, значит, других измерительных приборов у него нет. Исходя из этого, и будем дальше действовать.

Выбор диапазонов измерения и вычисление номиналов резисторов

Определим для тестера диапазон измеряемых напряжений. Выберем три самых распространенных, покрывающих большинство потребностей радиолюбителя и домашнего электрика. Это диапазоны от 0 до 3 В, от 0 до 30 В и от 0 до 300 В.

Максимальный ток, проходящий через самодельный мультиметр равен 300 мкА. Поэтому задача сводится к подбору добавочного сопротивления, при котором стрелка отклонится на полную шкалу, а на последовательную цепочку Rд+ Rвн будет подано напряжение, соответствующее предельному значению диапазона.

То есть на диапазоне 3 В Rобщ=Rд+Rвн= U/I= 3/0,0003=10000 Ом,

где Rобщ – это общее сопротивление, Rд – добавочное сопротивление, а Rвн – внутреннее сопротивление тестера.

Rд=Rобщ-Rвн=10000-3000=7000 Ом или 7кОм.

На диапазоне 30 В общее сопротивление должно быть равно 30/0,0003=100000 Ом

Отсюда

Rд=100000-3000=97000 Ом или 97 кОм.

Для диапазон 300 В Rобщ=300/0,0003=1000000 Ом или 1 мОм.

Отсюда

Rд=1000000-3000=997000 Ом или 997 кОм.

Для измерения токов выберем диапазоны от 0 до 300 мА, от 0 до 30 мА и от 0 до 3 мА. В этом режиме шунтирующее сопротивление Rш подсоединяется к микроамперметру параллельно. Поэтому

Rобщ=Rш*Rвн/(Rш+Rвн).

А падение напряжения на шунте равно падению напряжения на катушке тестера и равно Uпр=Uш=0,0003*3000=0,9 В.

Отсюда в интервале 0…3 мА

Rобщ=U/I=0,9/0,003=300 Ом.

Тогда
Rш=Rобщ*Rвн/(Rвн-Rобщ)=300*3000/(3000-300)=333 Ом.

В диапазоне 0…30 мА Rобщ=U/I=0,9/0,030=30 Ом.

Тогда
Rш=Rобщ*Rвн/(Rвн-Rобщ)=30*3000/(3000-30)=30,3 Ом.

Отсюда в интервале 0…300 мА Rобщ=U/I=0,9/0,300=3 Ом.

Тогда
Rш=Rобщ*Rвн/(Rвн-Rобщ)=3*3000/(3000-3)=3,003 Ом.

Подгонка и монтаж

Чтобы сделать тестер точным, нужно подогнать номиналы резисторов. Эта часть работы самая кропотливая. Подготовим плату для монтажа. Для этого надо расчертить ее на квадратики размером сантиметр на сантиметр или немного меньше.

Затем, сапожным ножом или чем-нибудь подобным по линиям прорезается медное покрытие до основы из стеклотекстолита. Получились изолированные контактные площадки. Отметили, где будут расположены элементы, получилось подобие монтажной схемы прямо на плате. В дальнейшем, к ним будут припаяны элементы тестера.

Чтобы самодельный тестер выдавал правильные показания с заданной погрешностью, все его компоненты должны иметь характеристики по точности такие же, как минимум, и даже выше.

Внутреннее сопротивление катушки в магнитоэлектрическом механизме микроамперметра будем считать равным заявленным в паспорте 3000 Ом. Количество витков в катушке, диаметр провода, электропроводность металла, из которого сделана проволока известны. Значит, данным завода-изготовителя верить можно.

А вот напряжения батареек на 1,5 В могут немного отличаться от заявленных производителем, а знание точного значения напряжения потом потребуются для измерения тестером сопротивления резисторов, кабелей и других нагрузок.

Определение точного напряжения батарейки

Для того чтобы самому выяснить действительное напряжение батарейки потребуется хотя бы один точный резистор номиналом 2 или 2,2 кОм с погрешностью 0,5%. Этот номинал резистора выбран из-за того, что при последовательном подключении с ним микроамперметра, общее сопротивление цепи составит 5000 Ом. Следовательно, проходящий через тестер ток будет около 300 мкА, и стрелка отклонится на полную шкалу.

I=U/R=1,5/(3000+2000)=0,0003 А.

Если тестер покажет, к примеру, 290 мкА, значит, напряжение батареи равно

U=I*R=0,00029(3000+2000)=1,45 В.

Теперь зная точное напряжение на батарейках, имея одно точное сопротивление и микроамперметр можно подобрать необходимые номиналы сопротивления шунтов и добавочных резисторов.

