Электрификация

Справочник домашнего мастера

Как намотать дроссель

Катушка индуктивности как радиоэлектронный элемент, достаточно распространена. Порой не заменима, для настройки многих радиоприёмников и применяется во многих устройствах. Следует отметить, что для эксклюзивных вещей, порой не достать эксклюзивных катушек, потому необходимо знать не только устройство катушки индуктивности, и формулы её расчёта, но и уметь мастерить катушки индуктивности самостоятельно. В этой статье любой начинающий радиолюбитель найдёт для себя пару полезных советов.

Содержание

Катушка индуктивности:

По своей конструкции катушки индуктивности очень сильно разнятся, толщина провода, количество витков, способ намотки, наличие сердечника – всё это влияет на индуктивность катушки рисунок №1,2.

Рисунок №1 – Пример катушки индуктивности

В случае, когда вам необходима маленькая индуктивность, можно даже сделать её плоской рисунок№2. Например, вытравить её непосредственно на плате.

Рисунок №2 – Пример плоской катушки индуктивности

Как залить катушку индуктивности воском:

Собирая схему, в которой есть колебательный контур, настраивая радиоприёмник или передатчик (что угодно) или делая любую другую схему (наматывая, например, высоковольтные катушки). Вам необходимо регулировать расстояние между витками катушки. Когда вы настроили вашу схему, то для исключения не желательного изменения параметров катушки из-за механического смещения витков, вам достаточно просто залить катушку обыкновенным воском или парафином (если катушка не греется) рисунок №3.

Рисунок №3 – Пример залитой воском катушки

Можно заливать катушки эпоксидной смолой или силиконом – всё зависит от того в каких условиях должна работать ваша катушка индуктивности. И что находится у вас под рукой. В случае с воском (парафином), вам достаточным будет растопить его и просто дождаться его остывания предварительно опустив в него катушку индуктивности.

P.S.: Я постарался наглядно показать и описать не хитрые советы. Надеюсь, что хоть что-то вам пригодятся. Но это далеко не всё что возможно выдумать, так что дерзайте, и штудируйте сайт https://bip-mip.com/

Катушка индуктивности

Что такое катушка индуктивности

Что вы себе представляете под словом “катушка” ? Ну… это, наверное, какая-нибудь “фиговинка”, на которой намотаны нитки, леска, веревка, да что угодно! Катушка индуктивности представляет из себя точь-в-точь то же самое, но вместо нитки, лески или чего-нибудь еще там намотана обыкновенная медная проволока в изоляции.

Изоляция может быть из бесцветного лака, из ПВХ-изоляции и даже из матерчатой. Тут фишка такая, что хоть и провода в катушке индуктивности очень плотно прилегают к друг другу, они все равно изолированы друг от друга. Если будете мотать катушки индуктивности своими руками, ни в коем случае не вздумайте брать обычный медный голый провод!

Индуктивность

Любая катушка индуктивности обладает индуктивностью. Индуктивность катушки измеряется в Генри (Гн), обозначается буковкой L и замеряется с помощью LC – метра.

Что такое индуктивность? Если через провод пропустить электрический ток, то он вокруг себя создаст магнитное поле:

где

В – магнитное поле, Вб

I – сила тока, А

А давайте возьмем и намотаем в спиральку этот провод и подадим на его концы напряжение

И у нас получится вот такая картина с магнитными силовыми линиями:

Грубо говоря, чем больше линий магнитного поля пересекут площадь этого соленоида, в нашем случае площадь цилиндра, тем больше будет магнитный поток (Ф). Так как через катушку течет электрический ток, значит, через нее проходит ток с Силой тока (I), а коэффициент между магнитным потоком и силой тока называется индуктивностью и вычисляется по формуле:

С научной же точки зрения, индуктивность – это способность извлекать энергию из источника электрического тока и сохранять ее в виде магнитного поля. Если ток в катушке увеличивается, магнитное поле вокруг катушки расширяется, а если ток уменьшается , то магнитное поле сжимается.

Самоиндукция

Катушка индуктивности обладает также очень интересным свойством. При подаче на катушку постоянного напряжения, в катушке возникает на короткий промежуток времени противоположное напряжение.

Это противоположное напряжение называется ЭДС самоиндукции. Эта ЭДС зависит от значения индуктивности катушки. Поэтому, в момент подачи напряжения на катушку сила тока в течение долей секунд плавно меняет свое значение от 0 до некоторого значения, потому что напряжение, в момент подачи электрического тока, также меняет свое значение от ноля и до установившегося значения. Согласно Закону Ома:

где

I – сила тока в катушке , А

U – напряжение в катушке, В

R – сопротивление катушки, Ом

Как мы видим по формуле, напряжение меняется от нуля и до напряжения, подаваемого в катушку, следовательно и ток тоже будет меняться от нуля и до какого то значения. Сопротивление катушки для постоянного тока также постоянное.

И второй феномен в катушке индуктивности заключается в том, что если мы разомкнем цепь катушка индуктивности – источник тока, то у нас ЭДС самоиндукции будет суммироваться к напряжению, которое мы уже подали на катушку.

То есть как только мы разрываем цепь, на катушке напряжение в этот момент может быть в разы больше, чем было до размыкания цепи, а сила тока в цепи катушки будет тихонько падать, так как ЭДС самоиндукции будет поддерживать убывающее напряжение.

Сделаем первые выводы о работе катушки индуктивности при подаче на нее постоянного тока. При подаче на катушку электрического тока, сила тока будет плавно увеличиваться, а при снятии электрического тока с катушки, сила тока будет плавно убывать до нуля. Короче говоря, сила тока в катушке мгновенно измениться не может.

