Электрификация

Справочник домашнего мастера

Как сделать мигающие светодиоды

Мигающие светодиоды применяются в различных сигнальных схемах, в рекламных щитах и вывесках, электронных игрушках. Сфера их применения достаточно широка. Простая мигалка на светодиоде может быть также использована для создания автосигнализации. Надо сказать, что моргать этот полупроводниковый прибор заставляет встроенная микросхема (ЧИП). Основные достоинства готовых МСД: компактность и разнообразие расцветок, позволяющее красочно оформлять электронные устройства, например, рекламное табло с целью привлечения внимания покупателей.

Но можно изготовить мигающий светодиод самостоятельно. Используя простые схемы, это сделать несложно. Как сделать мигалку, имея небольшие навыки работы с полупроводниковыми элементами, описано в этой статье.

Содержание

Мигалки на транзисторах

Самый простой вариант – светодиодная мигалка на одном транзисторе. Из схемы видно, что база транзистора висит в воздухе. Такое нестандартное включение позволяет ему работать как динистор.

Светодиодная мигалка на одном транзисторе

При достижении порогового значения возникает пробой структуры, открытие транзистора и разрядка конденсатора на светодиод. Такая простая мигалка на транзисторе может найти применение в быту, например, в небольшой елочной гирлянде. Для ее изготовления понадобятся вполне доступные и недорогие радиоэлементы. Светодиодная мигалка, сделанная своими руками, придаст немного шарма пушистой новогодней красавице.

Можно собрать похожее устройство уже на двух транзисторах, взяв детали из любой радиоаппаратуры, отслужившей свой срок. Схема мигалки приведена на рисунке.

Схема мультивибратора на двух транзисторах для простой мигалки

Для сборки понадобятся:

  • резистор R = 6,8–15 кОм – 2 штуки;
  • резистор R = 470–680 Ом – 2 штуки;
  • транзистор n-p-n-типа КТ315 Б – 2 штуки;
  • конденсатор C = 47–100 мкФ – 2 штуки;
  • маломощный светодиод или светодиодная лента.

Диапазон рабочего напряжения 3–12 вольт. Подойдет любой источник питания с такими параметрами. Эффект мигания в данной схеме достигается поочередным зарядом и разрядом конденсаторов, влекущим за собой открытие транзисторов, в результате чего появляется и исчезает ток в цепи светодиода.

Светодиоды с миганием можно получить, подключив выводы к нескольким разноцветным элементам. Встроенный генератор выдает поочередно импульсы на каждый цвет. Частота моргающего импульса зависит от заданной программы. Таким веселым миганием можно порадовать ребенка, если установить устройство в детскую игрушку, например, машинку.

Неплохой вариант получится, если взять трехцветный мигающий светодиод, имеющий четыре вывода (один общий анод или катод и три вывода управления цветом).

Еще один простой вариант, для сборки которого понадобятся батарейки типа CR2032 и резистор сопротивлением от 150 до 240 Ом. Мигающий светодиод получится, если последовательно соединить все элементы в одной схеме, соблюдая полярность.

Мигающий светодиод

Если получается собрать веселые огоньки по простейшей схеме, можно перейти к более сложной конструкции.

Схема мигалки на светодиодах

Данная схема мигалки на светодиодах работает следующим образом: при подаче напряжения на R1 и заряжении конденсатора С1, на нем растет напряжение. После того как оно достигнет 12 В, происходит пробой p-n-перехода транзистора, что увеличивает проводимость и вызывает свечение светодиода. При падении напряжения транзистор закрывается, и процесс идет сначала. Все блоки работают примерно на одной частоте, если не учитывать небольшую погрешность. Схему мигалки на светодиодах с пятью блоками можно собрать на макетной плате.

Макет мигалки на транзисторах

Как сделать мигающий светодиод

Лишены возможности купить готовый мигающий светодиод, где внутрь колбы встроены необходимые элементы для осуществления нужной функции (осталось подключить батарейку) – попробуйте собрать авторскую схему. Понадобится немногое: рассчитать резистор светодиода, задающий совместно с конденсатором период колебаний в цепи, ограничить ток, выбрать тип ключа. По некоторым причинам экономика страны работает на добывающую отрасль, электроника закопана глубоко в землю. С элементной базой напряг.

Принцип действия светодиода

Работа светодиода

Подключая светодиод, узнайте минимум теории – портал ВашТехник готов помочь. Район p-n перехода за счет существования дырочной и электронной проводимости образует зону несвойственных толще основного кристалла энергетических уровней. Рекомбинируя, носители заряда высвобождают энергию, если величина равна кванту света, спай двух материалов начинает лучиться. Оттенок определен некоторыми величинами, соотношение выглядит так:

E = h c / λ; h = 6,6 х 10-34 – постоянная Планка, с = 3 х 108 – скорость света, греческой буквой лямбда обозначается длина волны (м).

Из утверждения следует: может быть создан диод, где разница энергетических уровней присутствует. Так изготавливаются светодиоды. В зависимости от разницы уровней, цвет синий, красный, зелёный. Редкие светодиоды обладают одинаковым КПД. Слабыми считают синие, которые исторически появились последними. КПД светодиодов сравнительно мал (для полупроводниковой техники), редко достигает 45%. Удельное превращение электрической энергии в полезную световую просто потрясающее. Каждый Вт энергии дает фотонов в 6-7 раз больше, нежели спираль накала в эквивалентных условиях потребления. Объясняет, почему светодиоды сегодня занимают прочную позицию в осветительной технике.

Создание мигалки на основе полупроводниковых элементов несравненно проще. Хватит сравнительно малых напряжений, схема начнет работать. Остальное сводится к правильному подбору ключевых и пассивных элементов для создания пилообразного или импульсного напряжения нужной конфигурации:

  1. Амплитуда.
  2. Скважность.
  3. Частота следования.

Очевидно, подключение светодиода к сети 230 вольт выглядит негодной идеей. Присутствуют подобные схемы, но заставить мигать сложно, элементная база отсутствует. Светодиоды работают от гораздо более низких питающих напряжений. Самыми доступными считаются:

Простой светодиод

  • Напряжение +5 В присутствует в устройствах заряда телефонных аккумуляторов, iPad и других гаджетов. Правда, выходной ток невелик, и не нужно. Вдобавок, +5 В нетрудно найти на шине блока питания персонального компьютера. С ограничением тока проблемы устраним. Провод красного цвета, землю ищите на черном.
  • Напряжение +7…+9 Встречается на зарядных устройствах ручных радиостанций, в обиходе называемых рациями. Великое множество фирм, у каждой стандарты. Здесь бессильные дать конкретные рекомендации. Рации чаще выходят из строя в силу особенностей использования, лишние зарядные устройства обычно можно достать сравнительно дешево.
  • Схема подключения светодиода будет лучше работать от +12 вольт. Стандартное напряжение микроэлектроники, встретим во многих местах. Компьютерный блок содержит вольтаж -12 вольт. Изоляция жилы синяя, сам провод оставлен для совместимости со старыми приводами. В нашем случае может понадобиться, не окажись под рукой элементной базы питания +12 вольт. Комплементарные транзисторы найти, включить вместо исходных сложно. Номиналы пассивных элементов остаются. Светодиод включается обратной стороной.
  • Номинал -3,3 вольт на первый взгляд кажется невостребованным. Посчастливится достать на aliexpress RGB светодиоды SMD0603 4 рубля штука. Однако! Падение напряжения в прямом направлении не превышает 3 вольта (обратное включение не понадобится, но в случае неправильной полярности максимальный вольтаж составляет 5).

Устройство светодиода понятно, условия горения известны, приступим к реализации задумки. Заставим элемент мигать.

Тестирование мигающих RGB светодиодов

Компьютерный блок питания выступает идеальным вариантом тестирования светодиодов SMD0603. Нужно просто поставить резистивный делитель. Согласно схеме технической документации оценивают сопротивления p-n переходов в прямом направлении, заручившись помощью тестера. Прямое измерение здесь невозможно. Соберем схему, показанную ниже:

Схема оценки сопротивления p-n переходов

  1. Микросхема дана вместе с номерами ножек согласно техническим характеристикам.
  2. Питание подается на катод, полярность напряжения отрицательная. 3,3 вольта хватит открыть p-n переходы.
  3. Переменный резистор нужен небольшого номинала. На рисунке установлен с максимальным пределом 680 Ом. В таком положении должен находиться изначально.
  4. Сопротивление открытого p-n перехода невелико, нужен значительный запас, чтобы диоды не погорели (помним, что максимальное прямое напряжение составляет 3 В). Принимается во внимание факт: при низком вольтаже сопротивление каждого светодиода составит 700 Ом. При параллельном включении суммарное сопротивление вычисляется формулой, показанной на рисунке. Подставляя в качестве трех входных параметров 700, получаем 233 Ом. Сопротивление светодиодов, когда только-только начнут открываться (по крайней мере, так полагаем).