Сбор блока питания

Блок питания для мультиметра собирается из двух последовательно соединенных батареек по 1,5 В. После этого к нему подключается последовательно микроамперметр и предварительно отобранный по номиналу резистор в 7 кОм.

Тестер должен показать значение близкое к предельному току. Если прибор зашкалит, то последовательно к первому резистору необходимо подсоединить второй, маленького номинала.

Если показания меньше 300 мкА, то параллельно к этим двум резисторам, подключают сопротивление большого номинала. Это уменьшит общее сопротивление добавочного резистора.

Такие операции продолжаются до тех пор, пока стрелка не установится на пределе шкалы в 300 мкА, что сигнализирует о точной подгонке.

Для подбора точного резистора на 97 кОм, выбираем ближайший, подходящий по номиналу, и проделываем те же процедуры, что и с первым на 7 кОм. Но так как здесь необходим источник питания 30 В, то потребуется переделка питания мультиметра из батарей на 1,5 В.

Собирается блок с выходным напряжением 15-30 В, на сколько хватит. К примеру, получилось 15 В, тогда всю подгонку делают из расчета, что стрелка должна стремится к показанию 150 мкА, то есть к половине шкалы.

Это допустимо, так как шкала тестера при измерении тока и напряжения линейная, но желательно работать с полным напряжением.

Для регулировки добавочного резистора в 997 кОм для диапазона 300 В понадобятся генераторы постоянного тока или напряжения. Их можно использовать и как приставки к мультиметру при измерении сопротивлений.

Разъем можно установить на боковой стенке коробки, в которую врезается микроамперметр. Щупы изготавливаются из одножильного медного провода, а шнуры к ним из многожильного.

Подключение шунтов осуществляется перемычкой. В результате из микроамперметра получается тестер, которым можно мерить все три основных параметра электрического тока.

Простой электрический тестер


Уже поздно ночью, автор данной самоделки работал над проектом и обнаружил, что в его электрическом мультиметре разрядилась батарея.
Он везде осмотрелся, но так и не нашел, где бы можно было «разжиться» 9 В. батареей до утра. Решив не сдаваться, он принял решение, сделать быстрый и простой тестер для проверки целостности цепей.
Шаг первый: Материалы




Эта самоделка основана на компактном светодиодном светильнике с питанием от батареи. Этот осветительный прибор поставляется с двухсторонней клейкой лентой, чтобы крепить его в шкафу или под лестницей для дополнительного света, но этот светильник также можно адаптировать и к другим нуждам.
Также понадобится старый кабель, например от зарядного устройства для старого телефона или USB-кабель, изображенный здесь. Кабель USB может быть лучшим вариантом, поскольку провода внутри USB-кабеля имеют индивидуальную изоляцию. Последнее, что потребуется, это что-то вместо щупа, чтобы точно разместить на терминалах, которые необходимо проверить. Все, что автор смог найти, это 2-е маленьких булавки, которые работали довольно хорошо, но большие гвозди работали бы не хуже.
Инструменты, которые понадобятся для самоделки:
— Маленькая отвертка с плоской головкой;
— Плоскогубцы с длинным носом;
— Кусачки;
— Электроизоляционная лента;
— Припой;
— Паяльник;
— Паяльный флюс;
Шаг второй: Разборка



С помощью отвертки с плоской головкой необходимо снять крышку батарейного отсека и извлечь батареи.
После того, как батареи извлечены, нужно зажать отвертку с плоской головкой между корпусом батареи и внешним корпусом. При таком положении отвертки, корпус довольно легко рассоединяется, что обнажает монтажную плату со светодиодами, а также провода, соединяющие корпус батареи.
Эти провода, соединяющие корпус батареи с печатной платой, — рассмотрим на следующем шаге.
Шаг третий: Подготовка
Теперь следует подключить паяльник и дать ему нагреться. А пока он греется необходимо подготовить провода.
С помощью кусачек обрежьте конец зарядного устройства телефона или USB-кабеля и т. д. Это обнажит ряд проводков. В USB-кабеле вы найдете 4 изолированных провода с различными цветами изоляции, покрытых металлическим экраном. Вам нужно будет использовать только два провода. Автор в данном случае выбрал красный и зеленый. Провода, которые вы используете, должны быть зачищены с помощью кусачек, чтобы обнажить медный провод. Оставшиеся провода можно обрезать или просто отогнуть.

