Электрификация

Справочник домашнего мастера

Как сделать лопасти

Содержание

Программа для расчета лопастей из труб

Для удобства расчета лопастей из ПВХ труб создана замечательная программа в формате эксель. Данная программа создана специально для расчета лопастей из обычных канализационных труб, которые часто для этого используются в виду доступности и дешевизны. Программа взята с форума windpower-russia.ru, на момент написания статьи это последняя версия программы, так же там есть и предыдущие версии.

Скачать — Расчет лопастей ветрогенератора

В программе есть все данные и характеристики будущего винта. В желтые поля нужно вводить свои данные, такие как диаметр винта, количество лопастей, нужную быстроходность, расчетную скорость ветра и прочее. В итоге в зеленых ячейках таблицы произойдет расчет всех показателей будущего винта, таких как стартовый момент, обороты, мощность в ваттах, крутящий момент, КИЭВ и прочие. Владельцы компьютеров на windows я думаю знакомы с эксель и легко разберутся, а владельцам устройств на андройд можно скачать приложение для работы с эксель из маркета, например Kingsoft Offoce и воспользоваться встроенным офисным пакетом. Ниже скриншот.
>
Сама лопасть рассчитывается вводя данные в желтые ячейки с красными цифрами. Вводятся размеры кончика лопасти фронт и тыл, так же середины, и на радиусе 0,2R. От корня до 0,2R желтые поля, которые можно подогнать вручную под форму получившейся лопасти. Ниже скриншот ввода координат лопасти фронт и тыл.
>
Процесс работы программы таков. Сначала вводите диаметр трубы, вес трубы п/м, диаметр будущего винта, быстроходность и нужную скорость ветра, количество лопастей. А далее ниже изменяете фронт и тыл лопасти смотря на КИЭВ, мощность и обороты. В общем подгоняете винт под свой генератор. В результате ниже у вас появятся готовые координаты для нанесения на трубу. Ниже скриншот где в удобном виде все данные лопасти, его можно увидеть перейдя в таблице на вкладку «геометрия лопасти».
>
Из трубы лопасти вырезаются так, вдоль трубы чертится ровная линия, чтобы не ошибиться можно чертить литию по надписи вдоль трубы. Или трубу поставить вертикально по строительному уровню и им же отчертить вертикальную линию. Далее на этой линии сделать отметки радиуса лопасти, 20-ть точек. А далее уже координаты фронтальной части лопасти и тыльной. Фронт это та часть лопасти, которой она вращается вперед, а тыл задняя часть. Ну а дальше соединить точки и вырезать заготовку из трубы. Вырезать можно полотном по металлу вручную, или лобзиком, а некоторые даже болгаркой умудряются вырезать.

После останется вырезанные заготовки обработать, закруглить края фронтальной части лопасти, и заострить тыльную часть. Это делать нужно обязательно так как программа считает уже с учетом заостренной тыльной кромки лопастей, Заострять можно как болгаркой на шлифовальном круге, так и на наждачном станке. Ниже картинка как обрабатывать кромки лопасти.
>
Подгоняя винт под генератор особое внимание обращайте на быстроходность. Понятно что трехлопастные винты с быстроходностью Z5-6 имеют большие обороты, но пока они не выйдут на эту быстроходность, не раскрутятся, мощность очень маленькая. А если генератор слишком рано дает зарядку, то он не даст винту раскрутится и будет большой недобор мощности. Тут надо максимально соотнести мощность генератора и винта, чтобы их мощности совпадали на всем протяжении оборотов, тогда эффективность всей системы будет максимальной. Тоже касается и много-лопастных винтов, у них обычно выше стартовый момент что хорошо для генераторов с существенным залипанием, будут хорошо стартовать Но обороты небольшие из за быстроходности Z3-4, поэтому рост оборотов не такой большой и требует более тихоходного генератора.

Изготовление лопастей для ветрогенератора своими руками

Лопасти для ветрогенератора своими руками — сложный и основной элемент устройства, определяющий его технические параметры. Изготавливают их из труб ПВХ, стекловолокна, алюминия или дерева.

Устройство и принцип работы ветрогенератора

Такие технические решения востребованы в регионах, где преобладает ветреная погода, они функционируют, используя воздушный поток, в итоге образуется электрический ток. Устройства работают благодаря присутствию в конструкции лопастей, они вращаются и запускают генератор. Последний превращает кинетическую энергию ветра в электричество, ток подается к потребляющему его оборудованию и аккумуляторным блокам.

Ветряки промышленного производства и изготовленные дома своими руками могут быть использованы как в качестве ключевого, так и вспомогательного источника напряжения. В частности, непрерывно функционирующие генераторы обслуживают осветительную систему дома, отвечают за нагревание воды вне зависимости от основной электроцепи.

Если объект не соединен с централизованной электрической сетью, мощности ветряка может быть достаточно для поддержания отопительной системы, всех бытовых приборов, лампочек. Следует учитывать, что в зимние месяцы для обслуживания отопления производительность установки должна быть выше 10 кВт, в этом случае мощности будет хватать и для бытовой техники. Ветряные электростанции эксплуатируются в тандеме со стабилизаторами.

Варианты форм лопастей

При изготовлении лопастей для ветрогенератора нужно учитывать, что эффективность ветряка будет зависеть от следующих их характеристик:

  • веса,
  • формы,
  • количества,
  • размеров,
  • базового материала.

Данные параметры очень важны, если хочется сделать лопасти своими руками. Ошибочно полагать, что для увеличения количества перерабатываемой ветровой энергии достаточно увеличить число крыльев на винте. Здесь, напротив, наблюдается снижение эффективности механизма, так как каждый отдельный сегмент при движении вынужден преодолевать неизбежное сопротивление воздуха. Поэтому для выполнения одного оборота винтом с большим количеством лопастей необходимо увеличение силы ветра.

Нельзя забывать, что избыток широких крыльев нередко вызывает формирование перед винтом своеобразной «воздушной шапки» – это явление, когда воздушный поток огибает ветряк, хотя должен проходить сквозь него. Форма элементов обладает существенным значением, так как определяет скорость перемещения винта. Если в результате неправильного расчета лопастей ветрогенератора возникает плохое обтекание, появляются вихри, способные затормозить колесо.

Однолопастные устройства зарекомендовали себя как самые продуктивные, но их довольно сложно самостоятельно сконструировать и сбалансировать. При высоком КПД конструкция отличается крайней ненадежностью, поэтому для тех, кто собирает устройство своими руками, будет удобна трехлопастная модель.

В домашних условиях принято выполнять лопасти крыльчатого или парусного типа. Последние выглядят как простые широкие полосы по аналогии с ветряной мельницей. Они малоэффективны, КПД варьируется в пределах 10-12%.

Крыльчатые лопасти функционируют по принципам аэродинамики, благодаря которым осуществляется перемещение самолетов. Подобный винт вращается быстрее, его легче привести в движение. Благодаря обтеканию воздухом уменьшается сопротивление. С одного края изделие имеет характерное утолщение, напротив наблюдается пологий спуск. Здесь КПД составляет 30-35%.

Выбор вида лопасти

Вариантов или видов лопастей для горизонтальных ветряков существует немного. Причина этого кроется в самой конструкции крыльчатки — создавать сложные формы или конфигурации там попросту негде. Тем не менее, разработки наиболее удачного варианта ведутся постоянно, на сегодня можно выделить несколько видов:

  • твердолопастные крыльчатки
  • парусные

Твердые лопасти изготавливаются из различных материалов сразу в определенной форме, парусные имеют совершенно другую конструкцию. Основой является рамка, на которую натягивается плотное полотно таким образом, чтобы одна из сторон была не прикреплена к рамке. Получается лопасть треугольной формы с одной стороной (от центра к одной из вершин), не закрепленной к основе.