    Формула расчета суммарного сопротивления

  5. Понадобится контролировать режим тестером (см. рисунок). Постоянно измеряем напряжение на светодиодной микросхеме, одновременно уменьшая значение сопротивления, пока разница потенциалов поднимется до 2,5 В. Дальше повышать вольтаж попросту опасно, быть может, многие остановятся на 2,2 В.
  6. Затем из пропорции найдем искомое сопротивление светодиодной микросхемы: (3,3 – 2,5)/2,5 = R пер / Rобщ, R пер – сопротивление переменного резистора, когда напряжение на дисплее тестера достигает 2,5 В. R общ = 3,125 R пер.

Провод +3,3 В блока питания компьютера оранжевой изоляции, схемную землю берем с черного. Обратите внимание: опасно включать модуль без нагрузки. Идеально подключить DVD-привод или другое устройство. Допускается при наличии умения обращения с приборами под током снять боковую крышку, извлечь оттуда нужные контакты, не снимать блок питания. Подключение светодиодов иллюстрирует схема. Измерили сопротивление на параллельном подключении светодиодов и остановились?

Поясняем: в рабочем состоянии светодиодов понадобится включить несколько, проделаем аналогичную настройку. Напряжение питания на микросхеме составит 2,5 вольта. Обратите внимание, светодиоды мигающие, показания неточные. Максимальное не превыше 2,5 вольта. Индикация успешной работы схемы выражается миганием светодиодов. Чтобы часть мерцала, уберем питание с ненужных. Допускается собрать отладочную схему с тремя переменными резисторами – по одному в ветвь каждого цвета.

Теперь знаем, как сделать мигающую светодиодную подсветку своими руками. Можно ли варьировать время срабатывания. Полагаем, внутри должны использоваться емкости. Возможно, собственные паразитные элементы p-n переходов светодиодов. Подключая переменный конденсатор параллельно схеме на вход, можно попробовать что-либо изменить. Номинал очень мал, измеряется пФ. Маленькая микросхема лишена больших емкостей. Допускаем, резистор, подключенный параллельно микросхеме (см. пунктир на рисунке), усаженный на землю, будет образовывать точный делитель. Стабильность возрастет.

Номиналы нужно брать весомые, не забывать: значительно ограничим ток, идущий через светодиоды. Фактически потребуется продумать вопрос согласно ситуации.

Обычный светодиод мигает

Схема мигающего светодиода

Схема, изображенная рисунком, использует для работы лавинный пробой транзистора. КТ315Б, используемый в качестве ключа, имеет максимальное обратное напряжения между коллектором и базой 20 вольт. Опасного в таком включении мало. У модификации КТ315Ж параметр составляет 15 вольт, гораздо ближе выбранному напряжению питания +12 вольт. Транзистор использовать не стоит.

Лавинный пробой нештатный режим p-n перехода. За счет превышения обратного напряжения между коллектором и базой происходит ионизация атомов ударами разогнавшихся носителей заряда. Образуется масса свободных заряженных частиц, увлекаемых полем. Очевидцы утверждают: для пробоя транзистора КТ315 требуется обратное напряжение, приложенное между коллектором и эмиттером, амплитудой 8-9 В.

Пара слов о работе схемы. В первоначальный момент времени начинает заряжаться конденсатор. Подключен на +12 вольт, остальная часть схемы оборвана – закрыт транзисторный ключ. Постепенно разница потенциалов повышается, достигает напряжения лавинного пробоя транзистора. Напряжение конденсатора резко падает, параллельно подключены два открытых p-n перехода:

  1. Транзисторный находится в режиме пробоя.
  2. Светодиод открыт за счет прямого включения.

В сумме напряжение составит порядка 1 вольта, конденсатор начинает разряжаться через открытые p-n переходы, только напряжение падает ниже 7-8 вольт, везение кончается. Транзисторный ключ закрывается, процесс повторяется заново. Схеме присущ гистерезис. Транзистор открывается при более высоком напряжении, нежели закрывается. Обусловлено инерционностью процессов. Видим, как работает светодиод.

Номиналы резистора, ёмкости определяют период колебаний. Конденсатор можно взять значительно меньше, включив меж коллектором транзистора и светодиодом небольшое сопротивление. Например, 50 Ом. Постоянная разряда резко увеличится, проверить светодиод визуально будет проще (возрастет время горения). Понятно, ток не должен быть слишком большим, максимальные значения берутся из справочников. Не рекомендуется вести подключение светодиодных светильников из-за низкой термостабильности системы и наличия нештатного режима транзистора. Надеемся, обзор получился интересным, картинки доходчивыми, объяснения ясными.

Мигающий светодиод или поделки для авто

Иногда в автомобиле бывает необходимость сделать мигающий светодиод или два светодиода по очереди, а возможно и фары. В этой статье описаны простые способы и схемы, которые делают светодиод мигающим. Возможно эта статья пригодится, тому кто хочет сделать стробоскопы или ещё какие поделки на базе светодиодов.

Итак, простые попеременные вспышки диодов, можно сделать на двух транзисторах типа С945 или аналогичных им. Следует отметить, что транзистор С945 имеет коллектор в центре, а вот близкие аналоги типа 2N2222 или MPS2222A имеют в центре базу.

Частоту мигания можно регулировать конденсаторами С1 и С2.

Немного переделываем схему и получаем один мигающий светодиод.

Для того, чтобы можно было увеличить нагрузку, то есть подключить не один светодиод, а несколько надо просто поставить помощнее транзистор типа PNP. А вот если требуется подсоединить например автомобильные фары или противотуманки (по такому принципу можно сделать и поворотники), то нужно вместо светодиодов поставить обыкновенное 12-вольтовое автомобильное реле и уже к реле подключать фары.

Мигающий светодиод с NE555

Также, можно сделать такие схемы на основе не транзисторов, а микросхемы NE555.

Как сделать чтобы лампа моргала. Простейшая мигалка на светодиоде

Мигающие светодиоды часто применяют в различных сигнальных цепях. В продаже довольно давно появились светодиоды (LED) различных цветов, которые при подключении к источнику питания периодически мигают. Для их мигания не нужны никакие дополнительные детали. Внутри такого светодиода смонтирована миниатюрная интегральная микросхема, управляющая его работой. Однако для начинающего радиолюбителя намного интереснее сделать мигающий светодиод своими руками, а заодно изучить принцип работы электронной схемы, в частности мигалок, освоить навыки работы с паяльником.

НОВИНКА!!! СВЕТОДИОДНЫЕ 3D СВЕТИЛЬНИКИ — В жизни всегда найдется место волшебству…

Как сделать светодиодную мигалку своими руками

Существует множество схем, с помощью которых можно заставить мигать светодиод. Мигающие устройства можно изготовить как из отдельных радиодеталей, так и на основе различных микросхем. Сначала мы рассмотрим схему мигалки мультивибратора на двух транзисторах. Для ее сборки подойдут самые ходовые детали. Их можно приобрести в магазине радиодеталей или «добыть» из отживших свой срок телевизоров, радиоприемников и другой радиоаппаратуры. Также во многих интернет магазинах можно купить наборы деталей для сборки подобных схем led мигалок.

На рисунке изображена схема мигалки мультивибратора, состоящая всего из девяти деталей. Для ее сборки потребуются:

  • два резистора по 6.8 – 15 кОм;
  • два резистора имеющие сопротивление 470 – 680 Ом;
  • два маломощных транзистора имеющие структуру n-p-n, например КТ315 Б;
  • два электролитических конденсатора емкостью 47 –100 мкФ
  • один маломощный светодиод любого цвета, например красный.

Не обязательно, чтобы парные детали, например резисторы R2 и R3, имели одинаковую величину. Небольшой разброс номиналов практически не сказывается на работе мультивибратора. Также данная схема мигалки на светодиодах не критична к напряжению питания. Она уверенно работает в диапазоне напряжений от 3 до 12 вольт.

Схема мигалки мультивибратора работает следующим образом. В момент подачи на схему питания, всегда один из транзисторов окажется открытым чуть больше чем другой. Причиной может служить, например, чуть больший коэффициент передачи тока. Пусть первоначально больше открылся транзистор Т2. Тогда через его базу и резистор R1 потечет ток заряда конденсатора С1. Транзистор Т2 будет находиться в открытом состоянии и через R4 будет протекать его ток коллектора. На плюсовой обкладке конденсатора С2, присоединенной к коллектору Т2, будет низкое напряжение и он заряжаться не будет. По мере заряда С1 базовый ток Т2 будет уменьшаться, а напряжение на коллекторе расти. В какой-то момент это напряжение станет таким, что потечет ток заряда конденсатора C2 и транзистор Т3 начнет открываться. С1 начнет разряжаться через транзистор Т3 и резистор R2. Падение напряжения на R2 надежно закроет Т2. В это время через открытый транзистор Т3 и резистор R1 будет течь ток и светодиод LED1 будет светиться. В дальнейшем циклы заряда-разряда конденсаторов будут повторяться попеременно.

Если посмотреть осциллограммы на коллекторах транзисторов, то они будут иметь вид прямоугольных импульсов.