Типы катушек индуктивности

Катушки индуктивности делятся в основном на два класса: с магнитным и немагнитным сердечником. Снизу на фото катушка с немагнитным сердечником.

Но где у нее сердечник? Воздух – это немагнитный сердечник :-). Такие катушки также могут быть намотаны на какой-нибудь цилиндрической бумажной трубочке. Индуктивность катушек с немагнитным сердечником используется, когда индуктивность не превышает 5 миллигенри.

А вот катушки индуктивности с сердечником:

В основном используют сердечники из феррита и железных пластин. Сердечники повышают индуктивность катушек в разы. Сердечники в виде кольца (тороидальные) позволяют получить большую индуктивность, нежели просто сердечники из цилиндра.

Для катушек средней индуктивности используются ферритовые сердечники:

Катушки с большой индуктивностью делают как трансформатор с железным сердечником, но с одной обмоткой, в отличие от трансформатора.

Дроссели

Также есть особый вид катушек индуктивностей. Это так называемые дроссели. Дроссель – это катушка индуктивности, задача которой состоит в том, чтобы создать в цепи большое сопротивление для переменного тока, чтобы подавить токи высоких частот.

Постоянный ток через дроссель проходит без проблем. Почему это происходит, можете прочитать в этой статье. Обычно дроссели включаются в цепях питания усилительных устройств. Дроссели предназначены для защиты источников питания от попадания в них высокочастотных сигналов (ВЧ-сигналов). На низких частотах (НЧ) они используются в фильтрах цепей питания и обычно имеют металлические или ферритовые сердечники. Ниже на фото силовые дроссели:

Также существует еще один особый вид дросселей – это сдвоенный дроссель. Он представляет из себя две встречно намотанных катушки индуктивности. За счет встречной намотки и взаимной индукции он более эффективен. Сдвоенные дроссели получили широкое распространение в качестве входных фильтров блоков питания, а также в звуковой технике.

Опыты с катушкой

От каких факторов зависит индуктивность катушки? Давайте проведем несколько опытов. Я намотал катушку с немагнитным сердечником. Ее индуктивность настолько мала, что LC – метр мне показывает ноль.

Имеется ферритовый сердечник

Начинаю вводить катушку в сердечник на самый край

LC-метр показывает 21 микрогенри.

Ввожу катушку на середину феррита

35 микрогенри. Уже лучше.

Продолжаю вводить катушку на правый край феррита

20 микрогенри. Делаем вывод, самая большая индуктивность на цилиндрическом феррите возникает в его середине. Поэтому, если будете мотать на цилиндрике, старайтесь мотать в середине феррита. Это свойство используется для плавного изменения индуктивности в переменных катушках индуктивности:

где

1 – это каркас катушки

2 – это витки катушки

3 – сердечник, у которого сверху пазик под маленькую отвертку. Вкручивая или выкручивая сердечник, мы тем самым изменяем индуктивность катушки.

Экспериментируем дальше. Давайте попробуем сжимать и разжимать витки катушки. Для начала ставим ее в середину и начинаем сжимать витки

Индуктивность стала почти 50 микрогенри!

А давайте-ка попробуем расправим витки по всему ферриту

13 микрогенри. Делаем вывод: для максимальной индуктивности мотать катушку надо “виток к витку”.

Убавим витки катушки в два раза. Было 24 витка, стало 12.

Совсем маленькая индуктивность. Убавил количество витков в 2 раза, индуктивность уменьшилась в 10 раз. Вывод: чем меньше количество витков – тем меньше индуктивность и наоборот. Индуктивность меняется не прямолинейно виткам.

Давайте поэкспериментируем с ферритовым кольцом.

Замеряем индуктивность

15 микрогенри

Отдалим витки катушки друг от друга

Замеряем снова

Хм, также 15 микрогенри. Делаем вывод: расстояние от витка до витка не играет никакой роли в катушке индуктивности тороидального исполнения.

Мотнем побольше витков. Было 3 витка, стало 9.

Замеряем

Офигеть! Увеличил количество витков в 3 раза, а индуктивность увеличилась в 12 раз! Вывод: индуктивность меняется не прямолинейно виткам.

Если верить формулам для расчета индуктивностей, индуктивность зависит от “витков в квадрате”. Эти формулы я здесь выкладывать не буду, потому как не вижу надобности. Скажу только, что индуктивность зависит еще от таких параметров, как сердечник (из какого материала он сделан), площадь поперечного сечения сердечника, длина катушки.

Обозначение на схемах

Последовательное и параллельное соединение катушек

При последовательном соединении индуктивностей, их общая индуктивность будет равняться сумме индуктивностей.

А при параллельном соединении получаем вот так:

При соединении индуктивностей должно выполняться правило, чтобы они были пространственно разнесены на плате. Это связано с тем, что при близком расположении друг друга их магнитные поля будут влиять с друг другом, и поэтому показания индуктивностей будут неверны. Не ставьте на одну железную ось две и более тороидальных катушек. Это может привести к неправильным показаниям общей индуктивности.

Резюме

Катушка индуктивности играет в электронике очень большую роль, особенно в приемопередающей аппаратуре. На катушках индуктивности строятся также различные фильтры для электронной радиоаппаратуры, а в электротехнике ее используют также в качестве ограничителя скачка силы тока.