Поток ветра создает давление на парус и придает ему оптимальную форму для схода с плоскости, в результате чего колесо начинает вращаться. Вариант имеет преимущество в массе и весе колеса, но нуждается в постоянном наблюдении за состоянием ткани и крыльчатки в целом.

Для самостоятельного изготовления обычно используют подручные материалы. Учитывая сложный профиль лопастей, хорошим вариантом становится использование листового металла или пластиковых труб.

Из чего делают лопасти в домашних условиях

Материалы, которые подойдут для строительства ветрогенератора – это, прежде всего, пластик, легкие металлы, древесина и современное решение – стеклоткань. Главный вопрос заключается в том, сколько труда и времени вы готовы потратить на изготовление ветряка.

Канализационные трубы из поливинилхлорида

Самый популярный и широко распространенный материал для изготовления пластиковых лопастей для ветрогенератора является обыкновенная канализационная ПВХ-труба. Для большинства домашних генераторов с диаметром винта до 2 м хватит трубы 160 мм.

К преимуществам такого метода относят:

  • невысокую цену;
  • доступность в любом регионе;
  • простоту работы;
  • большое количество схем и чертежей в интернете, большой опыт использования.

Трубы бывают разными. Это известно не только тем, кто изготавливает самодельные ветряные электростанции, но всем, кто сталкивался с монтажом канализации или водопровода. Они отличаются по толщине, составу, производителю. Труба стоит недорого, поэтому не нужно пытаться еще больше удешевить свой ветряк, экономя на ПВХ-трубах.


Некачественный материал пластиковых труб может привести к тому, что лопасти треснут при первом же испытании и вся работа будет проделана впустую

Сначала нужно определиться с лекалом. Вариантов существует много, каждая форма имеет свои недостатки и преимущества. Возможно, имеет смысл сначала поэкспериментировать, прежде чем вырезать итоговый вариант.

Поскольку цена на трубы невысокая, а найти их можно в любом строительном магазине, этот материал отлично подойдет для первых шагов в моделировании лопастей. Если что-то пойдет не так, всегда можно купить еще одну трубу и попробовать сначала, кошелек от таких экспериментов не сильно пострадает.


Опытные пользователи энергии ветра заметили, что для изготовления лопастей для ветрогенератора лучше использовать оранжевые, а не серые трубы. Они лучше держат форму, не изгибаются после формирования крыла и дольше служат

Конструкторы-любители предпочитают ПВХ, так как во время испытаний сломанную лопасть можно заменить на новую, изготовленную за 15 минут прямо на месте при наличии подходящего лекала. Просто и быстро, а главное – доступно.

Алюминий

Алюминий – легкий и прочный металл. Его традиционно используют для изготовления лопастей для ветрогенераторов. Благодаря небольшому весу, если придать пластине нужную форму, аэродинамические свойства винта будут на высоте.

Основные нагрузки, которые испытывает ветряк во время вращения, направлены на изгиб и разрыв лопасти. Если пластик при такой работе быстро даст трещину и выйдет из строя, рассчитывать на алюминиевый винт можно гораздо дольше.


Однако если сравнивать алюминий и ПВХ-трубы, металлические пластины все равно будут тяжелее. При высокой скорости вращения велик риск повредить не саму лопасть, а винт в месте крепления

Еще один минус деталей из алюминия – сложность изготовления. Если ПВХ-труба имеет изгиб, который будет использован для придания аэродинамических свойств лопасти, то алюминий, как правило, берется в виде листа.

После вырезания детали по лекалу, что само по себе гораздо сложнее, чем работа с пластиком, полученную заготовку еще нужно будет прокатать и придать ей правильный изгиб. В домашних условиях и без инструмента сделать это будет не так просто.

Стекловолокно или стеклоткань

Если вы решили подойти к вопросу создания лопасти осознанно и готовы потратить на это много сил и нервов, подойдет стекловолокно. Если ранее вы не имели дела с ветрогенераторами, начинать знакомство с моделирования ветряка из стеклоткани – не лучшая идея. Все-таки этот процесс требует опыта и практических навыков.


Лопасть из нескольких слоев стеклоткани, скрепленных эпоксидным клеем, будет прочной, легкой и надежной. При большой площади поверхности деталь получается полая и практически невесомая

Для изготовления берется стеклоткань – тонкий и прочный материал, который выпускается в рулонах. Помимо стекловолокна пригодится эпоксидный клей для закрепления слоев.

Начинают работу с создания матрицы. Это такая заготовка, которая представляет собой форму для будущей детали.


Матрица может быть изготовлена из дерева: бруса, доски или бревна. Прямо из массива вырубают объемный силуэт половины лопасти. Еще вариант – форма из пластика

Сделать заготовку самостоятельно очень сложно, нужно иметь перед глазами готовую модель лопасти из дерева или другого материала, а только потом по этой модели вырезают матрицу для детали. Таких матриц нужно как минимум 2. Зато, сделав удачную форму однажды, ее можно применять многократно и соорудить таким образом не один ветряк.

Дно формы тщательно смазывают воском. Это делается для того, чтобы готовую лопасть можно было легко извлечь впоследствии. Укладывают слой стекловолокна, промазывают его эпоксидным клеем. Процесс повторяют несколько раз, пока заготовка не достигнет нужной толщины.


Затем клей должен высохнуть. Некоторые рекомендуют поместить форму в вакуумный пакет и откачать воздух. Так клей лучше проникает во все слои стеклоткани, не оставляя непропитанных участков

Когда эпоксидный клей высохнет, половину детали аккуратно вынимают из матрицы. То же делают со второй половиной. Части склеивают между собой, чтобы получилась полая объемная деталь. Легкая, прочная, правильной аэродинамической формы лопасть из стекловолокна – вершина мастерства домашнего любителя ветряных электростанций.

Ее главный минус – сложность реализации задумки и большое количество брака на первых порах, пока не будет получена идеальная матрица, а алгоритм создания не будет отточен.

Дерево

Деревянная лопасть – дедовский метод, который легко осуществим, но малоэффективен при сегодняшнем уровне потребления электричества. Сделать деталь можно из цельной доски легких пород древесины, например, сосны. Важно подобрать хорошо высушенную деревянную заготовку.


Если дерево будет сырым, в процессе высыхания винт может “повести” и он деформируется. Да и вес влажного дерева существенно выше сухого

Нужно выбрать подходящую форму, но учитывать тот факт, что деревянная лопасть будет не тонкой пластиной, как алюминиевая или пластиковая, а объемной конструкцией. Поэтому придать заготовке форму мало, нужно понимать принципы аэродинамики и представлять себе очертания лопасти во всех трех измерениях.

Придавать окончательный вид дереву придется рубанком, лучше электро. Для долговечности древесину обрабатывают антисептическим защитным лаком или краской

Главный недостаток такой конструкции – большой вес винта. Чтобы сдвинуть с места эту махину, ветер должен быть достаточно сильным, что трудноосуществимо в принципе. Однако дерево – доступный материал. Доски, подходящие для создания винта ветрогенератора, можно найти прямо у себя во дворе, не потратив ни копейки. И это главное преимущество древесины в данном случае.

КПД деревянной лопасти стремится к нулю. Как правило, время и силы, которые уходят на создание такого ветряка не стоят полученного результата, выраженного в ваттах. Однако, как учебная модель или пробный экземпляр деревянная деталь вполне имеет место быть. А еще флюгер с деревянными лопастями эффектно смотрится на участке.