Когда ширина (длительность) прямоугольных импульсов равна расстоянию между ними, тогда говорят, что сигнал имеет форму меандра. Снимая осциллограммы с коллекторов обоих транзисторов одновременно, можно заметить, что они всегда находятся в противофазе. Длительность импульсов и время между их повторениями напрямую зависят от произведений R2C2 и R3C1. Меняя соотношение произведений можно изменять длительность и частоту вспышек светодиода.

Для сборки схемы мигающего светодиода понадобятся паяльник, припой и флюс. В качестве флюса можно использовать канифоль или жидкий флюс для пайки, продающийся в магазинах. Перед сборкой конструкции необходимо тщательно зачистить и залудить выводы радиодеталей. Выводы транзисторов и светодиода нужно соединять в соответствии с их назначением. Также необходимо соблюдать полярность включения электролитических конденсаторов. Маркировка и назначение выводов транзисторов КТ315 показаны на фото.

Мигающий светодиод на одной батарейке

Большинство светодиодов работают при напряжениях свыше 1.5 вольт. Поэтому их нельзя простым способом зажечь от одной пальчиковой батарейки. Однако существуют схемы мигалок на светодиодах позволяющие преодолеть эту трудность. Одна из таких показана ниже.

В схеме мигалки на светодиодах имеется две цепочки заряда конденсаторов: R1C1R2 и R3C2R2. Время заряда конденсатора С1 гораздо больше времени заряда конденсатора С2. После заряда С1 открываются оба транзистора и конденсатор С2 оказывается последовательно соединен с батарейкой. Через транзистор Т2 суммарное напряжение батареи и конденсатора прикладывается к светодиоду. Светодиод загорается. После разряда конденсаторов С1 и С2 транзисторы закрываются и начинается новый цикл зарядки конденсаторов. Такая схема мигалки на светодиодах называется схемой с вольтодобавкой.

Мы рассмотрели несколько схем мигалок на светодиодах. Собирая эти и другие устройства можно не только научиться паять и читать электронные схемы. На выходе можно получить вполне работоспособные приборы полезные в быту. Дело ограничивается только фантазией создателя. Проявив смекалку, из светодиодной мигалки можно, например, сделать сигнализатор открытой дверцы холодильника или указатель поворотов велосипеда. Заставить мигать глазки мягкой игрушки.

Открывать полный загадок мир радиоэлектроники, не имея специализированного образования, рекомендуется начинать со сборки простых электронных схем. Уровень удовлетворения при этом будет выше, если положительный результат будет сопровождаться приятным визуальным эффектом. Идеальным вариантом являются схемы с одним или двумя мигающими светодиодами в нагрузке. Ниже приведена информация, которая поможет в реализации наиболее простых схем, сделанных своими руками.

Готовые мигающие светодиоды и схемы с их использованием

Среди многообразия готовых мигающих светодиодов, наиболее распространены изделия в 5-ти мм корпусе. Помимо готовых одноцветных мигающих светодиодов, существуют двухвыводные экземпляры с двумя или тремя кристаллами разного цвета. У них в одном корпусе с кристаллами встроен генератор, который работает на определенной частоте. Он выдает одиночные чередующиеся импульсы на каждый кристалл по заданной программе. Скорость мерцания (частота) зависит от заданной программы. При одновременном свечении двух кристаллов мигающий светодиод выдает промежуточный цвет. Вторыми по популярности являются мигающие светоизлучающие диоды, управляемые током (уровнем потенциала). То есть, чтобы заставить мигать светодиод данного типа нужно менять питание на соответствующих выводах. Например, цвет излучения двуцветного красно-зелёного светодиода с двумя выводами зависит от направления протекания тока.

Трёхцветный (RGB) мигающий светодиод с четырьмя выводами имеет общий анод (катод) и три вывода для управления каждым цветом отдельно. Эффект мигания достигается путём подключения к соответствующей системе управления.

Смастерить мигалку на основе готового мигающего светодиода достаточно легко. Для этого потребуется батарейка CR2032 или CR2025 и резистор на 150–240 Ом, который следует припаять на любой вывод. Соблюдая полярность светодиода, контакты подключаются к батарейке. Светодиодная мигалка готова, можно наслаждаться визуальным эффектом. Если использовать батарейку типа «крона», основываясь на законе Ома, следует подобрать резистор большего сопротивления.

Обычные светодиоды и семы мигалок на их основе

Начинающий радиолюбитель может собрать мигалку и на простом одноцветном светоизлучающем диоде, имея минимальный набор радиоэлементов. Для этого рассмотрим несколько практических схем, отличающихся минимальным набором используемых радиодеталей, простотой, долговечностью и надежностью.

Первая схема состоит из маломощного транзистора Q1 (КТ315, КТ3102 или аналогичный импортный аналог), полярного конденсатора C1 на 16В с емкостью 470 мкФ, резистора R1 на 820-1000 Ом и светодиода L1 наподобие АЛ307. Питается вся схема от источника напряжения 12В.

Приведенная схема работает по принципу лавинного пробоя, поэтому база транзистора остаётся «висеть в воздухе», а на эмиттер подаётся положительный потенциал. При включении происходит заряд конденсатора, примерно до 10В, после чего транзистор на мгновение открывается с отдачей накопленной энергии в нагрузку, что проявляется в виде мигания светодиода. Недостаток схемы заключается в необходимости наличия источника напряжения 12В.

Вторая схема собрана по принципу транзисторного мультивибратора и считается более надёжной. Для её реализации потребуется:

  • два транзистора КТ3102 (или их аналога);
  • два полярных конденсатора на 16В емкостью 10 мкФ;
  • два резистора (R1 и R4) по 300 Ом для ограничения тока нагрузки;
  • два резистора (R2 и R3) по 27 кОм для задания тока базы транзистора;
  • два светодиода любого цвета.

В данном случае на элементы подаётся постоянное напряжение 5В. Схема работает по принципу поочередного заряда-разряда конденсаторов С1 и С2, что приводит к открыванию соответствующего транзистора. Пока VT1 сбрасывает накопленную энергию С1 через открытый переход коллектор-эмиттер, светится первый светодиод. В это время происходит плавный заряд С2, что способствует уменьшению тока базы VT1. В определённый момент VT1 закрывается, а VT2 открывается и светится второй светодиод.

Вторая схема имеет сразу несколько преимуществ:

  1. Она может работать в широком диапазоне напряжений начиная от 3В. Подавая на вход более 5В, придётся пересчитать номиналы резисторов, чтобы не пробить светодиод и не превысить максимальный ток базы транзистора.
  2. В нагрузку можно включать 2–3 светодиода параллельно или последовательно, пересчитав номиналы резисторов.
  3. Равное увеличение ёмкости конденсаторов ведёт к увеличению длительности свечения.
  4. Изменив ёмкость одного конденсатора, получим несимметричный мультивибратор, в котором время свечения будет различным.

В обоих вариантах можно применить транзисторы pnp проводимости, но с коррекцией схемы подключения.

Иногда вместо мигающих светодиодов радиолюбитель наблюдает обычное свечение, то есть оба транзистора частично приоткрыты. В таком случае нужно либо заменить транзисторы, либо запаять резисторы R2 и R3 с меньшим номиналом, увеличив, тем самым, ток базы.

Следует помнить, что питания от 3В будет недостаточно, чтобы зажечь светодиод с высоким значением прямого напряжения. Например, для светодиода белого, синего или зелёного цвета потребуется большее напряжение.

Кроме рассмотренных принципиальных схем, существует великое множество других несложных решений, которые вызывают мигание светодиода. Начинающим радиолюбителям стоит обратить внимание на недорогую и широко распространенную микросхему NE555, на которой также можно реализовать данный эффект. Её многофункциональность поможет собирать и другие интересные схемы.

Область применения

Мигающие светодиоды со встроенным генератором нашли применение в построении новогодних гирлянд. Собирая их в последовательную цепь и устанавливая резисторы с небольшим отличием по номиналу, добиваются сдвига в мигании каждого отдельного элемента цепи. В итоге получается прекрасный световой эффект, не требующий сложного блока управления. Достаточно только подключить гирлянду через диодный мост.

Мигающие светоизлучающие диоды, управляемые током, применяются в качестве индикаторов в электронной технике, когда каждому цвету соответствует определённое состояние (вкл./выкл. уровень заряда и пр.). Также из них собирают электронные табло, рекламные вывески, детские игрушки и прочие товары, в которых разноцветное мигание вызывает интерес у людей.

Умение собирать простые мигалки станет стимулом к построению схем на более мощных транзисторах. Если приложить немного усилий, то с помощью мигающих светодиодов можно создать множество интересных эффектов, например – бегущую волну.

Читайте так же

Лишены возможности купить готовый мигающий светодиод, где внутрь колбы встроены необходимые элементы для осуществления нужной функции (осталось только подключить батарейку) — можно попробовать собрать авторскую схему. Понадобится немногое: рассчитать резистор светодиода, задающий совместно с конденсатором период колебаний в цепи, ограничить ток, выбрать тип ключа. По некоторым причинам экономика страны работает на добывающую отрасль, электроника закопана глубоко в землю. С элементной базой напряг. Действительно может встать проблема, не задача, сделать мигающий светодиод. Замаячь на горизонте акция «голубых ведерок».