Ребята из Паяльника забабахали очень неплохой видос про катушку индуктивности. Советую посмотреть в обязательном порядке:

Ни одна люминесцентная газоразрядная лампа (бытовой или офисный светильник, уличный фонарь) без дросселя работать не будет. Это своеобразный гаситель или ограничитель напряжения, которое подается в колбу газоразрядной лампы. А точнее сказать, на ее электроды. В принципе, с немецкого так это слово и переводится. Но это не единственная функция данного прибора. Еще дроссель создает пусковое напряжение, которое необходимо для образования электрического разряда между электродами. Именно таким образом зажигается люминесцентный источник света. Кстати, пусковое напряжение краткосрочное, длится доли секунды. Итак, дроссель – это прибор, который отвечает и за включение лампы, и за ее нормальную работу.

Дроссель – прибор, отвечающий за нормальную работу ламп

Принцип работы

Необходимо сразу оговориться, что в основе принципа работы этого прибора лежит самоиндукция катушки. Если рассмотреть устройство дросселя, то это обычная катушка, которая работает по типу электрического трансформатора. То есть, можно смело применять в разговоре термин дроссель трансформатор. Хотя в конструкции лежит всего лишь одна обмотка.

По сути, катушка – это сердечник из стальных или ферромагнитных пластин, которые изолированы друг от друга. Это делается специально для того, чтобы не образовались токи Фуко, которые создают большие помехи. У такой катушки очень большая индуктивность. При этом она на самом деле выступает мощным сдерживающим барьером при снижении напряжения в сети, а особенно при его сильном росте.

Схема подключения

Но именно эта конструкция считается низкочастотной. Почему такое у нее название? Все дело в том, что переменный ток, который протекает в бытовых сетях – это широкий диапазон колебаний: от единицы до миллиарда герц и выше. Пределы диапазона очень велики, поэтому чисто условно колебания разделяют на три группы:

  • Низкие частоты, их еще называют звуковые, имеют диапазон колебаний от 20 Гц до 20 кГц.
  • Ультразвуковые частоты: от 20 кГц до 100 кГц.
  • Сверхвысокие частоты: свыше 100 кГц.

Так вот вышеописанная конструкция – это низкочастотный дроссель трансформатор. Что касается высокочастотных приборов, то их конструкция отличается отсутствием сердечника. Вместо них, как основа навивки медного провода, используются пластиковые каркасы или обычные резисторы. При этом сам дроссель трансформатор представляет собой секционную (многослойную) навивку.

По устройству дроссель – это обычная катушка, которая работает по типу электрического трансформатора

Дроссели очень тщательно рассчитываются по задаваемым параметрам, которые будут поддерживать работу ламп дневного света. Особенно это касается начала свечения, где необходимо разрядом пробить газовую среду. Здесь требуется высокое напряжение. После чего прибор, наоборот, становится сдерживающим устройством. Ведь для того, чтобы лампа светилась, большого напряжения не надо. Отсюда и экономичность светильников данного типа.

Сердечник для дросселя

Материал для сердечника также представлен несколькими позициями. Его выбор лежит в основе габаритов самого дросселя. К примеру, магнитный сердечник – это возможность уменьшить размеры дросселя до минимума. При этом показатели индуктивности не изменяются.

Оптимальный вариант для высокочастотных приборов – это сердечники из магнитодиэлектрических сплавов или феррита. Кстати, именно сплавы позволяют использовать сердечники данного типа практически во всех диапазонах.

Характеристики

Выбирать дроссель трансформатор надо по нескольким характеристикам, главная из которых – индуктивность (измеряется в генри Гн). Но кроме этого еще есть и другие:

  • Сопротивление. Учитывается при постоянном токе.
  • Изменение напряжения (допустимого).
  • Ток подмагничивания, применяется номинальное значение.

Разновидность дросселей

Люминесцентные лампы представлены на рынке большим ассортиментом. И у каждого вида ламп дневного света свой дроссель трансформатор. К примеру, лампа ДРЛ и ДНАТ не могут зажигаться от одного вида дросселя. Все дело в различных параметрах пуска и поддержания горения. Здесь и напряжение отличается, и сила тока.

А вот лампа МГЛ может работать и от дросселя лампы ДРЛ, и от ДНАТ. Но тут есть один момент. Яркость свечения данного источника света будет зависеть от подаваемого напряжения. Да и цветовая температура будет разной.

Внимание! Любой дроссель трансформатор по сроку эксплуатации «переживет» несколько ламп. Конечно, при оговорке, что эксплуатация светильника проводится правильно.

Разновидности дросселей

Но учитывать приходится тот факт, что лампа с годами «стареет». На вольфрамовые электроды люминесцентных ламп дневного света наносится специальная паста из щелочных металлов. Так вот эта паста постепенно испаряется, электроды оголяются, а, значит, повышается напряжение, что приводит к перегреву дросселя. Конечный результат может быть двух вариантов:

  1. Произойдет обрыв обмотки катушки, что приведет к отключению подачи напряжения на электроды.
  2. Произойдет замыкание катушки. А это подключение лампы напрямую к сети переменного тока. Лампа перегорит – это точно, а может и взорваться, что приведет к порче светильника в целом.

Поэтому совет – не стоит ждать, когда лампа сама перегорит. Есть специальный график замены, который определяет производитель, и которого необходимо строго придерживаться. Опытные электрики при проведении профилактических работ обязательно проверяют эти осветительные приборы на параметр напряжения. Если он подходит к пределу нормы, то лампу меняют еще до срока эксплуатации. Лучше заменить недорогую лампу, чем дорогой дроссель трансформатор.

Схема подключения к лампе

Добавим, что производители сегодня предлагают усовершенствованные системы защиты люминесцентных светильников. В их конструкцию добавили предохранительные автоматы, которые срабатывают при повышении напряжения внутри газоразрядного источника света.

Разделение по назначению

По сути, все дроссели делятся на две основные группы, как и лампы, в которых они устанавливаются.