Как рассчитать лопасти

Вычислить диаметр ветряка для определенной мощности можно следующим образом:

  1. Окружность пропеллера ветрогенератора с определенной мощностью, малыми оборотами и силой ветра, при которых происходит подача нужного напряжения, числом лопастей внести в квадрат.
  2. Высчитать площадь данного квадрата.
  3. Разделить площадь получившегося квадрата на мощность конструкции в ватах.
  4. Перемножить результат с требуемой мощностью в ватах.
  5. Под этот результат нужно подбирать площадь квадрата, варьируя размеры квадрата до тех пор, пока размер квадрата не достигнет четырех.
  6. В этот квадрат вписать окружность пропеллера ветрогенератора.

После этого нетрудно будет узнать другие показатели, например, диаметр.

Таким же способом можно рассчитать размеры лопастей.

Расчет максимально приемлемой формы лопастей достаточно мудреный, кустарному мастеру сложно его выполнить, поэтому можно использовать готовые шаблоны, созданные узкими специалистами.

Шаблон лопасти из ПВХ трубы 160 мм в диаметре:

Шаблон лопасти из алюминия:

Можно попробовать самостоятельно определить показатели лопастей ветряного устройства.

Быстроходность ветряного колеса являет собой соотношение круговой скорости края лопасти и скорости ветра, ее можно вычислить по формуле:

На мощность ветряного двигателя оказывают влияние диаметр колеса, форма лопастей, расположение их относительно потока воздуха, скорости ветра.

Ее можно найти по формуле:

При использовании лопастей обтекаемой формы коэффициент использования ветра не выше 0,5. При слабо обтекаемых лопастях – 0,3.

Как определить количество лопастей для ветрогенератора

Прежде всего, нужно определиться с количеством лопастей. На быстроходные, ветрогенераторы устанавливается минимальное количество лопастей 2 – 3, это позволяет максимально раскручивать ротор генератора, но устанавливать быстроходные генераторы можно только в районах с постоянными ветрами, например на берегу моря.

В условиях средней полосы страны преобладают слабые ветра, и если установить быстроходный ветряк, то он будет малоэффективным.

2 — 3 лопастный ветряк будет хорошо раскручиваться при сильном ветре, а при слабом он будет просто стоять.

На ветрогенераторы с 2 – 3 лопастями очень сильно идёт нагрузка от воздействия центробежной силы, такие ветряки способны раскручивать лопасти до скорости полёта пули, если лопасть сломается, то может отлететь и нанести травму человеку.

К тому же 3 лопастные ветряки очень сильно шумят, их не рекомендуется устанавливать возле жилых домов, при сильных порывах ветра такой ветрогенератор издаёт звук пролетающего вертолёта.

В средней полосе страны, где преобладают слабые и средние ветра практичней устанавливать низко оборотистые ветрогенераторы. Для таких генераторов оптимально использовать 5 – 6 лопастей в форме крыла. Такое количество лопастей позволяет ветряку ловить слабый поток ветра и стабильно работать на низких оборотах.

Создание лопастей поэтапно из трубы ПВХ

Рассмотрим наиболее распространенный вариант изготовления лопастей. В качестве материала используется труба ПВХ диаметром порядка 110-160 мм:

  • отрезаются куски трубы по длине лопастей
  • вдоль отрезка наносится линия, от которой в обе стороны отмеряются 22 мм. Получится 44 мм — ширина одной лопасти
  • с противоположного торца делается то же самое
  • крайние точки с одной стороны центральной линии соединяются по прямой. Со второй стороны наносится рисунок формы лопасти
  • вырезается лопасть, свободный конец аккуратно закругляется, кромки обрабатываются наждачной бумагой или напильником
  • лопасти присоединяются к ступице

Форма лопастей имеет следующее строение:

  • торцевые части одинаковы по ширине — 44 мм
  • посередине ширина лопасти составляет 55 мм
  • на расстоянии 0,15 длины ширина лопасти составляет 88 мм

Полученные точки соединяются прямой линией, затем оформляются более плавными переходами, руководствуясь полученными очертаниями. Изготавливается шаблон, по которому вырезаются все лопасти, имеющие одинаковую форму. Для присоединения к ступице необходимо просверлить пару отверстий под винты (шурупы).

Они должны на всех лопастях находиться в одинаковых точках, чтобы не нарушался баланс крыльчатки. Готовое колесо требуется тщательно отбалансировать, установив его на ось и, свободно вращая, отыскать участок с нарушениями баланса. В этом месте следует понемногу стачивать лопасть до момента полного уравновешивания крыльчатки.

При использовании стеклопластика (стекловолокна), вначале из дерева изготавливается шаблон, по которому в дальнейшем, и изготавливаются элементы лопастей. Как правило, в этом случае, они делаются полыми, при необходимости возможна установка усиливающих лонжеронов и заполнении пустот различными компонентами.

При создании шаблона, поверхность лопасти условно делится по горизонтальной оси, после чего получается шаблон нижней и шаблон верхней частей. По изготовленному основанию (шаблону), который можно назвать матрицей, изготавливаются отдельные элементы лопасти. Для этого по матрице, с использованием эпоксидной смолы и отвердителя, наносятся несколько слоев стекловолокна, которое должно затвердеть. После застывания, внутрь поверхности изготавливаемого изделия, устанавливаются лонжероны и уплотнитель (в хвостовую часть). Уплотнитель укладывается в случае необходимости, что должно быть подтверждено соответствующим расчетом или обоснованием, приведенном в технической литературе, где был взят шаблон.

Изготовленные части соединяются между собой при помощи клея, в комлевой части, монтируется хвостовик, с помощью которого лопасть крепится к валу ветрового генератора.

При выполнении работ потребуется следующий инструмент:

  • Ножовки различного типа, в зависимости от используемого материала;
  • Ножницы по металлу или ручной электрический инструмент (лобзик, «болгарка» и т.д.);
  • Маркеры и чертилки, используемые для разметки изготавливаемых деталей;
  • Абразивные материалы: наждачная бумага, шлифовальные круги для углошлифовальной машинки, напильники – используемые для обработки поверхностей.

Выполнение балансировки ветряка

Балансировка лопастей ветрогенератора поможет сделать его работу максимально эффективной. Для осуществления балансировки нужно найти помещение, где нет ветра или сквозняка. Разумеется, для ветроколеса больше 2 м в диаметре найти такое помещение будет сложно.

Лопасти собираются в готовую конструкцию и устанавливаются в рабочее положение. Ось должна располагаться строго горизонтально, по уровню. Плоскость, в которой будет вращаться винт, должна быть выставлена строго вертикально, перпендикулярно оси и уровню земли.

Винт, который не движется, нужно повернуть на 360/х градусов, где х = количество лопастей. В идеале сбалансированный ветряк не будет отклоняться ни на 1 градус, а останется неподвижным. Если лопасть повернулась под собственным весом, ее нужно немного подправить, уменьшить вес с одной стороны, устранить отклонение от оси.

Процесс повторяется до тех пор, пока винт не будет абсолютно неподвижным в любом положении. Важно, чтобы во время балансировки не было ветра. Это может исказить результаты испытаний

Также важно проконтролировать, чтобы все части вертелись строго в одной плоскости. Для проверки на расстоянии 2 мм с обеих сторон одной из лопастей устанавливают контрольные пластины. Во время движения ни одна часть винта не должна коснуться пластины.

Для эксплуатации ветрогенератора с изготовленными лопастями потребуется собрать систему, аккумулирующую полученную энергию, сохраняющую ее и передающую потребителю. Одним из компонентов системы является контроллер. О том, как сделать контроллер для ветряка, узнаете, ознакомившись с рекомендованной нами статьей.