Тестирование мигающих RGB светодиодов

Компьютерный блок питания выступает идеальным вариантом тестирования светодиодов SMD0603. Нужно просто поставить резистивный делитель. Согласно схеме технической документации оценивают сопротивления p-n переходов в прямом направлении, заручившись помощью тестера. Прямое измерение здесь невозможно. Соберем схему, показанную ниже:

Провод +3,3 В блока питания компьютера оранжевой изоляции, схемную землю берем с черного. Обратите внимание: опасно включать модуль без нагрузки. Идеально подключить DVD-привод или другое устройство. Допускается при наличии умения обращения с приборами под током снять боковую крышку, извлечь оттуда нужные контакты, не снимать блок питания. Подключение светодиодов иллюстрирует схема. Измерили сопротивление на параллельном подключении светодиодов и остановились?

Поясняем: в рабочем состоянии светодиодов понадобится включить несколько, проделаем аналогичную настройку. Напряжение питания на микросхеме составит 2,5 вольта. Обратите внимание, светодиоды мигающие, показания неточные. Максимальное не должно превысить 2,5 вольта. Индикация успешной работы схемы выражается миганием светодиодов. Чтобы часть мерцала, уберем питание с ненужных. Допускается собрать отладочную схему с тремя переменными резисторами – по одному в ветвь каждого цвета.

Номиналы нужно брать весомые, не забывать: значительно ограничим ток, идущий через светодиоды. Фактически нужно продумать вопрос согласно ситуации.

Мигалка на светодиодах

Собираем мигалку своими руками

У любого начинающего радиолюбителя присутствует желание поскорей собрать что-нибудь электронное и желательно, чтобы оно заработало сразу и без трудоёмкой настройки. Да и это понятно, так как даже маленький успех в начале пути даёт массу сил.

Как уже говорилось, первым делом лучше собрать блок питания. Ну а если он уже есть в мастерской, то можно собрать мигалку на светодиодах. Итак, пришло время «подымить» паяльником .

Вот принципиальная схема одной из простейших мигалок. Базовой основой данной схемы является симметричный мультивибратор. Мигалка собрана из доступных и недорогих деталей, многие из которых можно найти в старой радиоаппаратуре и использовать повторно. О параметрах радиодеталей будет сказано чуть позднее, а пока разберёмся с тем, как работает схема.

Суть работы схемы заключается в том, что транзисторы VT1 и VT2 поочерёдно открываются. В открытом состоянии переход Э-К у транзисторов пропускает ток. Так как в коллекторные цепи транзисторов включены светодиоды, то при прохождении через них тока они светятся.

Частота переключений транзисторов, а, следовательно, и светодиодов может быть приблизительно подсчитана с помощью формулы расчёта частоты симметричного мультивибратора.

Как видим из формулы, главными элементами с помощью которых можно менять частоту переключений светодиодов является резистор R2 (его номинал равен R3), а также электролитический конденсатор C1 (его ёмкость равна C2). Для подсчёта частоты переключений в формулу нужно подставить величину сопротивления R2 в килоомах (kΩ) и величину ёмкости конденсатора C1 в микрофарадах (μF). Частоту f получим в герцах (Гц или на зарубежный манер — Hz).

Данную схему желательно не только повторить, но и «поиграться» с ней. Можно, например, увеличить ёмкость конденсаторов C1, C2. При этом частота переключений светодиодов уменьшиться. Переключаться они будут более медленно. Также можно и уменьшить ёмкость конденсаторов. При этом светодиоды станут переключаться чаще.

При C1 = C2 = 47 мкф (47 μF), а R2 = R3 = 27 кОм (kΩ) частота составит около 0,5 Гц (Hz). Таким образом светодиоды будут переключаться 1 раз в течении 2 секунд. Уменьшив ёмкость C1, C2 до 10 мкф можно добиться более быстрого переключения — около 2,5 раз в секунду. А если установить конденсаторы C1 и C2 ёмкостью 1 мкф, то светодиоды будут переключаться с частотой около 26 Гц, что на глаз будет практически незаметно — оба светодиода будут просто светиться.

А если взять и поставить электролитические конденсаторы C1, C2 разной ёмкости, то мультивибратор из симметричного превратится в несимметричный. При этом один из светодиодов будет светить дольше, а другой короче.

Более плавно частоту миганий светодиодов можно менять и с помощью дополнительного переменного резистора PR1, который можно включить в схему вот так.

Тогда частоту переключений светодиодов можно плавно менять поворотом ручки переменного резистора. Переменный резистор можно взять с сопротивлением 10 — 47 кОм, а резисторы R2, R3 установить с сопротивлением 1 кОм. Номиналы остальных деталей оставить прежними (см. таблицу далее).

Вот так выглядит мигалка с плавной регулировкой частоты вспышек светодиодов на макетной плате.

Первоначально схему мигалки лучше собрать на беспаечной макетной плате и настроить работу схемы по своему желанию. Беспаечная макетная плата вообще очень удобна для проведения всяких экспериментов с электроникой.

Теперь поговорим о деталях, которые потребуются для сборки мигалки на светодиодах, схема которой приведена на первом рисунке. Перечень элементов, используемых в схеме, приведён в таблице.

Название Обозначение Номинал/Параметры Марка или тип элемента
Транзисторы VT1, VT2 КТ315 с любым буквенным индексом
Электролитические конденсаторы C1, C2 10…100 мкф (рабочее напряжение от 6,3 вольт и выше) К50-35 или импортные аналоги
Резисторы R1, R4 300 Ом (0,125 Вт) МЛТ, МОН и аналогичные импортные
R2, R3 22…27 кОм (0,125 Вт)
Светодиоды HL1, HL2 индикаторный или яркий на 3 вольта

Стоит отметить, что у транзисторов КТ315 есть комплементарный «близнец» — транзистор КТ361. Корпуса у них очень похожи и их легко перепутать. Было бы не очень страшно, но эти транзисторы имеют разную структуру: КТ315 – n-p-n, а КТ361 – p-n-p. Поэтому их и называют комплементарными. Если вместо транзистора КТ315 в схему установить КТ361, то она работать не будет.

Как же определить who is who? (кто есть кто?).

На фото показаны транзистор КТ361 (слева) и КТ315 (справа). На корпусе транзистора обычно указывается только буквенный индекс. Поэтому отличить КТ315 от КТ361 по внешнему виду практически нереально. Чтобы достоверно удостовериться в том, что перед вами именно КТ315, а не КТ361 надёжнее всего будет проверить транзистор мультиметром.

Цоколёвка транзистора КТ315 показана на рисунке в таблице.

Перед тем, как впаивать в схему другие радиодетали их также стоит проверить. Особенно проверки требуют старые электролитические конденсаторы. У них одна беда – потеря ёмкости. Поэтому не лишним будет проверить конденсаторы.

Кстати, с помощью мигалки можно косвенно оценивать ёмкость конденсаторов. Если электролит «высох» и потерял часть ёмкости, то мультивибратор будет работать в несимметричном режиме – это сразу станет заметно чисто визуально. Это означает, что один из конденсаторов C1 или C2 имеет меньшую ёмкость («высох»), чем другой.

Для питания схемы потребуется блок питания с выходным напряжением 4,5 — 5 вольт. Также можно запитать мигалку и от 3 батареек типоразмера AA или AAA (1,5 В *3 = 4,5 В). О том, как правильно соединять батарейки читайте .

Электролитические конденсаторы (электролиты) подойдут любые с номинальной ёмкостью 10…100 мкф и рабочим напряжением от 6,3 вольт. Для надёжности лучше подобрать конденсаторы на более высокое рабочее напряжение — 10….16 вольт. Напомним, что рабочее напряжение электролитов должно быть чуть больше напряжения питания схемы.

Можно взять электролиты и с большей ёмкостью, но и габариты устройства заметно увеличатся. При подключении в схему конденсаторов соблюдайте полярность! Электролиты не любят переполюсовки.

Все схемы проверены и являются рабочими. Если что-то не заработало, то в первую очередь проверяем качество пайки или соединений (если собирали на макетке). Перед впаиванием деталей в схему их стоит проверить мультиметром, чтобы потом не удивляться: «А почему не работает?»

Светодиоды могут быть любые. Можно использовать как обычные индикаторные на 3 вольта, так и яркие. Яркие светодиоды имеют прозрачный корпус и обладают большей светоотдачей. Очень эффектно смотрятся, например, яркие светодиоды красного свечения диаметром 10 мм. В зависимости от желания можно применить и светодиоды других цветов излучения: синего, зелёного, жёлтого и др.

Главная &raquo Радиоэлектроника для начинающих &raquo Текущая страница

Также Вам будет интересно узнать:

  • Как устроены USB-колонки для ноутбука?

  • Апгрейд мультиметра DT — 830B.

Мигающий светодиод: как сделать, подключить и где применять

Моргающий световой сигнал находит широкое применение – от особого режима работы фонарей до индикации сложной аппаратуры. В его основе все чаще используется мигающий светодиод, как надежная и долговечная альтернатива любым другим видам светоисточников.