  1. Однофазные. Их используют в светильниках бытовых и офисных с подключением к сети в 220 вольт.
  2. Трехфазные. Подключаются к сети 380 вольт. К ним относятся лампы ДРЛ и ДНАТ.

По месту установки эти приборы делятся также на две группы:

  1. Встраиваемые. Их еще называют открытыми. Такие дроссели устанавливают в корпус светильника, который защищает его и от влаги, и от пыли, и от ветра.
  2. Закрытые (герметичные, влагозащищенные). У этих приборов есть специальный короб, защищающий их. Такие модели можно устанавливать на улице под открытым небом.

Электронный дроссель

Электронные аналоги

Основная масса дросселей – это достаточно габаритные приборы. Чтобы уменьшить их размеры, но при этом не изменять параметров, необходимо заменить катушку индуктивности полупроводниковым стабилизатором, который, в принципе, собой представляет высокой мощности транзистор. То есть в конечном итоге получается электронный дроссель.

По сути, установленный транзистор стабилизирует скачки (колебания) напряжения, уменьшают его пульсацию. Но придется учитывать тот факт, что электронный дроссель является все-таки полупроводниковым устройством. Так что в высокочастотных приборах его использовать нет смысла.

Полезные советы

Как и многие электронные приборы, дроссели маркируются в зависимости от своих параметров. Это достаточно сложная аббревиатура, которая неопытным электрикам будет непонятна. Поэтому была введена цветовая маркировка. То есть, на приборе нанесено несколько цветных колец, которые определяют индуктивность устройства. Первых два кольца – это номинальная индуктивность, третье – это множитель, четвертое – это допуск.

Внимание! Если на дросселе всего три цветных кольца, то по умолчанию принимается, что его допуск составляет 20%.

Цветовая маркировка

Цветовая маркировка удобна, особенно для тех, кто начинает разбираться в области электрики. С ее помощью можно точно подобрать параметры устанавливаемых приборов (транзистор, электронный дроссель, резистор и так далее).

Заключение по теме

Итак, нами было проведено определение значения дросселя, его устройство, принцип работы и классификация. Как показывает практика, это устройство может работать десятилетиями, если правильно эксплуатировать сам светильник. Даже самые большие скачки напряжения дроссель прекрасно гасит. А, значит, лампа будет светить долго и без проблем.

Зачем нужен дроссель, его разновидности и характеристики

Одним из наиболее распространённых элементов, использующихся в радиоэлектронной аппаратуре, является дроссель. Эта пассивная радиодеталь имеет большое значение в обеспечении стабильности работы электрических схем. Главной ее характеристикой считается индуктивность — очень важная физическая величина. Конструкция элемента проста, но при этом он может использоваться как в цепях переменного, так и постоянного тока.

Основные понятия в электронике

Родоначальником открытия электричества считается английский физик Уильям Гилберт. В 1600 году он ввёл понятие «янтарность», что в переводе обозначает электричество. Ученым было обнаружено на опытах с янтарем, что если его потереть о шёлк, он приобретает свойства притягивать к себе другие физические тела. Так было открыто статическое электричество. Первая электрическая машина была создана немецким инженером Отто фон Герике. Агрегат выглядел в виде металлического шеста с надетым на его верхушку серным шаром.

Последующие годы ряд физиков и инженеров из различных стран исследовали свойства электричества, открывая новые явления и изобретая приборы. Наиболее выдающимися учёными, которые внесли весомый вклад в науку, считаются Гальвани, Вольт, Эстред, Ом, Фарадей, Герц, Ампер. Признавая важность их открытий, фундаментальные величины, характеризующие различные электрические явления, назывались их именами.

Итогом их экспериментов и теоретических догадок стал труд Максвелла, создавшего теорию электромагнитных явлений в 1873 году. А через двадцать лет англичанин Томсон обнаружил частицу, участвующую в образовании электричества (электрон), положение которой в атомной структуре тела после указал Резерфорд.

Так было обнаружено, что электрический заряд — это способность физических тел создавать вокруг себя особое поле, оказывающее воздействие на другие вещества. Электричество связано с магнетизмом, который влияет на положение электронов, являющихся элементарными частицами тела. Каждая такая частица обладает определённой энергией (потенциалом) и может перемещаться по телу в хаотично.

Придание же электронам направленного движения приводит к возникновению тока. Работа, затраченная на перемещение элементарной частички, называется напряжением. Если ток течёт в замкнутой цепи, то он создаёт магнитное поле, то есть силу, действующую на электроны.

Все вещества разделяются на три типа:

  • проводники — это тела, свободно пропускающие через себя ток;
  • диэлектрики — в этих телах невозможно появление свободных электронов, а значит, ток через них протекать не может;
  • полупроводники — материалы, свойство которых пропускать ток зависит от внешних факторов, например, температуры.

Характеристикой, обозначающей способность тела проводить ток, называется проводимость, а величина обратная ей — сопротивлением.

Активное сопротивление

На прохождение электрического тока в итоге оказывают влияние три физические величины: сопротивление, индуктивность и ёмкость. Каждый радиоэлемент (не исключение и дроссель) обладает ими в какой-то мере.

Активное сопротивление представляет собой величину, препятствующую прохождению тока и равную отношению разности потенциалов к силе тока (закон Ома). Его сущность объясняется тем, что в кристаллической решётке различных физических тел содержится разное число свободных носителей зарядов. Кроме этого, сама структура может быть неоднородной, то есть содержать примеси или дефекты. Электроны, перемещаясь под действием поля, сталкиваются с ними и отдают часть своей энергии кристаллам тела.

В результате таких столкновений частички теряют импульс, а сила тока уменьшается. Рассеиваемая электрическая энергия превращается в тепло. Элементом, использующим естественные свойства физического тела, является резистор.