После того, как кабель подготовлен, паяльник должен нагреться до рабочей температуры. Теперь нужно удерживать паяльник на одном из проводов, припаянных к одной из клемм аккумулятора, пока припой не расплавится, и не появится возможность удалить провод.
Шаг четвертый: Пайка кабеля
Теперь мы можем начать паять зачищенные провода в цепь. У этого светодиодного светильника были отверстия в задней части, поэтому автор в первую очередь продел подготовленный конец кабеля. Возможно, вам придется просверлить отверстие в вашем светильнике, если вы захотите аккуратно закрыть его.
Первый провод автор припаял к клемме аккумулятора, с которой был снят оригинальный провод. На этом этапе возможно возникнет необходимость в «дополнительной руке». Автор вышел из данного положения, положив плоскогубцы на кабель, чтобы утяжелить его и удерживать на месте, пока он занимался пайкой.
Подключение другого провода было бы намного проще, если бы был разъем для кабеля. Автор использовал кусок дерева для пайки второго зачищенного кабеля и кабеля, который был отпаян от клеммы аккумулятора .
Когда припой остынет, то оголенный кабель можно немного обмотать изолирующей лентой и снова собрать корпус светильника.
Шаг пятый: Присоединение электродов
Отрежьте другой конец кабеля и зачистите снова провода. Второй конец требует удаления намного большей части внешней оболочки. Автор использовал плоскогубцы, чтобы снять общую изоляцию после того, как надрезал ее. Поскольку он использовал красный и зеленый провода, то мог бы отрезать два других.
Припаять будущий щуп к концам кабеля будет сложнее, чем припаивать их к клеммам батареи. Ведь для того, чтобы припой спаял 2 соединяемых материала, температура у них должна быть одинаковой. Чтобы удержать провод на своем месте, пока гвоздь нагревается, автор несколько раз обмотал его вокруг шляпки гвоздя. Этот процесс был повторен для другого провода.
Шаг шестой: Всё готово
Последнее, что автор сделал — обмотал изоляционную ленту вокруг конца внешней изоляции.
Это очень простое и быстрое решение во время острой нужды в измерительном приборе. Поэтому данный самодельный инструмент будет храниться на полке, так как автор уверен в том, что он снова пригодится. Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. .

Audi A4 1.8т ›
Бортжурнал ›
Простой тестер МАФов 1.8т своими руками.

Попросил меня MisshGun собрать ему простой тестер МАФов, оформить в едином корпусе, собрал и оформил, симпатично вышло 🙂 За одно сделал ему датчик для проверки катушек зажигания, очень полезный зверек когда мозг не ловит пропуски конкретной катушки или вообще не умеет пропуски ловить. Так же сделал просто шнурок – вход осциллографа, зачем сее ему я не знаю но пусть будет, диодный мост на гене можно проверять 🙂 Вот и вам показываю как это можно красиво сделать.

Про тестирование простым осциллографом МАФов я писал подробно вот тут www.drive2.ru/l/539823651550134331/
Про правильную промывку вот тут писал www.drive2.ru/l/540386601503555587/ По сему не буду заострять на этом внимание.

Для тестирования МАФов нужен простой одноканальный осциллограф. Как я писал в предыдущих постах, для этого великолепно подходит микроконтроллер АТмега 328р в виде банальной платы Ардуино Нано. Для запитки МАФа при тестах надо стабилизированное опорное напряжение +5 вольт, и не стабилизированное 8-17 вольт…
Напряжение питание я буду брать снаружи от прикуривателя или от внешнего блока питания, внутри корпуса сделаю стабилизатор опорного +5. При тесте МАФов надо подавать внешнее питание а при проверке катушек или генератора или еще чего внешнее питание не нужно, тестер питается от УСБ.

Вот схема того что буду собирать. Одноканальный осциллограф с двумя входами 1х1 и 1х10 (0-5 вольт и 0-50 вольт). Так же схема банального стабилизатора. На выходе опорного +5в поставил кнопку что б можно было проверять время реагирования мафа.
Ну и пару лампочек. Одна показывает подключение по УСБ а другая показывает напряжение запитки мафа.

В качестве разъемов буду использовать УСБ разъемы, так как в них ровно 4 контакта, то есть то что нужно.

Берем корпус, сверлим-пилим, вставляем разъемчики и лампочки 🙂

Теперь изготовим стабилизатор опорного напряжения. Он простой, всего 4 детали. Изолируем термоусадкой.

Устанавливаем его в корпус, разводим все провода, подключаем питание и проверяем работу, все ОК. Опорное +5в у меня идет через размыкающую кнопку. Она нужна для проверки реагирования мафа на включение.