Рассмотрим, каков его принцип действия, какие готовые решения подобного прибора доступны сегодня на рынке, как сделать, чтобы лед-элемент, функционирующий в обычном режиме, стал работать в мерцающем ритме, какова общая сфера их применения, а также как своими руками на их основе изготовить гирлянды и бегущие огни.

Принцип действия

Светодиод с мигающим световым излучением – это стандартный лэд-кристалл, в электрическую схему питания которого включены задающие режим функционирования емкость и резистор. Внешне он ничем не отличается от обычных аналогов. При этом механизм его работы на уровне процессов, происходящих в электрической цепи, сводится к следующему:

  1. При подаче тока на резистор R накапливается заряд и напряжение в конденсаторе С.
  2. При достижении его потенциала 12 вольт образуется пробой в p-n-границе в транзисторе. Это повышает проводимость, что и инициирует производство светового потока лед-кристаллом.
  3. Когда напряжение снижается, транзистор снова становится закрытым и процесс начинается заново.

Все модули такой схемы функционируют на единой частоте.

Готовые мигающие светодиоды

Мигающие светодиоды от различных производителей по сути представляют собой функционально завершенные, готовые к применению в различных областях схемы. По внешним параметрам они мало чем отличаются от стандартных лед-устройств. Однако в их конструкцию внедрена схема генераторного типа и сопутствующих ему элементов.

Среди главных преимуществ готовых мигающих светодиодов выделяются:

  1. Компактность, прочность корпуса, все компоненты в одном корпусе.
  2. Большой диапазон напряжения питающего тока.
  3. Многоцветное исполнение, широкое разнообразие ритмов переключения оттенков.
  4. Экономичность.

Совет! Простейший мигающий светодиод можно сделать, если соединить в одну цепочку соблюдая правила полярности led-кристалл, CR-батарейку и резистор 160-230 Ом.

Схемы использования

Самый простой вариант схемы, выпускаемых сегодня мигалок на базе светодиодов, изготовление которых возможно своими силами радиолюбителям, включает:

  1. Транзистор малой мощности.
  2. Конденсатор полярного типа на 16 вольт и 470 микрофарад.
  3. Резистор.
  4. Лед-элемент.

При накоплении заряда осуществляется лавинообразный его пробой с открытием транзисторного модуля и свечением диода. Устройство такого типа часто используется в елочной гирлянде. Недостатком схемы является необходимость применения особого источника питания.

Другой вариант популярных на сегодня схем светодиодов мигающего типа включает пару n-p-n-транзисторов модификации КТ315 Б. Для ее сборки применяются также следующие компоненты:

  1. Две пары резисторов на 6,8–15 кОм и 470–680 Ом.
  2. Два конденсатора емкостью на 47-100 мкФ.
  3. Небольшой светодиод или отрезок лед-полоски.
  4. Источник питания от 3 до 12 В.

Принцип действия устройства обуславливается попеременной сменой цикла зарядки/разрядки конденсаторов, которые в свою очередь открывают транзисторы и питают светодиоды и обеспечивают их мигание.

Обычные светодиоды

Стандартный не мигающий светодиод дает яркое равномерное освещение и характеризуется малым потреблением электроэнергии. Наряду с такими качествами, как долговечность, компактность, энергоэффективность и широкий диапазон температур свечения это делает его вне конкуренции среди прочих искусственных источников света. На базе таких led-элементов и собирается схема мерцающих светильников. Рассмотрим, по какому принципу они изготавливаются.

Как сделать чтобы светодиоды мигали

Мигалка на светодиоде может быть собрана на базе одной из выше представленных схем. Соответственно нужно будет приобрести компоненты, описанные выше. Они необходимы для функционирования того или иного варианта. При этом для сборки потребуется паяльник, припой, флюс и другие необходимые комплектующие для пайки.

Сборка цепочки мигающих светодиодов предваряется обязательным лужением выводных контактов всех соединяемых элементов. Также нельзя забывать о соблюдении правил полярности, особенно при включении конденсаторов. Готовый светильник будет выдавать мерцание с частой около 1,5 Гц или что тоже самое порядка 15 импульсов каждый 10-секундный отрезок времени.

Схемы мигалок на их основе

Чтобы происходили элементарные заданные определенной периодичностью вспышки света, требуется пара транзисторов типа C945 или аналоговых элементов. Для первого варианта коллектор размещается в центре, а у второго – по середине располагается база. Один или пара мигающих светодиодов изготавливается по обычной схеме. При этом частотность вспышек задается наличием в цепочке конденсаторов С1 и С2.

В такую систему допустимо внедрение одновременно нескольких лед-кристаллов при монтаже достаточно мощного транзистора pnp-типа. При этом мигающими светодиоды делаются при соединении их контактов с разноцветными элементами, поочередность вспышек задается генераторным модулем, а частотность – заданными программными настройками.

Светодиоды, функционирующие в мигающем ритме, применяются в различных областях:

  1. В развлекательной сфере, в игрушках, для украшения декора, в качестве гирлянд.
  2. Как индикация в бытовых и промышленных приборах.
  3. Светосигнализирующих устройствах.
  4. В элементах рекламы, вывесках.
  5. Информационных табло.

Важно! Светодиоды, излучающие свет в мигающем заданном ритме, применяются не только в видимом диапазоне спектра, но также в инфракрасном и ультрафиолетовом сегментах. Область их назначения – системы автоматизации и дистанционного управления различной техники – отоплением, вентиляцией, бытовыми приборами.

Бегущие огни на светодиодах своими руками

Одной из сфер эксплуатации мигающих светодиодов является устройство «бегущие огни». Для сборки схемы применяются такие компоненты:

  1. Генератор импульсом прямоугольного вида.
  2. Устройство индикации.
  3. Дешифратор.
  4. Счетчик.

Изготовление схемы осуществляется на макетной плате беспаечного типа. При этом по номиналу резисторов и конденсаторов допускается небольшой разброс, но не выше 20%. Светодиоды от HL1 до HL16 могут быть не обязательно одного цвета, но различных оттенков. Однако падение напряжение каждого лед-элемента должно быть в рамках 3 вольт.

Как сделать гирлянду из светодиодов

Для изготовления гирлянды, периодически мигающей с заданным ритмом, потребуются следующие компоненты и набор инструмента:

  1. Светодиоды на 20 мАч.
  2. Проводка площадью сечения 0,5-0,25 мм2.
  3. Трансформатор на 6 вольт.
  4. Резистор на 100 Ом.
  5. Паяльная станция с наконечником небольшого сечения, припой, канифоль.
  6. Нож с острым лезвием.
  7. Герметик на силиконовой основе.
  8. Фломастер.

Алгоритм сборки:

  1. Определиться точно с промежутками между мигающими элементами.
  2. Подготовить провод и обозначить фломастером отметины под светодиоды.
  3. На местах отметок сделать срезы изоляции острым ножом.
  4. Далее на оголенные участки нанести канифоль с припоем.
  5. Припаять электроды диодов к этим местам.
  6. Нанести силиконовый герметик на оголенные участки для обеспечения электроизоляции.

По завершении подсоединяется блок питания и обычный резистор. Устройство включается в сеть и проверяется на работоспособность.

Совет! При изготовлении гирлянд нужно учитывать, что исключительно последовательный характер соединения светодиодов в цепи будет обеспечивать свойственный им мигающий эффект.

Основные выводы

Мигающий светодиод – это стандартный лед-элемент, оснащенный для специфического ритмичного свечения резистором и конденсатором, работающий по следующему принципу:

  1. Поступающий ток накапливает заряд на резисторе.
  2. По достижении заданного потенциала происходит пробой в p-n-переходе транзистора – ток проходит, светодиод вспыхивает.
  3. По мере снижения заряда транзистор закрывается и процесс повторяется.

Схема распространенного мигающего самодельного светодиода может включать один или пару транзисторов. При самостоятельной их сборке нужно заранее подготовить все необходимые компоненты и требуемые в ходе работы инструменты. Область применения мерцающих лед-светильников огромна – от игрушек и гирлянд до сигнализации, индикации и систем дистанционного управления.

Схема питания мигающего светодиода от сети 220В

Схема подключения мигающего светодиода к сети 220В, применение для отпугивания воров от входной двери дома или квартиры. Мигающий светодиод устанавливается на входную дверь и ночью очень ярко и заметно мигает. Вопрос, зачем эта «иллюминация», и какой в ней смысл?

Отвечаю, вот придет нехороший человек грабить квартиру, а там светодиод мигает… подозрительно так мигает… Вдруг сейчас «чоповцы» приедут или того хуже, полиция. И передумает лезть в квартиру. Конечно, мигающим светодиодом опытного и шибко технически продвинутого вора не отпугнуть.

Но если у вас все ценности это телевизор, холодильник и дедушкины валенки, к вам такой профессионал и не полезет, — скорее всего будет умственно ограниченная гопота, знающая о сигнализациях только по фильмам. Вот от такого «контингента» мигающий светодиод — защита что надо (еще и район сменят, — подумают что светодиод их рожи заснял).