Что же касается дросселя, то его активное сопротивление считается паразитным, вызывающим нагревание и ухудшение параметров. Зависит оно от типа материала и его физических размеров.

Определяется по формуле R = p * L / S, Ом, где:

  • p — удельное сопротивление (справочная величина), Ом*см;
  • L — длина проводника, см;
  • S — площадь поперечного сечения, см2.

Ёмкостная составляющая

Любой проводник тока в разной мере имеет свойство накапливать электрический заряд. Эта способность называется ёмкостью элемента. Для одних радиодеталей она считается вредной составляющей (в частности, для дросселя), а для других — полезной (конденсатор). Относят это понятие к реактивному сопротивлению. Его величина зависит от вида подаваемого сигнала на элемент и ёмкости материала, из которой он сделан.

Математически реактивное сопротивление описывается выражением Xc = 1/w*C, где:

  • w — циклическая частота, скалярная угловая величина, определяющаяся числом колебаний сигнала за единицу времени (2*p*f), Гц;
  • C — ёмкость элемента, Ф.

Из формулы видно, что чем больше будет ёмкость и частота тока, тем выше сопротивление элемента, а значит, имеющий большое ёмкостное сопротивление дроссель будет нагреваться. Значение ёмкости в дросселе зависит от размеров проводника и способа его укладки. При спиралевидной намотке между рядом лежащими кольцами возникает ёмкость, также влияющая на протекающий ток.

Паразитная составляющая ёмкости проявляется и в образовании собственного резонанса изделия, так как дроссель на эквивалентной схеме можно представить в виде последовательной цепочки индуктивности и конденсатора. Такое включение создаёт колебательный контур, работающий на определённой частоте. Если частота сигнала будет ниже резонансного значения, то преобладать будет индуктивная составляющая, а если выше — ёмкостная.

Поэтому существенной задачей изготовления дросселя в электронике считается увеличение собственного резонанса конструкции.

Индуктивность и самоиндукция

Электрическое поле неразрывно связано с магнитным. Там, где существует одно, неизменно появляется и второе. Индуктивность — это физическая величина, характеризующаяся накоплением энергии, но в отличие от ёмкости эта энергия является магнитной. Её величина зависит от магнитного потока, образованного силой тока, протекающего через радиоэлемент. Чем больше ток, тем сильнее магнитный поток пронизывает изделие. Интенсивность накопления элементом энергии зависит от этого потока.

Математическая формула нахождения индуктивности — L = Ф/ I, где:

  • Ф — магнитный поток, Вб;
  • I — сила тока, текущая через элемент, А.

Индуктивность измеряется в генри (Гн). Таким образом, катушка индуктивности в момент протекания через неё тока создаёт магнитный поток равный одному веберу (Вб).

Сопротивление, оказываемое индуктивностью, во многом зависит от частоты приложенного сигнала. Для его расчёта используется выражение XL = w*L. То есть для постоянного тока она равна нулю, а для переменного — зависит от его частоты. Иными словами, для высокочастотного сигнала элемент будет обладать большим сопротивлением.

Физический процесс, наблюдаемый при прохождении переменного тока через индуктивность, можно описать следующим образом: в течение первой декады сигнала (ток возрастает) магнитное поле усиленно потребляет энергию из электрической цепи, а в последней декаде (ток убывает) отдаёт её обратно, поэтому за период прохождения тока мощность не потребляется.

Но эта модель подходит к идеальному элементу, на самом же деле некоторая часть энергии превращается в тепло. То есть происходят потери, характеризующиеся добротностью Q, определяемую отношением получаемой энергии к отдаваемой.

При изменении тока, текущего через проводник в контуре, возникает электродвижущая сила индукции (ЭДСИ) — самоиндукция. Другими словами, переменный ток изменяет величину магнитного потока, который приводит в итоге к появлению ЭДСИ. Проявляется этот эффект в замедлении процессов появления и спадания тока. Амплитуда самоиндукции пропорциональна величине тока, частоте сигнала и индуктивности. Её отставание по фазе от сигнала составляет 90 градусов.

Термин «дроссель» происходит от немецкого слова drossel, что в переводе на русский язык означает «ограничитель». В электротехнике под ним понимается катушка индуктивности, обладающая большим сопротивлением току переменной частоты и практически не влияющая на постоянный ток.

По своей сути электрический дроссель — это индуктивность. Он способен накапливать энергию, получая её из магнитного поля. При воздействии на элемент напряжения в нём постепенно происходит увеличение тока, при этом если сменить полярность — ток начнёт убывать, т. е. резко изменить значение тока в дросселе невозможно.

Постепенное нарастание величины тока и его спад происходит из-за магнитного поля, которое не может мгновенно изменить своё направление. Другими словами, ток блока питания противодействует наведённому току в сердечнике изделия, поэтому в цепях с током переменой частоты он является своего рода ограничителем из-за индуктивного сопротивления.

По своей конструкции дроссель чем-то похож на трансформатор, но при этом чаще всего у него одна обмотка. А вот их принципы действия полностью отличаются. Если для трансформатора важно передавать всю энергию и гальванически развязывать цепь, то главной задачей стоящей перед дросселем является накапливание энергии в индуктивности. В то же время для трансформатора такое накопление считается паразитным процессом.

Устройство прибора

Выполняется этот элемент из проволочного вида проводника, наматываемого в виде спирали. Этот проводник может быть как многожильным, так и одножильным. Проволока может наматываться на диэлектрический каркас или использоваться без него. Если применяется основание, то оно может быть выполнено круглым, прямоугольным или квадратным сечением. Физически же дроссель состоит из одного или множества витков проводника.