Калькулятор расчета прогнозируемой мощности ветрогенератора

Рост цен на энергоносители заставляет многих владельцев домов задумываться над возможностью использования альтернативных источников энергии. Одним из вариантов видится использование ветрогенераторов. Источник – абсолютно легальный, так как никаких значимых ограничений по его использованию нет. И пока еще остается совершенно бесплатным – выработка электроэнергии таким способом в целях личного применения никакими налогами не облагается.

Калькулятор расчета прогнозируемой мощности ветрогенератора

Готовые ветровые энергетические установки – довольно дорогое удовольствие, поэтому домашние мастера начинают строить планы по самостоятельному их изготовлению. Но прежде чем приступать к реализации такого, признаемся, очень непростого и во многом спорного проекта, есть смысл хотя бы примерно прикинуть – какой же ожидается выход выработанной энергии. Иными словами, будет ли какая-то реальная отдача взамен затраченных средств, усилий, времени. В этом вопросе, возможно, окажет помощь предлагаемый калькулятор расчета прогнозируемой мощности ветрогенератора.

Ниже будет дан ряд пояснений по проведению расчета. Сразу оговоримся – приведенный алгоритм предназначен для оценки только осевых горизонтальных ветрогенераторов.

Пояснения по проведению расчетов

Следует правильно понимать – никакой, даже самый совершенный и напичканный современной электроникой генератор не берет энергию ниоткуда, и не способен выдать больше того показателя, который определяется скоростью ветра и размерами ветряка. Иными словами, даже в идеальных условиях можно получить только ту энергию, которая переносится ветровым потоком через определенную площадь. Понятно, что площадью выступает в данном случае площадь круга, образованного вращением лопастей горизонтального ветряка.

Но весьма значительная часть этой энергии расходуется, так сказать, бесполезно – это создание завихрений воздуха, несоврешенсво крыльчатки, потери на силы трения в механике самого ветряка, системы передачи вращательного момента и в генераторе. Это банальный нагрев механизмов, потери в целях преобразования и передачи тока и многое другое. И считается очень неплохим показателем, если на выходе остается порядка 30÷40% от исходного энергетического потенциала. А на практике получается и того меньше.

Значит, задумывая создание ветровой энергетической установки, следует оценить, какое же от неё ожидается поступление электрической энергии. Оно зависит от скорости ветра (в кубической зависимости) и диаметра ветряка (в квадратичной).

Скорость ветра, понятное дело – величина непостоянная. Но для каждой местности рассчитаны среднегодовые показатели, на которые можно ориентироваться, если составляется прогноз на некоторую перспективу (месяц, год и т.п.). Эти показатели можно подсмотреть на карте схеме, размещённой ниже, но лучше все же уточнить в местной метеорологической службе.

Карта-схема среднегодовых скоростей ветра по регионам России

Итак, если есть намётки по размерам лопастей создаваемого генератора, можно провести и расчет мощности. Формула уже заложена в алгоритм калькулятора.

  • Пользователю для начала предлагается указать скорость ветра. Некоторые пояснения на этот счет. Прогнозы выработки электроэнергии на определенный период проводятся именно по среднегодовой скорости. А вот номинальная мощность ВЭУ обычно вычисляется по так называемой расчётной скорости ветра, которая может быть в 1,5÷2 раза выше.
  • Вторым пунктом указывается радиус ротора ветрогенератора, то есть расстояние от его оси до края лопасти.

(Интересно, что от количества лопастей ничего в данном случае не зависит. Точнее, даже несколько обратная картина – если лопастей больше трех, то может стать только хуже, так как теряется скорость вращения).

  • Если известны показатели КПД самого генератора и системы передачи вращения (редуктора), то они указываются в соответствующих полях. Если таких данных нет – можно оставить без изменения по умолчанию.

Остается нажать на кнопку расчета и получить результат. При вычислении от среднегодовой скорости ветра имеется возможность представить, какое количество энергии можно будет получить за определенный период.

К великому разочарованию многих, показатели могут быть более чем скромными. Так что есть над чем подумать, прежде чем принимать какое-то решение.

Ветрогенератор – насколько реалистичны возлагаемые на него надежды?

Увы, говорить о простоте реализации такого проекта и обретении бесплатного источника энергии, который решит все проблемы — было бы большим преувеличением. Для начала следует реально оценить и приобретаемые выгоды, и неизбежные немалые затраты, и собственные возможности. Надеемся, в этом поможет публикация нашего портала «Ветрогенератор своими руками».

Гребные винты уменьшенного шага для мотора «Вихрь» — самодельный винт для подвесного лодочного мотора

Идя навстречу пожеланиям читателей, публикуем рабочие чертежи гребных винтов уменьшенного шага для подвесного мотора «Вихрь», подготовленные в ЦНИИ имени академика А. Н. Крылова. Еще раз напоминаем, что при эксплуатации моторов с этими самодельными гребными винтами совершенно необходим контроль числа оборотов коленчатого вала при помощи тахометра любого вида. Число оборотов не должно превышать номинальное — 5000 об/мин.

Винты можно отлить из алюминиевого сплава, латуни или бронзы, либо сделать сварными, приварив стальные лопасти к предварительно изготовленной на токарном станке стальной ступице. Как это сделать, достаточно подробно говорится в книгах:

— Л. М. Кривоносов «Гребной винт к твоей лодке», изд-во ДОСААФ, 1970 г.;

— Э. Э. Клосс «Моторный катер «Турист», изд-во ДОСААФ, 1960 г.;

— Л. Л. Романенко и Л. С. Щербаков «Моторная лодка», изд-во «Судостроение», 1971 г.;

— И. П. Розанов «Технология изготовления гребных винтов малых размеров», Судпромгиз, 1962 г.

Теоретический чертеж самодельного гребного винта для подвесных моторов «Вихрь» и «Вихрь-М»

увеличить, 607 КБ
Характеристики винта: вращение — правое; диаметр — 240; шаг на r = 0,7D (Hcp) — 240 и 264; число лопастей — 3; дисковое отношение θ=0,51; шаговое отношение на 0,71D (Hcp/D) — 1,0 и 1,1; мощность мотора — 20—25 л. с.; число оборотов винта 2600—3000 об/мин; материал — алюминиевый сплав.
1 — входящая кромка лопасти; 2 — выходящая кромка лопасти; 3 — линия наибольших толщин лопасти; 4 — контур боковой проекции лопасти; 5 — разрез лопасти по линии наибольших толщин; 6 — профиль спрямленного корня лопасти; 7 — ось лопасти.

Испытания комплекта винтов для «Вихря», о результатах которых рассказывалось в статье «Потерянные силы», несколько позднее продолжались на серийной мотолодке «Крым». Программу этих испытаний составили таким образом, чтобы можно было построить зависимость скорости лодки от ее нагрузки и шага винта (на «Вихрь» ставились гребные винты с шагом 240, 264 и 300 мм). Полученные результаты (построенные по ним графики приводятся в данной статье) подтверждают все сделанные ранее выводы. Хочется дополнительно отметить лишь следующее: благодаря проделанной работе с подгонкой винта на этих испытаниях удалось установить своеобразный рекорд: «Крым» выходил на глиссирование при удельной нагрузке вплоть до 35 кг/л. с., в то время как в подавляющем большинстве случаев для прогулочно-туристских мотолодок заводской постройки этот показатель не достигает и 30 кг/л. с.