В общем, нужно приобрести мигающий светодиод, например, L-56BID и установить его на двери или над дверью. Вопрос только с подключением. Если есть лишнее зарядное устройство для телефона или другой блок питания — вилка, можно светодиод просто подключить к нему через токоограничивающий резистор.

Принципиальная схема

Если же единственное место возможного питания — электросеть, то можно мигающий светодиод подключить по очень хорошо зарекомендовавшей себя схеме, показанной на рисунке. На резисторах R1-R3 падает избыточное напряжение. Резисторов три по 75 кОм, а не один на 220 кОм потому что желательно сделать линию длиннее, чтобы гарантировано избежать пробоя.

Диод VD1 служит выпрямителем. Конденсатор С1 — накопительный. Теперь самое интересное, — в схеме есть стабилитрон VD1. В принципе, если бы светодиод HL1 был бы не мигающем надобности в этом стабилитроне не было бы, как и в резисторе R4.

Но НИ — мигающий светодиод. Потому в те моменты времени когда он гаснет его сопротивление сильно возрастает и, соответственно, возрастает и падающее на нем напряжение. Если не будет стабилитрона VD1 прямое напряжение на НИ в момент его гашения достигнет 300V и может быть даже больше. Что приведет к выходу его из строя.

Здесь же есть стаби-литрон, который ограничит напряжение на светодиоде в те моменты, когда он будет погашен.

Рис. 1. Принципиальная схема блока питания для мигающего светодиода.

Напряжение стабилизации стабилитрона совсем не обязательно должно быть12V. Стабилитрон может быть на любое напряжение, которое нормально выдерживает светодиод в погашенном состоянии. Но не ниже его прямого напряжения в горящем состоянии. То есть, где-то от ЗV до 30V.

Практически любой стабилитрон на любое напряжение в этих пределах. Соответственно, конденсатор С1 должен быть на напряжение не ниже напряжения стабилитрона.

Резистор R4 нужен для того, чтобы ограничить ток разрядки конденсатора через светодиод в момент его зажигания. В принципе, можно обойтись и без него, но велика вероятность что светодиод долго не прослужит.

Так что R4 здесь на всякий случай. Особенно актуален R4 при использовании стабилитрона на напряжение у верхнего предела (до 30V). Потому что чем выше это напряжение, тем будет больше бросок тока в момент зажигания светодиода.

Детали и налаживание

Вместо L-56BID можно применить любой мигающий светодиод. Если яркости свечения будет недостаточно нужно уменьшить суммарное сопротивление R1-R3, но желательно чтобы эти резисторы были одинаковыми.

Косицын В. РК-08-17.

Вам понадобятся:

  1. Макетная плата.
  2. Паяльник-карандаш мощностью 15 Вт.
  3. Тонкий припой диаметром 0,6 мм или около того.
  4. Инструмент для снятия изоляции и кусачки.
  5. Простая перфорированная плата (без медных протравленных проводящих соединений между отверстиями).
  6. Небольшие тиски или струбцина для удерживания вашей перфорированной платы.
  7. Резисторы различного номинала.
  8. Конденсаторы электролитические емкостью 100 мкФ и 220 мкФ, по одному каждого номинала.
  9. Красный светодиод диаметром 5 мм, с прямым напряжением около 2 В.
  10. Программируемый однопереходный транзистор 2N6027.

В вашей первой схеме с использованием однопереходного транзистора для генератора низкой частоты, который заставлял мигать светодиод дважды каждую секунду. Мигания выглядели очень «электронными», под которыми я имею в виду то, что свечение светодиода было типа «включен/выключен» без постепенного перехода между этими состояниями. Мне кажется, что мы сможем модифицировать эту схему так, чтобы сделать мигания светодиода более плавными и интересными, как предупреждающее мигание компьютера Apple MacBook, когда он переходит в «спящий» режим. Мне кажется, что что-то подобное можно использовать в качестве украшения одежды, если оно будет достаточно небольшое и элегантное.

Я также думаю, что этот первый проект с использованием пайки будет служить трем другим целям. Это приведет к проверке и закреплению ваших навыков соединения проводов, научат вас выполнению навесного монтажа на перфорированной плате, а также даст вам некоторые дополнительные знания о том, каким образом могут быть использованы конденсаторы для настройки временных параметров.
Посмотрите снова на исходную монтажную схему эксперимента 11 (см. рис. 1). Освежите вашу память, вспомнив, каким образом она работает. Конденсатор C1 через резистор R1 заряжается до тех пор, пока не достигнет достаточного напряжения, которое преодолеет внутреннее сопротивление однопереходного транзистора Q1 и через него потечет ток. В результате через открытый транзистор Q1 конденсатор C1 разряжается, а светодиод вспыхнет.

Если вы нарисуете график зависимости изменения яркости свечения светодиода во времени, то увидите узкий прямоугольный импульс, такой как на рис. 1. Можем ли мы сделать его таким, чтобы он был похож на более пологую кривую (рис. 2), когда светодиод включался и выключался постепенно, подобно сердцебиению?
Одна вещь является очевидной: в течение каждого цикла светодиод должен светить ярче. Поэтому нам потребуется более высокое напряжение питания. Это означает, что конденсатор, показанный на рис. 3, должен обладать большей емкостью.

Рис. 1. График зависимости яркости свечения светодиода во времени

Рис. 2. Схема генератора на базе однопереходного транзистора в эксперименте 11 заставляет мигать светодиод короткими резкими вспышками. График на рис. 1 показывает, что мы могли бы получить, если провести измерения яркости светодиода во времени. На этом рисунке показано более плавное начало и окончание каждой вспышки. Для реализации этого эффекта могут быть использованы конденсаторы
Рис. 3. Первый шаг по направлению создания эффекта плавного мигания это использование в качестве конденсатора C1 большой емкости и его разряда через резистор R4. Для достаточно быстрого разряда конденсатора потребуется резистор с относительно небольшим сопротивлением. R1 — резистор c сопротивлением 33 кОм; R2 — резистор c сопротивлением 1 кОм ; R3 — резистор c сопротивлением 1 кОм; R4 — резистор c сопротивлением 1 кОм; C1 — электролитический конденсатор емкостью 100 мкФ; Q1 — однопереходный транзистор 2N6027

Когда мы будем использовать конденсатор большей емкости, то он будет заряжаться в течение большего времени. Чтобы увеличить частоту мигания светодиода, нам потребуется резистор R1 с меньшим сопротивлением, чтобы заряжать этот конденсатор достаточно быстро. Дополнительно мы должны уменьшить значения сопротивлений резисторов R2 и R3, чтобы однопереходный транзистор делал импульс более длительным.

Более важно то, что я хочу разряжать конденсатор через резистор таким образом, чтобы это происходило постепенно, а не одномоментно. Следует помнить, что, когда резистор подключен последовательно с конденсатором, конденсатор не только более медленно заряжается, но и разряжается более медленно.
На рис. 3 показаны все эти три особенности. Сравните их с рис. 6 эксперимента 11. Теперь сопротивление резистора R1 33 кОм вместо 470 кОм. Сопротивления резисторов R2 и R3 уменьшены до 1 кОм. Сопротивление резистора R4 также становится равным 1 кОм, что увеличивает время разряда конденсатора через него. Кроме этого, конденсатор C1 теперь становится 100 мкФ вместо прежних 2,2 мкФ.

Соберите эту схему на макетной плате и сравните результаты с теми, которые будут получены при включенном и при закороченном резисторе R4. Это несколько сглаживает импульс, но мы можем продолжить работу по его дальнейшему сглаживанию. На выходе однопереходного транзистора мы можем добавить другой конденсатор. Он будет заряжаться от импульса, который возникает на выходе однопереходного транзистора Q1, а затем постепенно разряжаться через другой резистор R5, поэтому светодиод будет гаснуть более медленно.

На рис. 4 показана соответствующая электрическая схема. Конденсатор C2 имеет большую емкость — 220 мкФ, поэтому он относительно быстро заряжается от импульса, поступающего от транзистора Q1, а затем постепенно разряжается через резистор R5 с сопротивлением 330 Ом и светодиод. Вы заметите, что поведение светодиода будет несколько другим. Он теперь вместо быстрого выключения будет постепенно гаснуть. Однако сопротивления, которые я добавил, приведут к тому, что свечение светодиода становится менее интенсивным, поэтому я должен увеличить напряжение источника питания с 6 до 9 В.

Рис. 4. Вторым шагом к достижению более плавного мигающего эффекта является использование дополнительного конденсатора C2, который быстро заряжается каждым импульсом от транзистора Q1, а потом медленно разряжается через резистор R5 и светодиод. Те же самые компоненты, что и ранее, плюс: R5 — резистор с сопротивлением 330 Ом; C2 — электролитический конденсатор емкостью 220 мкФ. Напряжение питания увеличено до 9 В.

Помните, что конденсатор создает эффект сглаживания только в том случае, если один из его выводов подключен к отрицательному выводу источника питания. Присутствие отрицательного заряда на этой обкладке конденсатора приводит к притягиванию положительного заряда к другой.