При изготовлении дросселя используются следующие разновидности намотки:

  • прогрессивная — шаг витков плавно изменяется по всей длине конструкции;
  • универсальная — расстояние между витками одинаковое.

Первый тип используется при создании изделий, предназначенных для работы на высоких частотах, при этом уменьшается значение паразитной ёмкости. Такая намотка может быть однослойной или многослойной, причем даже разного диаметра. В качестве материала для изготовления проводника используется медь.

Увеличение индуктивности достигается путём добавления ферромагнитного сердечника. В зависимости от назначения устройства используют разные его виды, например, для подавления высокочастотных помех — феррит, флюкстрол или карбонил, для фильтрации звуковой частоты — пермаллой. В то же время для дросселя, работающего со сверхвысокими частотами, применяют латунь. Магнитопровод рассчитывается так, чтобы избежать режима насыщения (падения индуктивного сопротивления).

Чтобы избежать насыщения в дросселях, магнитопровод изготавливается с зазором. При изготовлении дросселя стараются обеспечить:

  • необходимую индуктивность;
  • величину магнитной индукции, исключающую насыщение;
  • способность выдерживать необходимый ток.

Для этого обычно сначала рассчитывается зазор и число витков исходя из силы тока и индуктивности, а после определяется максимально возможный диаметр проволоки. В цифровых малогабаритных устройствах дроссель изготавливается в плоском виде. Достигается это путём печатания проводниковой дорожки в виде круговой или зигзагообразной линии.

Виды и характеристики

Главной характеристикой дросселя, безусловно, является индуктивность. Но, кроме неё, существует ряд номинальных параметров, характеризующих элемент как изделие. Именно они определяют возможности использования устройства и его срок службы. Основными из них являются:

  1. Мощность — определяется типом сердечника и поперечным сечением провода. Обозначает величину сигнала, которую может выдержать дроссель. Единицей измерения служит ватт.
  2. Добротность и угол потерь — характеризуют качество устройства. Чем больше добротность и меньше угол, тем выше качество.
  3. Частота тока — f, Гц. В зависимости от неё дроссели разделяют на низкочастотные, имеющие границы колебаний 20−20 000 Гц, ультразвуковые — от 20 до 100 кГц и сверхвысокие — больше 100 кГц.
  4. Наибольшее допустимое значение тока — I, А.
  5. Сопротивление элемента в неподключенном состоянии — R, Ом.
  6. Потери в магнитопроводе — P, Вт.
  7. Вес — G, кг.

Современная промышленность изготавливает электромагнитные дроссели, отличающиеся не только по характеристикам, но и по видам. Они выпускаются цилиндрической, квадратной, прямоугольной и круглой формы. А также они различаются по типу цепи, для которой предназначены, и могут быть однофазными или трёхфазными.

Условно дроссели можно разделить на три типа:

  1. Сглаживающие. Используются для фильтрации переменной составляющей сигнала, уменьшая её значение. Такие элементы ставятся на входе или выходе выпрямительных или преобразующих части схем.
  2. Переменного тока. Ограничивают его величину при резком скачке.
  3. Насыщения. Управляют индуктивным сопротивлением за счёт периодического подмагничивания.

Маркировка и обозначения

В принципиальных схемах и технической документации дроссели обозначаются латинской буквой L, условное графическое обозначение — в виде полуокружностей. Их количество нигде не указывается, но обычно не превышает трёх штук. Жирная точка, ставящаяся в начале полуокружностей, обозначает начало витков. Если индуктивность выполняется на каркасе, сверку изображения чертится прямая линия. Для обозначения номиналов элемента используется код из букв и цифр или цветовая маркировка.

Цифры указывают на значение индуктивности, а буква — на допуск. Например, код 250 J обозначает индуктивность, равную 25 мкГн с погрешностью в пять процентов. Когда на маркировке стоит только число, то это значит, что допуск составляет 20%. Таким образом, первые две цифры обозначают числовое значение в микрогенри, а третья — множитель. Буква D ставится на высокоточных изделиях, их погрешность не превышает 0,3%.

Цветовая маркировка, в принципе, соответствует буквенно-цифровой, но только наносится в виде цветных полос. Первые две указывают на значения в микрогенри, третья — коэффициент для умножения, а четвёртая — допуск. Индуктивность дросселя, на котором изображены две оранжевые полосы, коричневая и белая, равна 33 мкГ с разрешённым отклонением в 10%.

Область применения

Отвечая на вопрос, зачем нужен дроссель, можно с уверенностью сказать, что основное его применение — это фильтры. Ни один качественный источник питания не обходится без этого простого элемента. Его применение позволяет избавиться от пульсаций напряжения, которые вызывают нестабильность в работе многих устройств — материнской платы, видео- и звуковых карт и т. п.

Сглаживание формы сигнала путём устранения его паразитной составляющей обеспечивает стабильную работу микропроцессорных блоков, особо зависящих от качества питающего их напряжения.

Кроме того, используя свойство элемента накапливать энергию, а потом её отдавать в цепь, дроссель нашёл своё применение в люминесцентных лампах. Такие осветители работают на принципе возникновения дугового разряда, поддерживающегося в парах инертного газа. Для того чтобы он возник, между электродами необходимо появление высокого пускового напряжения, способного пробить газовый диэлектрик. Благодаря дросселю такой разряд и создаётся.

Их также используют и в усовершенствованных осветительных приборах — индукционных лампах. Отличие таких светильников от люминесцентных заключается в отсутствии электродов, необходимых для зажигания. Для получения света используются три составляющие — электромагнитная индукция, разряд в газе, свечение люминофора.