Зависимость скорости мотолодки «Крым» с мотором «Вихрь» от нагрузки и шагового отношения гребных винтов

1 — винт с шагом 240; 2 — винт с шагом 264; 3 — винт с шагом 300 мм.

Многие читатели восприняли результаты уже первых проведенных ЦНИИ и редакцией испытаний как некую сенсацию; некоторые, как выяснилось, даже подозревают наличие какого-то секрета в форме винтов. Специалисты оценили результаты проще: «так оно и должно быть».

Повторяем: весь секрет заключается в необходимости согласования характеристик лодки, двигателя и винта. Важность этого доказывается приводимым графиком «упор (тяга) винта — сопротивление глиссирующей лодки».

Зависимость сопротивления глиссирующей мотолодки и тяги гребных винтов

R — кривая сопротивления мотолодки; Pс — кривая упора «согласованного» винта;
Рτ — кривая упора «тяжелого» винта; М — максимум сопротивления мотолодки («горб»).

Радиальное изменение кромочного шага лопасти.
1 — винт с шагом 240; 2 — винт с шагом 261.

На «тяжелом» винте невозможно получить упор такой величины, который был бы больше максимального значения гидродинамического сопротивления при переходе из режима плавания в режим «глиссирования» — горба сопротивления. Ясно, что лодка с таким тяжелым винтом горба сопротивления не преодолеет и сможет достичь лишь меньшей скорости Vτ, т. е. останется на режиме плавания. «Согласованный» винт позволяет лодке с тем же мотором перевалить за горб сопротивления, после чего она еще продолжает разгоняться и достигает скорости Vc на режиме глиссирования.

Естественно, следует учитывать, что понятия «согласованный» и «тяжелый» винт относительны, так как справедливы лишь для одного определенного сочетания характеристик лодки и двигателя. Винт, «согласованный» для лодки с малой нагрузкой, может оказаться «тяжелым» для той же лодки, но с большей нагрузкой; бывает и наоборот, что «тяжелый» винт при уменьшении нагрузки становится «согласованным».

Результаты, полученные при одинаковых нагрузке (водоизмещении) лодки, мощности двигателя и элементах винта, но на лодках, отличающихся по размерениям и килеватости днища, неизбежно будут различаться. Это необходимо помнить тем любителям, которые собираются изготовить новые винты, чтобы использовать результаты проведенных испытаний в своей практике.

Еще одно замечание. Гребные винты, использованные при испытаниях, представляли собой упрощенные модели, предназначенные лишь для проверки эффективности изменения (уменьшения) шага. Они имели три симметричные лопасти с сегментным профилем, постоянное распределение шага по радиусу и небольшой наклон лопастей к оси винта назад. Такая форма обеспечивала технологичность изготовления единичных экземпляров винтов — с одной стороны, и высокую устойчивость против кавитации — с другой, но к. п. д. их был даже несколько ниже, чем винтов, имеющих авиационный профиль лопастей. Именно поэтому авторы работы не сочли возможным рекомендовать их для изготовления. На основе результатов испытаний Общественным конструкторским бюро ЦНИИ имени А. Н. Крылова были спроектированы новые гребные винты, чертежи которых и приводятся в настоящей статье.

Построение шаговых угольников (размеры b1 и b2 даны на теоретическом чертеже винта).

Таблица величин для построения шаговых угольников

Винты имеют саблевидные лопасти со значительным наклоном к оси винта и переменным профилем (сегментным у концов лопастей с постепенным переходом в авиационный вблизи ступицы). Для повышения к. п. д. шаг винтов принят переменным по радиусу лопасти. Кромки лопастей имеют толщину, достаточную для обеспечения их прочности. Таким образом, можно считать, что принятая форма и характеристики рекомендуемых гребных винтов обеспечивают им более высокие тяговые характеристики, устойчивость против кавитации и необходимую прочность.

Первый отзыв об эксплуатационных качествах этих самодельных винтов получен из Ялты от владельца «Прогресса» с подвесным мотором «Вихрь-М» Ю. А. Данилевского. Изготовленный в полном соответствии с приводимым чертежом новый винт был всесторонне испытан им, после чего Ю. А. Данилевский сообщил:

«Новый винт обеспечивает мягкое трогание с места при включении реверса; при увеличении числа оборотов сразу чувствуется приемистость и сила тяги; мотор работает мягче — нет нагрузочных стуков, которые мы наблюдаем при работе со штатным винтом, «Прогресс» заметно становится более послушным, маневренным; сила этого винта заставляет его взбираться на волну высотой 0,7—1,3 м легко и быстро».

Эти испытания проводились при водоизмещении лодки 600 кг, но можно ожидать, что такие же высокие результаты будут при нагрузках «Прогресса» до 700 кг.

Интересно, что в тех же условиях — на том же «Прогрессе», с тем же мотором — были испытаны обычный штатный винт и штатный винт с уменьшенным по рекомендациям статьи «Потерянные силы» (см. ) диаметром (Н=230 мм). Как пишет Ю. А. Данилевский, «штатный винт с подрезанными лопастями показал промежуточные результаты между штатным и новым винтами».

Л. Г. Махаринский, «КиЯ» 47/1974 г.

вернуться в раздел

Поделитесь этой страницей в соц. сетях или добавьте в закладки:

добавить страницу в избранное

Однолопастной винт для ветрогенератора

Продолжение экспериментов по повышению эффективности ветрогенератора, генератор которого сделан из тракторного генератора. В этой статье небольшое описание о том как делался генератор и первый вариант этого ветрогенератора. Теперь захотелось опробовать новый однолопастной винт. Однолопастные винты не получили широкого распространения, хотя у них самый высокий коэффициент использования энергии ветра, и обороты в сравнении с трехлопастным винтом в два раза выше.

Причина этому трудность изготовления и балансировки, так-как здесь на огромных оборотах малейший дисбаланс может привести к сильнейшим вибрациям и биениям, и даже разрушению ветрогенератора. Так-же однолопастные винты имеют слабый стартовый момент, поэтому не любят генераторы имеющие залипания. Но несмотря на все минусы здесь огромный плюс однолопастный винтов, это обороты, которые в два раза выше трехлопастного винта.

Тракторный, генератор хоть и переделан под более низкие обороты, но все-же требует для выхода на полную мощность больших оборотов, а максимально возможные обороты можно получить именно с однолопастным винтом. Ниже на фото задумка уже воплощенная в железе.

Чтобы не-было вибраций при резких разворотах винта лопасть закреплена на трубке с противовесом и вся эта система балансирует как коромысло. Отклонения лопасти могут достигать 15 градусов. Чтобы лопасть не побило о мачту установлены ограничители свободного наклона лопасти. При вращении лопасть сама стремится выравниваться под влиянием центробежных сил, но при поворотах работает гироскопический эффект, который стремится отклонять винт от плоскости вращения, и чтобы разрядить нагрузки был применен такой метод крепления лопасти.
>
Ветрогенератор из тракторного генератора с новым однолопастным винтом
>
Все основные части, хвост и ветроголовка от прежнего ветрогенератора с двухлопастным винтом.
>
Крепления балки для лопасти и противовеса сварено из двух уголочков прямо на диске ременной передачи генератора. Балка держится на шпильке М6 , так-же и ограничители тоже из шпилек диаметром 6 мм.
>
Конструкция специально сделана так чтобы винт мог свободно отклоняться от оси вращения, это нужно для гашения вибраций при вращении и более мягком преодолении гироскопических сил при поворотах ветрогенератора
>
Так выглядит вся конструкция ветрогенератора и крепление однолопастного винта.
>
Противовес лопасти представляет из себя трубку на одном конце которой лопасть, а на другом приварена шпилька, на которую надеваются шайбы для регулировки веса.
>
Лопасть сделана из 110-й дюралюминиевой трубы, после вырезания раскатана чтобы уменьшить крутку и добиться нужной формы.
>
Так выглядит уже поднятый на ветер ветрогенератор с однолопастным винтом. Рама здесь правда уже от другова ветрогенератора, у нее точка крепления генератора дальше от мачты, и винт из-за этого вынесен от мачты на большее расстояние.