Мне нравится внешний вид такого пульсирующего свечения светодиода. Я могу себе представить небольшое электронное ювелирное украшение для одежды, которое будет пульсировать таким чувственным образом (рис. 5), сильно отличающимся от резко обрывающегося и возникающего на короткое время свечения, вызываемого схемой простого генератора. Единственная проблема, которая здесь возникает — это компактная упаковка всех компонентов схемы, такая, чтобы корпус устройства мог быть достаточно мал для того, чтобы можно было его носить.

Рис. 5. Такое мигающее устройство с частотой сердцебиения ночью в сельской местности может быть непредсказуемо привлекательным.

Изменение размеров схемы

В качестве первого шага для этого следует взглянуть на физические размеры всех компонентов схемы и представить, как их можно разместить в небольшом объеме. На рис. 6 показан пример трехмерного изображения компактного расположения компонентов. Тщательно проверьте эту компоновку, определив все пути соединений, и вы увидите, что все здесь выполнено в соответствии со схемой. Проблема состоит в том, что, если компоненты спаять представленным образом, то они не будут достаточно прочно зафиксированы. Все соединительные провода могут легко сгибаться, и поэтому не существует очень простого способа для монтажа схемы.

Рис. 6. Такая компоновка компонентов полностью повторяет их подключение на изображении схемы, и при этом они размещены в очень малом объеме.

Ответ состоит в том, чтобы разместить все компоненты на некоторой основе, которая является одним из тех элементов, которыми предпочитают пользоваться люди, занятые в электронике, возможно потому, что тогда монтаж выглядит более солидно, чем «макетная плата». Перфорированная плата это именно то, что нам нужно. На рис. 7 показаны компоненты, перенесенные на кусок такой платы размером всего лишь 25×10 мм.

Рис. 7. Перфорированная плата может быть использована для крепления и компоновки компонентов. Для создания работающей схемы выводы компонентов под платой припаиваются друг к другу. На рисунке в середине пунктирными линиями показано расположение выводов элементов на обратной стороне платы. На рисунке внизу представлена обратная сторона платы после переворачивания ее слева направо. Небольшие кружки показывают те места, где должны быть выполнены соединения пайкой

На центральном варианте изображения платы штриховыми линиями показано каким образом компоненты будут соединены друг с другом. Большинство выводов компонентов схемы, которые выходят на нижнюю сторону перфорированной платы, по своей длине достаточны для выполнения таких соединений.

Наконец на нижнем изображении показана перфорированная плата после ее переворота обратной стороной слева направо (следует заметить, что для изображения обратной стороны платы я использовал более темные цвета). Небольшие кружки на этом изображении показывают те места, где должны быть выполнены соединения пайкой.

Светодиод должен быть легко отсоединяем, поскольку вы можете захотеть сделать так, чтобы светодиод находился на некотором.

расстоянии от платы. Точно также должен легко отсоединяться и источник питания. К счастью, мы имеем возможность купить миниатюрные разъемы, которые устанавливаются прямо в перфорированную плату. Вы можете обратиться к одному из крупных розничных поставщиков в Интернете для приобретения таких разъемов. Некоторые производители называют их «однорядными линейками гнезд и штырьков», в то время как другие называют «однорядной многоконтактной колодкой гнезд или штырьков для установки на плату». Посмотрите на приведенный ранее и проверьте список необходимых закупок компонентов для выполнения экспериментов в данной главе.

Это достаточно компактное размещение элементов схемы, которое требует внимательной работы, исполняемой с помощью паяльника-карандаша. Поскольку отрезок перфорированной платы настолько мал, что ее будет трудно удержать, я предлагаю вам использовать миниатюрные тиски, чтобы зафиксировать в них плату, которую тем не менее можно будет легко поворачивать.

Когда выполняются такого рода проекты, я люблю устанавливать плату (с присоединенными тисками) на мягкий кусок полиуретановой губки — это тип уплотнения, который обычно используется в качестве набивки для мягких кресел. Губка защищает компоненты от повреждения, когда плата находится в перевернутом состоянии, а также помогает предотвратить перемещение платы непредсказуемым образом.

Шаг за шагом

Далее приведена последовательность изготовления и монтажа схемы на приведенной плате.

  1. Отрежьте небольшой кусок перфорированной платы от листа, на котором нет медных контактирующих дорожек. Вы можете отрезать такой кусок платы, используя пилку для ручного творчества, или попробовать сломать плату вдоль линии перфорированных отверстий, если будете при этом очень аккуратны. В качестве альтернативы следует использовать готовую к изготовлению перфорированную плату с медными контактными кружками на ней, которые однако не имеют между собой соединений. В этом проекте вы можете использовать простейшую перфорированную плату даже без медных контактных кружков. (В следующем эксперименте вы будете иметь дело с дополнительной возможностью выбора в изготовлении соединений между компонентами и медными перемычками на перфорированной плате.)
  2. Подберите все компоненты и аккуратно вставьте их через отверстия на плату, подсчитывая отверстия, чтобы убедиться, что все компоненты установлены правильно (рис. 3.61). Переверните плату и загните выводы компонентов, чтобы закрепить их таким образом на плате и создать линии соединения, которые показаны на рисунке (рис. 3.62). Если некоторые из выводов компонентов недостаточно длинные, то вы можете удлинить их, чтобы добавить дополнительный отрезок одножильного провода 22 AWG (0,64 мм). Вы можете снять с провода всю изоляцию, поскольку он будет установлен на перфорированную плату в той части, где находится пластик, т. е. изолятор.
  3. С помощью кусачек откусите лишние части выводов и провода. Летающие куски провода
    Губки ваших кусачек, сдавливая провода или выводы компонентов, создают значительное усилие, которое нарастает, а затем внезапно уменьшается до нуля, когда провод перекусывается. Это усилие может быть трансформировано в неожиданные отскакивания отрезанного куска провода или вывода. Некоторые из них являются относительно мягкими и не представляют особой опасности, но более жесткие, твердые провода могут улетать в непредсказуемом направлении с высокой скоростью и, следовательно, могут повредить ваши глаза. В этом отношении особенно опасны выводы транзисторов.
    Я думаю, что при откусывании выводов и проводов было бы неплохой идеей одевать защитные очки.
  4. Выполните все соединения паяльником-карандашом. Нужно помнить, что это схема, в которой вы всего лишь соединяете выводы друг с другом. Компоненты находятся так близко друг к другу, что у них нет возможности перемещаться вблизи места установки. Если вы используете плату с медными площадками (что в данном примере делал и я), то некоторые паяные соединения с ними будут обеспечивать нормальное крепление компонентов, не приводя к пересечению выводов друг с другом и не создавая короткое замыкание между ближайшими компонентами.
  5. Проверьте соединения путем их осмотра с помощью увеличительной лупы, а затем попробуйте их прочность тонкогубцами. Если припоя недостаточно для выполнения по-настоящему прочного соединения, то надо подогреть соединение и добавить еще припоя. Если припой создал контакт, которого в данном месте быть не должно, то следует использовать универсальный нож для того, чтобы сделать параллельные разрезы в припое, чтобы убрать небольшую часть припоя между ними.

Обычно я устанавливаю три или четыре компонента, откусываю выводы, оставляя примерно необходимую их длину, затем припаиваю выводы друг к другу, откусываю выводы окончательно, затем делают паузу, чтобы проверить прочность соединения и место его расположения. В случае последовательного припаи-вания большого количества компонентов возникает большая вероятность пропуска плохого соединения, и, если я делаю ошибку при установке какого-либо компонента, то возвращение ситуации в исходное состояние будет гораздо более проблематичным, если я уже добавил много компонентов вокруг него.

На рис. 8 и 9 показан пример реализации данного проекта, который я выполнял до того, как обрезал плату до минимального размера.

Рис. 8. Компоненты, установленные на отрезке перфорированной платы

Рис. 9. Собранная схема на плате — вид с обратной стороны. Медные контактные кружки вокруг каждого отверстия платы не являются обязательными для данного проекта. На некоторые из них попадает какое-то количество припоя, но это не имеет значения, поскольку при этом не создаются неумышленные короткие замыкания.

Завершение работы

Я всегда пользуюсь сильным освещением; это не дань роскоши, это необходимость. Купите дешевую настольную лампу, если у вас еще нет такой. Я использую флуоресцентную лампу со спектром, который близок к спектру дневного освещения, поскольку это помогает мне лучше идентифицировать цветные полоски на транзисторах. Следует помнить, что такого типа лампы излучают достаточно сильно ультрафиолетовые лучи, которые не очень хороши для хрусталиков ваших глаз. Следует избегать смотреть на лампу прямо и с близкого расстояния, и если вы наденете очки, то только они будут обеспечивать дополнительную защиту.

Вне зависимости от того, насколько у вас хорошее зрение на близком расстоянии, вам все равно для проверки понадобится рассмотреть каждое соединение с помощью увеличительной линзы. Вы будете удивлены, насколько несовершенны эти соединения. Удерживайте увеличительное стекло максимально близко вблизи вашего глаза, затем направьте его на объект, который надо изучить, а затем приближайтесь к объекту, чтобы сфокусироваться на нем.