Стоит отметить и ещё одно из применений дросселя — сварочный трансформатор. Здесь основное назначение радиоэлемента заключается в стабилизации тока. Сварочный дроссель, установленный в инверторе, смещает фазу между током и напряжением. Такое его использование упрощает розжиг электрода и поддерживает стабильное горение дуги.

Способность элемента создавать магнитное поле зачастую применяется в электромагнитах, отличающихся большой мощностью, а также в различных электромеханических реле, электродвигателях и даже генераторах.

Самостоятельное изготовление

Для самостоятельного изготовления дросселя необходимо правильно рассчитать его конструкцию. Для этого используется простая формула расчёта индуктивности: L=0,01*d*w 2 /(L/d+0,44), где d — диаметр основания (см), L — длина проволоки (см), w — количество витков. При этом если имеется мультиметр с возможностью изменения индуктивности, то точное количество витков можно подобрать, используя его.

Метод намотки при использовании этой формулы предполагает укладку виток к витку. Например, необходимо подобрать магнитопровод для дросселя с индуктивностью один мкГн, рассчитанный на ток I = 4A. Берется сердечник 2000 НМ типоразмера К 16 х 8 х 6. Согласно справочнику коэффициент начальной индуктивности — ALH = 1,36 мкГн, а длина магнитного пути — le= 34,84 мм. Соответственно, число витков будет N= (L/ALH)0,5= (1/1,36)0,5 = 0,86. Если принять N=1, то при заданном токе напряжённость магнитного поля в сердечнике будет равна Н= 4*1/(34,84*10−3)= 114 А/м.

Таким образом, дроссель представляет собой катушку, которая характеризуется индуктивностью. Благодаря своим свойствам он может накапливать магнитную мощность, после отдавая её в цепь в виде электрической энергии. При этом использование элемента позволяет также подавлять переменную составляющую тока в цепи.

Катушка индуктивности своими руками (дроссель)

Каждый любитель мастерить электронные приборы и поделки, не раз сталкивался с необходимостью намотать катушку индуктивности или дроссель. В схемах конечно указывают число намотки катушки и каким проводом, но что делать если указанного диаметра провода нет в наличии, а есть намного толще или тоньше??
Я расскажу вам как это сделать на моем примере.
Хотел я сделать вот эту схему Радио управление 10 команд . Намоточные данные катушек в схеме указаны ( 6 витков провода 0.4 на каркасе 2мм ) эти намоточные данные соответствуют 47nH-нано Генри, все бы нормально но провод у меня был 0.6мм. Помощь я нашел в программе Coil32.
Открываем программу

В низу мы видим что в программе можно вычислить практически любую катушку. Стоит только выбрать из списка нужную, выбираем ( однослойную катушку виток к витку)

Заходим в настройки и нажимаем Опции

В появившемся окне выбираем нГн

Возвращаемся к нашей схеме, например я вам не говорил какая индуктивность катушек и у вас есть только намоточные данные, как же нам теперь узнать какая же их индуктивность??
Для этого вставляем в окошки известные нам данные этих катушек , длину намотки подбираем до тех пор пока вычисления не совпадут с нашими данными.

И так вычисления показали что длина намотки 3.1мм при 6-и витках провода 0.4,на оправке 2мм. а индуктивность 47нГн.
Теперь ставим диаметр нашего провода 0.6мм.

Но теперь индуктивность маленькая, значит начинаем увеличивать например длину намотки, получилось 5.5мм

Вот и все, катушка готова.
Но если вы например уже вытравили платы, а размер контактов для катушки остался прежним, то есть для катушки с длиной намотки 3мм, а у вас же получилась на 5.5мм ( намного больше и впаять рядом 3 таких катушки будет проблематично)
Значит нужно нашу катушку уменьшить, ставим в окошко диаметр каркаса не 2мм, а 4мм. И наша катушка с проводом 0.6мм, уменьшается в длине с 5.5мм до 3мм и число витков 3.5, +/- 1-2 нГн роли большой не сыграет, зато мы сможем легко впаять наши индуктивности.

Вот и все, надеюсь моя статья поможет вам. В этой программе можно рассчитывать разные катушки, выбирайте из списка какая вам нужна и все у вас получится.
ПРОГРАММА Coil32 Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Расчет дросселей на резисторах МЛТ и ферритовых сердечниках

Самодельные дроссели на основе резисторов МЛТ и ферритовых сердечников 2,8мм. Изготовление дросселя, намотав проводник на резисторе МЛТ является недорогим и простым способом получения малогабаритного электронного компонента, который часто можно встретить в схемах радиопередатчиков, радиоприемников, трансиверов, телевизоров и другой радиоэлектронной техники.

Рис. 1. Самодельные дроссели на основе резисторов МЛТ.

Ниже будет представлена простая форма-калькулятор для расчета индуктивности и количества витков провода для дросселей которые изготавливаются намоткой на резисторы МЛТ-0,125, МЛТ-0,25, МЛТ-1, МЛТ-2, таким образом мы получаем дроссель без сердечника, удобным каркасом которому служит корпус высокоомного резистора.

Формула для расчета

В большинстве случаев очень точная индуктивность дросселя не является критическим фактором, поэтому дроссель без сердечника можно намотать на корпусе резистора МЛТ. Для того чтобы рассчитать необходимое количество витков можно воспользоваться формулой:

N = 32 * SQRT ( L / d )

где:

  • N — необходимое количество витков,
  • L — нужная индуктивность дросселя в мкГн,
  • d — диаметр каркаса (в данном случае каркаса резистора) в мм.

SQRT — функция «корень квадратный из числа».