Главное достоинство однолопастных ветрогенераторов – высокие обороты вращения. У них вместо второй лопасти установлен противовес, мало влияющий на сопротивляемость движению воздуха, что даёт возможность использовать их для генераторов с высокими оборотами вращения, в том числе асинхронными и синхронными. А это позволяет уменьшить массу и габариты всей установки.
1-лопастный ветряк имеет быстроходность Z = 9,0, т.е. однолопастной ветряной генератор крутится почти в 2 раза быстрее трехлопастного при одинаковой скорости ветра (количество оборотов однолопастной турбины диаметром 2 метра при скорости 9 м/с 774 оборотов в минуту, а у трехлопастной — 478). Поэтому они могут работать и при более слабых ветрах. Однако стоимость тихоходного асинхронного двигателя больше из-за большего количества полюсов, и вес его выше. Поэтому часто даже выгоднее использовать готовый мотор-редуктор, а не просто один двигатель.
Кроме того шум от вращения одной лопасти при средних ветрах 4-8м/с будет в 1,5-2 раза меньше, чем у трёхлопастных аналогов, несмотря на большую скорость вращения. Это результат меньшего количества источников аэродинамического шума – один вместо трёх концов лопастей, с которых и срываются турбулентные вихри, создающие шум.
Недостатки однолопастного ветряка: из-за высокой скорости вращения велик и гироскопический эффект, что замедляет поворот при смене ветра и создает дополнительную нагрузку на лопасти, ступицу и узел поворота. Также сила удара быстроходной лопастью выше, т.е. такие ветряки опаснее. Необходима точная балансировка лопасти.

Кинетический ветрогенератор: устройство, принцип работы, применение

Современный кинетический ветрогенератор позволяет воспользоваться силой воздушных потоков, преобразовав ее в электричество. Для этой цели существуют заводские и самодельные модели устройств, которые применяют как в промышленности, так и в частных хозяйствах.

Мы расскажем о том, как устроены ветряки этого типа, познакомим с особенностями устройства и конструктивными вариантами. В предложенной нами статье приведены слабые и сильные стороны ветряной энергетической установки. Самостоятельные мастера у нас найдут полезные схемы и рекомендации по сборке.

Принцип работы ветрогенератора

В основу функционирования ветрогенератора положена трансформация кинетической энергии ветра в механическую энергию ротора, которая затем преобразуется в электроэнергию.

Принцип работы достаточно прост: вращение лопастей, закрепленных на оси устройства, приводит к круговым движениям роторгенератора, благодаря чему вырабатывается электроэнергия.

Ветроэнергетика является одной из наиболее перспективных отраслей возобновляемой энергетики. Современные конструкции позволяют экономически эффективно применять силу воздушных потоков, используя ее для выработки электричества

Получаемый нестабильный переменный ток «стекает» в контроллер, где он преобразуется в постоянное напряжение, способное зарядить батареи. Оттуда питание поступает на инвертор, где оно трансформируется в переменное напряжение с показателем 220/380 В, которое и подается потребителям.

Мощность ветрогенератора напрямую зависит от мощности потока воздуха (N), рассчитывается согласно формуле N=pSV3/2, где V – скорость ветра, S – рабочая площадь, p – плотность воздуха.

Устройство ветряного генератора

Различные варианты ветрогенераторов значительно отличаются друг от друга.

На приведенной схеме представлено внутреннее устройство классического горизонтального ветряного генератора. Такие модели наиболее часто используются как в промышленности, так и в быту

Промышленные устройства представляют собой сложную многометровую конструкцию, для установки которой требуется фундамент, в то время как бытовая модель может состоять из минимума компонентов (электродвигателя постоянного тока 3-12В, электроконденсатора 1000 мкФ 6В, кремниевого выпрямительного диода).

Типовая установка включает в себя следующие составные части:

  • генератор переменного тока (мощность зависит от скорости ветровых потоков);
  • лопасти, которые передают вращение к валу генератора (часто они дополнительно оснащены редукторами, стабилизаторами скорости вращения ротора);
  • мачта ветряка, к которой крепятся лопасти (чем выше находятся эти элементы, тем большее количество ветровой энергии они могут получить);
  • аккумуляторы, накапливающие энергию, что позволяет использовать ее при небольшом ветровом потоке или его полном отсутствии. Батарея также выполняет функцию стабилизации электрической энергии, поступившей от генератора;
  • контроллер – преобразователь переменного напряжения, полученного с генератора, в постоянное, которое применяется для заряда батареи. Управление контроллером осуществляется поворотом лопастей, что позволяет учитывать, куда движутся потоки воздуха;
  • АВР – устройство автоматического переключения, связывающее ветрогенератор с другими источниками энергии (солнечными панелями, электросетью);
  • датчик направления ветров – прибор, облегчающий лопастям поиск ветрового потока;
  • инвертор для преобразования постоянного тока из аккумуляторов в переменное напряжение, которое применяется в электрокоммуникациях.

Для более полного удовлетворения пользовательских потребностей прибор может быть снабжен различными типами инверторов:

  • приспособления с инвертормодифицированной синусоидой, выдающей квадратную синусоиду. Устройства этого типа подойдут для ТЭНов, ламп накаливания и иных приборов, нетребовательных к качеству сети;
  • инверторы трехфазного напряжения, рассчитанные для трехфазных электросетей;
  • установки с чистой синусоидой, которые производят энергию для более чувствительной техники;
  • инверторы сетевые, способные функционировать без батарей. Подобные устройства предназначены для схем, предполагающих попадание электрической энергии непосредственно в общую сеть.

При выборе моделей следует обязательно обращать внимание на разновидность инвертора.

Типы ветряных генераторов

При классификации ветротурбин могут учитываться такие характеристики как:

  • назначение;
  • конструктивные особенности;
  • число лопастей;
  • материалы, из которых они изготовлены;
  • ось вращения;
  • шаг винта.

Рассмотрим подробно две наиболее часто используемые классификации.

Классификация ветрогенераторов по назначению

Выделяют разновидности ветроустановок, отличающиеся назначением. От этого зависят и основные характеристики устройств, например, мощность.

Промышленные ветряные турбины

Такие устройства устанавливаются крупными энергетическими компаниями либо государством для снабжения электроэнергией промышленных объектов. Турбины, имеющие мощность в десятки мегаватт, обычно размещаются на ветряных участках (открытых возвышенностях, побережьях).

Ветропарки, где устанавливаются десятки ветряных турбин, разбиваются не только на земле, но и на мелководье. Получаемое электричество обычно применяется в промышленных целях

Выработанная электроэнергия, как правило, поступает прямо в сеть, при этом для стабильности и регулирования частоты вращения лопастей ветротурбины оснащаются дополнительными механизмами.

Коммерческие ветровые генераторы

Такие установки используются для получения электроэнергии на продажу или для обеспечения электричеством производств в регионах с маломощной электросетью (либо с полным ее отсутствием). Подобные ветроэлектростанции состоят из скопления электрогенераторов, которые могут иметь разную мощность.

Энергия коммерческих установок может поступать непосредственно в электрические коммуникации либо использоваться для зарядки большого массива батарей, где она скапливается и преобразуется для подачи в энергосистему.