В конце концов, вы должны закончить монтаж рабочей схемы. Вы должны вставить провода от вашего источника питания в два маленьких гнезда разъема, которые предназначены для подачи питающего напряжения, а затем установить красный светодиод в оставшихся два гнезда. Помните, что два центральных гнезда имеют отрицательный потенциал, а два наружных гнезда положительный, они расположены так, поскольку в этом случае компоненты схемы легче соединить проводами. Вы должны выполнить цветную кодировку проводов, чтобы избежать ошибок.

Итак, вы наконец собрали небольшую схему, которая генерирует световые импульсы с частотой, подобной пульсациям сердца. Или нет? Если у вас появились трудности при выполнении этой работы, то надо проверить правильность всех соединений и сравнить их со схемой. Если вы не найдете ошибки, то на схему надо подать напряжение питания, затем присоединить черный общий провод вашего мультиметра к отрицательному выводу источника питания, а затем другим измерительным щупом красного цвета проверить напряжение в разных точках схемы. При работающей схеме на каждом ее компоненте должно наблюдаться хотя бы минимальное падение напряжения. Если вы найдете обесточенное соединение (когда на разных выводах компонента имеется одинаковое значение напряжения), то может быть вы сделали плохую пайку или не выполнили ее вообще.

Наконец-то вы все сделали, что дальше? Хорошо, теперь вы можете прекратить свое пребывание в образе любителя электронных схем и заняться художественным промыслом. Вы можете попытаться придумать каким образом сделать так, чтобы это устройство можно было бы носить.
Сначала вы должны подумать об источнике питания. Поскольку вы применяли компоненты, которые использовал и я, то вам также понадобится источник с напряжением питания 9 В. Итак, требуемое напряжение питания можно получить от достаточно объемной 9-вольтовой батарейки, а как же тогда носить такое громоздкое устройство? Я думаю, что на этот вопрос имеется три ответа.

  1. Вы можете положить батарейку в карман и установить «мигалку» за пределами вашего кармана, соединив их тонким проводом под одеждой. Следует помнить, что небольшой разъем для подачи напряжения на перфорированную плату пригоден для подключения с помощью проводов 22 AWG, если они имеют одну или множество плетеных жил (как провода, идущие от разъема для батарейки 9 В), но при этом покрытых тонким слоем припоя.
  2. Вы можете установить батарейку внутри верхней части бейсболки, но с «мигалкой» на козырьке.
  3. Вы можете соединить вместе три 3-вольтовые пальчиковые батарейки в один блок, закрепив их пластиковой стяжкой. Если вы попробуете таким образом решить проблему, то это не слишком хорошее решение, поскольку придется припаивать провода к батарейке. Вам нужно будет подогревать химические реактивы внутри батарейки, что может оказаться не слишком полезным для них, а также не слишком полезным для вас, если эти реактивы закипят и батарейка взорвется. Кроме того, припой плохо скрепляется с металлическими выводами батареек.

Большинство светодиодов создают четко очерченный пучок света, который вы можете захотеть сделать более размытым для более предпочтительного внешнего вида. В качестве одного из способов можно использовать кусок акрилового пластика толщиной не менее 6,5 мм, как это показано на рис. 8. Обработка наждачной бумагой лицевой поверхности акрила с помощью шлифовальной машинки не будет оставлять заметных следов. Обработка наждачной бумагой сделает акрил более замутненным, чем прозрачным.

Рис. 8. Это поперечное сечение листа прозрачного акрилового пластика, в котором просверлено несквозное отверстие с обратной стороны. Поскольку сверло создает дно конической формы, а светодиод имеет закругленный корпус, то перед установкой светодиода в отверстие следует добавить немного прозрачного эпоксидного клея или силиконового герметика.

Высверлите полость с обратной стороны акрила сверлом, диаметр которого несколько больше диаметра светодиода. Будьте аккуратны, не следует просверливать пластик насквозь. Удалите все фрагменты и пыль из полости сжатым воздухом или промойте эту полость, если у вас нет компрессора. После того как полость полностью высушена внесите в нее немного силиконового герметика или некоторое количество прозрачного эпоксидного клея, который затвердевает в течение 5 мин. Затем вставьте светодиод, вдавив его таким образом, чтобы клей несколько выступил наружу, сделав герметичное соединение (см. рис. 8).

Попробуйте включить светодиод и, если это потребуется, дополнительно обработайте поверхность шкуркой. В заключение вы можете решить куда установить схему — на заднюю часть акрилового пластика или протянуть провод куда-либо еще.

Поскольку светодиод будет мигать примерно с частотой сердцебиения человека, во время его отдыха, то это может выглядеть, как измерение пульса, особенно, если вы установите его в середине груди или на запястье. Если вам нравится вводить людей в заблуждение, то вы можете продемонстрировать, что находитесь в отличной форме, поскольку частота вашего пульса будет оставаться постоянной даже при энергичном выполнении физических упражнений.

Чтобы сделать привлекательный внешний вид корпуса для схемы, я могу предложить варианты от заливки всей схемы эпоксидной смолой до поиска соответствующего медальона Викторианской эпохи. Я оставляю вам возможность поразмышлять над альтернативными вариантами, поскольку мы занимаемся электроникой, а не художественными промыслами.

Однако я хочу задать вам один заключительный вопрос: «как же долго будет мигать ваше устройство?»
Если вы обратитесь к следующему разд. «Важные сведения — Срок службы батарейки», то обнаружите, что обычная 9-вольто-вая батарейка должна поддерживать мигание светодиода в течение примерно 50 час.

Важные сведения

Срок службы батарейкиКаждый раз при завершении схемы, питание которой вы со­бираетесь осуществлять от батарейки, вам может понадобиться расчет вероятного срока службы батарейки. Сделать это до­статочно легко, поскольку производители указывают емкость батареек в соответствии с «ампер-часами», которые они могут выдавать. Имейте в виду следующее:

  • сокращением для ампер-часов является Ah (А-час), иногда его сокращают до AH (англ. AH — Ampere-hour). Соответ­ственно для миллиампер-часов — mAh (мА-час);
  • емкость батарейки в ампер-часах равна току в амперах, умноженному на количество часов, в течение которых бата­рейка в состоянии его поддерживать.

Таким образом теоретически 1 А-час означает, что батарейка может выдавать ток в 1 А в течение 1 часа или ток 0,1 А в течение 10 часов или 0,01 А в течение 100 часов и т. д. На практике все не так просто, как кажется, поскольку химические вещества вну­три батарейки расходуются гораздо быстрее, когда они выдают больший по величине ток, особенно, если батарейка при этом нагревается. Вы будете ограничены предельными значениями, которые определяются физическими размерами батарейки.

Например, если у вас есть маленькая батарейка на 0,5 А-час, то вы не можете ожидать получить от нее ток величиной 30 А в течение даже одной минуты. Но будете в состоянии получить 0,005 А (т. е. 5 мА) в течение 100 часов без проблем. При этом следует помнить, что напряжение, которое выдает батарейка, будет несколько больше номинального значения, когда она свежая, но по мере использования оно будет уменьшаться и в конце концов станет меньше номинального значения.

В соответствии с некоторыми данными испытаний, кото­рым я доверяю (я думаю, они несколько более реалистичны, чем оценки производителей батареек), для типичных батареек справедливы следующие цифры.

  • Типичная щелочная батарейка 9 В — емкость 0,3 А-час, при выдаче тока 100 мА.
  • Типичная щелочная батарейка размера AA на напряжение 1,5 В — емкость 2,2 А-час, при выдаче тока 100 мА.
  • Аккумуляторная никель-кадмиевая гидридная батарейка — служит примерно в два раза больше по сравнению со ще­лочной батарейкой такого же размера.
  • Литиевая батарейка — может служить примерно в три раза больше, чем щелочная батарейка.

Чарльз Платт


назад>>

Схема по сути скомбинирована из 2-х схем: «мультивибратора на транзисторах» и предыдущей схемы «плавного включения и выключения светодиода». В схеме я использовал 4 однотипных транзистора КТ315. В качестве светодиодов LED1 и LED2 использовал несколько параллельно соединенных светодиодов 2-х цветов на 3 вольта. Светодиоды были мной заказаны ранее. Длительность моргания светодиодов LED1 и LED2 зависит от значений конденсаторов С1 и С2, или резисторов R3 и R4. Соответственно время включения и выключения светодиодов зависит от значений конденсаторов С3 и С4, или резисторов R5 и R6. Данные значения я подбирал опытным путем, как и в предыдущем варианте. Уже отлаженную схему я сделал на печатной плате. Печатку можно скачать .
Данную схему я реализовал на кухне в светильнике, который потом подвесил под полочку над столом. Корпус светильника делал из оргстекла. Для сборки использовал дехлорэтан и резьбовые соединения. В нижней части корпуса насверлил отверстия под светодиоды. Для самой схемы мигания использовал светодиоды 4-х цветов: оранжевый, красный, зеленый и синий. Дополнительно добавил в светильник белые светодиоды для постоянного света. Для питания светильника использовал б/у зарядник на 5 вольт от мобильного телефона. Реализацию данного светильника привожу ниже на фото.

admin

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Наверх