Далее надо собрать делитель с защитой. Делитель собираю навесным монтажом, так технологичней и помехозащищеннее, хотя сее можно не учитывать, так же можно не учитывать и не согласовывать волновое сопротивление кабеля, не те частоты 🙂
Потом надо установить плату с микроконтроллером, подсоединить ее. Плата уже подготовлена. В нее уже залита нужная прошивка и она откалибрована по напряжению, как сее сделать писал в прошлом посте, ссылка на него в начале. Далее закрываем корпус, вот и все, простой тестер МАФов готов.

Вот такой симпатичный осциллограф – тестер вышел.

Теперь надо сделать шнурки.

1. Шнур для диагностики МАФа.
2. Шнур внешнего питания от прикуривателя, что б проводить диагностику не снимая МАФа.
3. Шнур внешнего питания для блока питания, для диагностики дома на столе.
4. Шнур и индуктивным датчиком для проверки катушек зажигания.
5. Шнур вход осциллографа. Для подключения к чему угодно.

Приступим, сначала шнур для диагностики мафов сделаю. Распиновка мафа 1.8т следующая :
1 — Не используется
2 — +12 вольт
3 — Земля, масса, корпус.
4 — +5 вольт опорное напряжение.
5 — Выход сигнала.

Вот такой шнурок получился. Разъемы УСБ используйте хорошие, китайские дешевые дают дребезг и перепады в 0.2-0.3 вольта, что не допустимо при измерении напряжений с точностью до сотой вольта 🙂

Теперь сделаю шнур внешнего питания от прикуривателя. О том что надо использовать нормальный провод и нормальный разъем с защитой я писать не буду, это и так понятно 🙂

Далее шнур внешнего питания для блока питания, для диагностики дома на столе.
Подключать его к любому блоку питания, который дома завалялся.

Вот дошли до индуктивного датчика проверки катушек, ну очень полезный зверек. Недавно сосед мучился на своем форде. Пытался отловить какая глючит и под замену, с помощью такого датчика диагностика заняла менее пяти минут.
Для начала расскажу какие датчики бывают. Если просто то бывают емкостные, для систем зажигания без индивидуальных катушек, с высоковольтными проводами и индуктивные датчики, для систем зажигания с индивидуальными катушками. Я буду делать индуктивный датчик, для индивидуальных катушек.
Схем таких датчиков много, я использую самые простые. Они отлично работают и не требуют чего либо хитрого. Эти схемы с небольшими отличиями в инете давно ходят.
Вот схемы этих датчиков как я их вижу и как они лучше работают с моим тестером, индуктивный имею ввиду. Емкостной не использую, но схему приложил. К стати, можно банально использовать датчик положения колена от ВАЗов но он сигнал чуть хуже дает и с ним менее удобно работать.

Вот фото изготовления…

Дорожки не травлю, дремелем прорезаю, минута и готово 🙂

Далее распаиваем детали. Емкостной от индуктивного отличается не сильно и делаются они на основе одной платы…
Вот фото.
Это емкостной, нет резистора но есть конденсатор.

А вот индуктивный, какой нам и нужен. Вместо конденсатора перемычка и с обратной стороны стоит резистор, что б добротность катушки понизить 🙂

Далее покрываем лаком в два слоя, для гидроизоляции и термоусаживаем оболочку на него. В общем под водой можно его использовать 🙂

Вот такой вот шнур – датчик для индивидуальных катушек получился.

Ну и на последок сделаю шнур вход осциллографа. Для подключения к чему угодно.
Типа гену посмотреть иль датчик какой…

Ну вот, все готово. Но перед отправкой Мише в Питер надо на машине оттестить.
Начну с мафа.
Отключаем маф, машина заглушена. Подключаем наш тестер, так же подключаем его к бортовой сети через прикуриватель. Запускаем программу и смотрим что к чему. У меня все ОК 🙂

Теперь заведем машину и протестируем катушки. Внешнее питание подавать не надо. оно только для теста МАФа. Индуктивный датчик очень удобен, его не надо подключать на прямую. Его надо просто положить с верху и смотреть как работает катушка. Для того что бы определить какая катушка померла или присмери не надо знать и иметь эталонные осциллограммы под конкретную модель. Так как катушки все сразу одновременно не умирают то достаточно просто пройтись по всем и увидеть плохую в сравнении с остальными. Плохую четко видно по пропускам и заниженному сигналу или по полному отсутствию сигнала 🙂 Вот так вот просто все 🙂

Миш, подробную инструкцию по эксплуатации тестера напишу для тебя на днях и оформлю в виде постика 🙂 С тебя апробация тестера «в поле» и замечания с пожеланиями по каким либо доработкам.

А пока на этом все 🙂 Ни гвоздя вам ни жезла 🙂

admin

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Наверх