Бытовые ветряные устройства

Агрегаты малой мощности применяются для частного использования. Согласно правилам, ветряки с мачтами высотой менее 25 метров могут устанавливаться хозяевами участков без согласования с властями, для более высоких мачт необходимо получить особое разрешение.

Ветряки слабой и средней мощности могут служить источником электрической энергии для коттеджей, дач, загородных домов, фермерских хозяйств

Бытовые ветрогенераторы подходят для зарядки аккумуляторов с напряжением 12/24/48В, энергия из которых трансформируется в напряжение 220 Вольт. Такие устройства позволяют полностью или частично решить проблему с питанием электроэнергией небольших объектов, которые располагаются вдали от централизованной электросети.

С ориентирами выбора ветрогенератора для обеспечения энергией частного дома ознакомит статья, посвященная этому интересному вопросу.

Разновидности конструкций ветряков

По конструктивным особенностям устройства также можно разделить на ряд категорий, хотя все разновидности сводятся к двум основным типам: вертикальные и горизонтальные.

Классические горизонтальные ветрогенераторы

Подобные установки (их также называют пропеллерными или крыльчатыми) обычно имеют 3-5 лопастей, установленных на горизонтальной оси. Вращаясь с высокой скоростью, такие элементы позволяют получить максимальное количество энергии (КИЭВ до 0.4).

При этом количество выработанной электроэнергии во многом зависит от высоты устройства (чем оно выше, тем больше результат).

Горизонтальный ветрогенератор использует подъемную силу, возникающую при возрастании давления в точке, где прямой воздушный поток проходит сквозь лопасти, отражаясь от этих элементов

Подобные устройства обычно устанавливаются в ветропарках, где вырабатывается энергия для промышленного и коммерческого использования, однако они подходят и для бытового применения.

Интересным решением горизонтального ветряка является модель с одной лопастью, с ее особенностями ознакомит следующая подборка фото:

Галерея изображений Фото из Однолопастная модель ветрогенератора Модернизация генератора для установки Узел крепления лопасти и противовеса Специфическая вращающаяся конструкция Жесткая фиксация генератора Противовес лопасти ветрогенератора Лопасть однолопастной модели Мачта для ветряка с одной лопастью

Вертикальные ветровые турбины

Действующим элементом подобных установок является вращающееся ветроколесо. Из-за конструктивных особенностей подобные конструкции различаются по типам («Бочка», «Савониус»).

С принципом устройства турбины вертикального генератора Савониуса ознакомит следующая фото-подборка:

Галерея изображений Фото из Вращающееся основание турбины Алюминивая лопасть ветрогенератора Крепление лопастей ветротурбины Верхняя панель неподвижной базы ветряка Стенки базы для вертикальной турбины Устройство бокса для крепления генератора Дефлектор для балансировки вращения Ветрогенератор Савониуса в собранном виде

Несмотря на низкий показатель КИЭВ (0.1-0.2), они находят достаточно широкое применение: вертикальные установки действуют на турбулентных потоках воздуха, благодаря чему их можно размещать даже в районах, где редко дуют сильные ветра.

Работа вертикальных ветрогенераторов не зависит от направления ветров. Они просты в монтаже и эксплуатации, к тому же такие устройства можно ставить близко к земле

Для повышения результативности вертикальных ветряков производители часто повышают их размерные параметры, что приводит к значительному увеличению стоимости. Поскольку подобные установки достаточно хрупки, им требуется повышенная защита от ураганов и других природных явлений.

Ветрогенераторы «Ротор Дарье»

Такие устройства относятся к категории вертикальных ветряных турбин, однако имеют выраженные отличия в конструкции. Благодаря подобным особенностям, достигается понижение шума, а также вырастает КИЭВ, который приближается к показателям горизонтальных моделей.

Предложенная в 1931 году французским авиаконструктором Жоржем Дарье турбина низкого давления с осью вращения, перпендикулярной воздушной среде, нашла широкое применение в ветроэнергетике

Недостатком подобных конструкций является низкий стартовый момент (из-за наличия всего двух лопастей устройству сложно стартовать самостоятельно). Для решения проблемы часто применяется гибрид «Савониус+Дарье».

Парусные ветровые установки

Для подобных установок может применяться принцип устройства как вертикального, так и горизонтального ветряков. Основной конструктивной особенностью является ветроколесо, покрытое множеством лопастей или парусов, при этом аэродинамический профиль у таких моделей отсутствует.

Существует множество моделей парусных ветряных генераторов, которые различаются по количеству лопастей, весу, мощности. Все эти параметры следует учитывать при выборе устройства

Несмотря на то, что парусные установки отличаются тихоходностью и небольшой эффективностью, их часто применяют в народном хозяйстве. Подобные конструкции легки в монтаже и эксплуатации, а сочетание высокого крутящего момента с низкими оборотами позволяет напрямую приводить в движение различные полезные механизмы, например, насос для выкачивания воды.

С одной из реализованных на практике моделей парусных ветряков ознакомит следующая галерея:

Галерея изображений Фото из Колесо парусного ветрогенератора Специфика механической части Мощность парусной самоделки Накопители «зеленой» энергии

Генератор для ветровой турбины

Для функционирования ветряков необходимы обычные трехфазные генераторы. Конструкция таких устройств аналогична моделям, применяемым на автомобилях, но имеет большие параметры.

В приборах для ветряных турбин предусмотрена трехфазная обмотка статора (соединение по типу «звезда»), откуда выходят три провода, идущие на контроллер, где происходит трансформация переменного напряжения в постоянное.

Ротор генератора для ветротурбины изготовляется на неодимовых магнитах: в подобных конструкциях нецелесообразно использовать электровозбуждение, поскольку катушка потребляет много энергии

Для повышения оборотов нередко применяется мультипликатор. Такое приспособление позволяет увеличить мощность действующего генератора или использовать устройство меньшего размера, что снижает стоимость установки.

Мультипликаторы чаще применяются в вертикальных ветрогенераторах, у которых процесс вращения ветроколеса осуществляется медленнее. Для горизонтальных устройств с высокой скоростью вращения лопастей мультипликаторы не требуются, что упрощает и удешевляет конструкцию.

Специфика сборки и монтажа ветрогенератора из стиральной машинки и ветроустановки из автомобильного генератора подробно изложена в рекомендуемых нами статьях.

Плюсы и минусы ветрогенератора

Рассмотрим подробно достоинства и недостатки ветротурбин, так как именно от них зависит решение приобрести ветряк или отказаться от него.

Достоинства ветряных устройств

К числу преимуществ устройств, использующих ветровую энергию, относятся:

  • Экологичность. Установки используют возобновляемый источник энергии, которым можно пользоваться постоянно, не нанося ущерба окружающей среде. Электричество, вырабатываемое ветрогенераторами заменяет энергию тепловых электростанций, уменьшая выброс парниковых газов.
  • Универсальность. Ветровые электростанции можно строить практически всюду: на равнинах, в горах, на полях, на островах и даже на мелководье. Ветровая энергия особенно ценится в удаленных местах, куда сложно протянуть привычные электрические коммуникации. Ветрогенераторы в этом случае позволяют наладить энергоснабжение объектов, обеспечивая ему независимость от случайных факторов (например, от не доставленного вовремя топлива).
  • Эффективность использования. Современные модели перерабатывают энергию даже слабых ветров – минимальный предел составляет 3,5 м/с. Подобным образом можно производить допоставку электроэнергии в централизованную сеть, а также организовать электроснабжение отдельных объектов (островных либо локальных) вне зависимости от их мощности.
  • Достойная альтернатива традиционным источникам. Стационарные ветровые электростанции могут полностью обеспечить электричеством жилой дом или даже некрупный производственный объект. В этом случае турбина будет накапливать в аккумуляторах требуемый запас электроэнергии, предназначенный для использования во время безветренных периодов.
  • Экономичность. По сравнению с традиционными источниками электрической энергии (газ, торф, каменный уголь, нефть), велотурбины позволяют значительно снизить энергозатраты. Во многих случаях постройка ветроэлектростанции обходится дешевле, нежели подключение к существующим энергосистемам.

Применение ветряков может выступать альтернативой использованию дорогостоящих дизельных генераторов, дополнительно снижая затраты на транспортировку и хранение горючего до 80%.

Усредненная мощность ветротурбины в разы отличается от показателя пиковой нагрузки. Ветрогенератор отвечает лишь за величину выработки энергии за определенный промежуток времени при среднемесячной скорости ветра, характерной для данной местности.

Для более точной оценки ветровых ресурсов можно воспользоваться специально выведенными данными (параметрами Вейбулла). Эти показатели отражают характерное для конкретной местности распределение ветров разной силы. Подобные сведения важно учитывать при разработке проектов ветропарков, мощность которых составляет десятки МВт.

Вырабатываемая ветротурбиной мощность пропорциональна утроенной скорости ветра. Следовательно, этот показатель очень мал при слабых ветровых потоках, однако при их усилении – резко возрастает. Из-за переменчивости направления ветров и их скорости при конструкции ветровой турбины необходимо предусмотреть стабилизирующие компоненты.

Правила и формулы для расчета мощности ветрогенератора , рекомендуем ознакомиться с весьма полезной информацией.

В небольших автономных системах их функцию выполняют батареи, заряд которых начинает увеличиваться, как только мощность ветрогенератора превысит показатель нагрузки.

При росте нагрузки батарея может разрядиться. Такую особенность работы важно учитывать при выборе бытового агрегата, его мощность должна совпадать с месячной или годовой нормой потребления электроэнергии

Следует отметить, что эффективному применению ветровых потоков способствует разнообразие конструкций ветрогенераторов.

Горизонтальные турбины дают высокие показатели на равнинных местах, где много ветров, тогда как вертикальные турбины лучше работают в регионах с турбулентными потоками, наблюдающимися низко от земли (в верхней части холмов, горных хребтах).

Главные недостатки ветряков

В тоже время, у ветряков есть и свои негативные стороны:

  • Величину силы ветра сложно предсказать заранее, так как она часто меняется. Из-за этого желательно продумать подстраховку, предусмотрев дублирующий источник энергии (солярные панели, подключение к электросети).
  • Вертикальные устройства подвергаются опасности разрушения лопастей винта из-за воздействия центробежных сил при вращении лопастей вокруг главной оси. Вследствие подобного эффекта важные элементы конструкции со временем деформируются и разрушаются, а механизм выходит из строя.
  • Ветряки лучше устанавливать на свободном пространстве, поскольку расположенные рядом здания могут «гасить» ветер, образуя «мертвую» воздушную зону.
  • Для сохранения избыточной энергии ветротурбин необходимо предусмотреть в конструкции использование аккумуляторов и других дополнительных приборов, служащих для преобразования полученного электричества в ток с подходящими потребительскими характеристиками.
  • При работе ветряные генераторы издают шум, который может причинять дискомфорт людям, отпугивать животных. Лопасти установок могут также стать причиной гибели подлетевших к ним птиц.
  • По мнению некоторых специалистов, ветротурбины способны ухудшать прием радио- и телевизионных передач.

К негативным моментам можно также отнести довольно высокую стоимость подобных агрегатов, однако дешевизна источника энергии во многом нивелирует этот фактор.

Схемы и способы подключения

Хотя ветроустановка может работать и автономно, значительно лучшего результата удается достичь при помощи комбинированных схем, предусматривающих сочетание ветрового устройства с солнечными батареями, централизованной электросетью, дизельными или газовыми источниками энергии.

Автономная работа. В этом случае ставится единичная установка, при помощи которой улавливается и накапливается ветровая энергия, которая затем преобразуется в необходимый потребителям электрический ток.

На схеме продемонстрирован наиболее простой способ применения ветрогенератора, который целесообразно использовать в регионах, где постоянно дуют сильные ветра

Совмещение ветрогенератора с солнечными панелями. Комбинированный вариант считается надежным и эффективным способом электроснабжения. В случае отсутствия ветра аккумулятор работает от солнечных панелей, а в пасмурную погоду и в течение ночи зарядка происходит от ветровой установки.

Идеальный вариант для частного дома или хозяйства, расположенного вдали централизованной электросети. Такая комбинированная схема позволяет использовать два вида возобновляемой энергии

Комбинированная работа ветрогенератора и электросети. Ветротурбину можно совмещать с элетрокоммуникациями.

Подобная схема типична для промышленных и коммерческих устройств. Подключение к электрокоммуникациям предусматривают также некоторые модели бытовых ветрогенераторов

При избытке произведенного электричества оно поступает в централизованную сеть, а при его недостатке имеется возможность воспользоваться электрическим током из общей энергосистемы.

Нюансы применения ветрогенераторов

В настоящее время ветряные турбины используются в различных сферах народного хозяйства. Промышленные модели разной мощности применяются нефтегазовыми, телекоммуникационными компаниями, буровыми и геолого-разведочными станциями, производственными объектами и государственными учреждениями.

Ветряк может использоваться в качестве дополнительного источника энергии в больницах и других учреждениях, чтобы обеспечить непрерывную подачу электроэнергии в аварийных ситуациях

Особо следует отметить важность применения ветряных установок для оперативного восстановления нарушенного электричества при катаклизмах и стихийных бедствиях. С этой целью ветрогенераторы часто применяются подразделениями МЧС.

Бытовые ветротурбины прекрасно подходят для организации освещения и отопления коттеджных поселков и частных домов, а также для хозяйственных целей на фермах.

При этом следует учесть некоторые моменты:

  • Устройства до 1 кВт могут дать достаточное количество электроэнергии лишь в ветряных местах. Обычно выработанной ими энергии хватает лишь на светодиодное освещение и питание мелких электронных приборов.
  • Чтобы полностью обеспечить электричеством дачу (загородный домик) понадобится ветряной генератор мощностью свыше 1 кВт. Такого показателя достаточно для питания осветительных приборов, а также компьютера и телевизора, однако его мощности недостаточно, чтобы снабдить электричеством круглосуточно работающий современный холодильник.
  • Для обеспечения энергией коттеджа понадобится ветряк мощностью 3-5 кВт, однако даже такого показателя не хватит для отопления домов. Чтобы воспользоваться подобной функцией необходим мощный вариант, начиная от 10 кВт.

При выборе модели следует учесть, что показатель мощности, указанный на устройстве, достигается лишь при максимальной скорости ветра. Так, установка в 300В будет вырабатывать указанное количество энергии лишь при скорости потоков воздуха в 10-12 м/с.

Желающим соорудить ветрогенератор собственными руками мы предлагаем следующую статью, в которой детально изложена полезная информация.

Выводы и полезное видео по теме

На представленном ниже видеоролике дается подробная информация о принципе работы и устройстве бытовой модели ветряного генератора:

Ветрогенератор – отличный источник производства электрической энергии, который особенно оценят жители отдаленных мест. Различные российские и зарубежные предприятия предлагают большой ассортимент ветряных конструкций, кроме того, бытовые модели можно сделать и своими руками.

admin

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Наверх