Для проведения расчетов вы можете воспользоваться нашим онлайн-калькулятором:

Изготовление дросселя

Для изготовления дросселя нужно выбрать подходящий каркас — в нашем случае это резистор определенной мощности и соответственно габаритов. Ниже приведены фото отечественных и зарубежных резисторов с обозначением их мощности.

Рис. 2. Резисторы МЛТ и зарубежные резисторы по мощности.

Рис. 3. Пример намотки дросселя на резисторе МЛТ-0,5.

Для намотки дросселя подойдут резисторы с высоким сопротивлением, например: 100кОм, 200кОм и т.д. Важно чтобы сопротивление резистора было большим, иначе добротность вашего самодельного дросселя может получиться плохой.

Пример намотки равномерными слоями приведен на рисунке 3.

Для намотки можно использовать тонкий эмалированный провод (ПЭТВ) или же провод в шелковой изоляции (ПЭЛШО) диаметром 0,1-0,2мм, важно чтобы все витки намотанные таким проводом вместились на нашем каркасе из резистора.

После намотки каждый из концов провода припаивают к выводам резистора, а на катушку сверху можно капнуть немножко клея чтобы витки потом не расползались.

Дроссели с ферритовыми сердечниками 2,8мм

Также миниатюрный дроссель можно изготовить намотав провод на малогабаритный ферритовый сердечник 400Н, 600Н диаметром 2,8 мм и длиной примерно 12…14 мм. Форма для расчета дросселя на сердечнике 2,8мм приведена ниже.

Рис. 4. Самодельные дроссели на ферритовых сердечниках диаметром 2,8мм.

Используя приведенные выше формы расчетов дросселей вы без особых усилий сможете рассчитать и изготовить самодельный дроссель для вашего радиоэлектронного устройства.

Иногда можно встретить дроссель на резисторе где витки намотаны наискос (например как на рисунке 1), зачем так делают? — этот тип намотки называется Универсаль, перекрестная намотка, ее применяют для повышения добротности катушки, снижения междувитковой емкости, намотка выполняется специальным многожильным проводом (каждая жила изолирована) — Литцендратом.

Важно помнить что формулы, используемые в данных формах, являются приблизительными, они упрощены и подойдут для изготовления самодельных дросселей к аппаратуре, в которой большая точность этих компонентов не является критическим фактором.

Если вам нужно точно рассчитать индуктивность дроссель, то следует обратиться к специализированной литературе, использовать формулы из справочников, учитывая все погрешности, свойства материалов и т.д.

Литература:

  1. А. Греков — Высокочастотные дроссели. Р1984, №6.
  2. В формах использованы формулы Н. Большакова (RA3TOX).
  3. PDF (520КБ): Ручная намотка и расчет индуктивности катушек «Универсаль» — Сергей Комаров (UA3ALW)

Обозначение дросселей на схеме

В общем плане, дросселями называются детали, работа которых лежит на основе действия катушки индуктивности. В нем есть сердечник, который регулирует переменный ток. Для изображения их на схеме разработана специальная цветовая маркировка дросселей. Вообще, дроссели классифицируются на три вида, исходя из сферы своего применения – сглаживающие, дроссели, регулирующие импульсные токи, и для насыщения. Все они имеют свое собственное обозначение на схемах электронных цепей.

Дроссели также может и не иметь в своей конструкции сердечника. Вне зависимости от строения, их работа основана на принципах электромагнитного действия – индукция и свойства поля. В статье подробным образом рассмотрены вопросы об обозначении различных дросселей. На данную тему читателю предложен интересный видеоролик и дополнительный материал.

Цветная маркировка катушек индуктивности.

Катушки с регулируемой индуктивностью

В радиоприемной и радиопередающей аппаратуре нередко применяют катушки с регулируемой индуктивностью, являющиеся основным органом настройки колебательного контура в широком диапазоне частот. Часть витков такой катушки наматывают на каркасе большего диаметра, а другую часть — на каркасе меньшего диаметра. Малую катушку помещают внутрь большой и закрепляют на валике, ось которого перпендикулярна оси большой катушки, а выводы обмоток соединяют последовательно.

При повороте валика взаимное влияние катушек изменяется, а в результате изменяется и индуктивность. Такие устройства получили название вариометров. На схемах их изображают двумя символами катушек, расположенными параллельно или перпендикулярно один другому. Изменение индуктивности показывают знаком регулирования, пересекающим оба символа

Обозначение катушек на схеме.

Вариометры

В антенных контурах коротковолновых передатчиков и специальных приемников УКВ применяют вариометры с переменным числом витков. Такой вариометр состоит из цилиндрического или конического каркаса со спиральной канавкой, в которую уложен провод катушки. К выступающей над каркасом части провода прижимается контактный ролик или пружинящая щетка, которые при вращении катушки скользят по виткам и перемещаются в плоскости, параллельной образующей цилиндра или конуса.

Таким образом, в контур оказывается возможным ввести необходимое число витков, т. е. получить нужную индуктивность. В условном обозначении вариометра подобной конструкции ролик или щетку изображают в виде стрелки, острие которой касается выпуклой части полуокружности основного символа Вариометры характеризуются плавным изменением индуктивности. Для ее ступенчатого изменения, а также в некоторых других случаях у катушек делают отводы.

Материал в тему: все о переменном конденсаторе.

Магнитопроводы для катушек

Важным параметром, характеризующим качество катушек, является добротность, численно равная отношению ее индуктивного сопротивления переменному току данной частоты к сопротивлению постоянному току. Чтобы увеличить добротность, пользуются разными конструктивными приемами, но наибольший эффект дает введение в катушку магнитопровода (сердечника) из специального магнитного материала. При внесении магнитопровода в катушку силовые линии магнитного поля концентрируются в магнитопроводе, так как его сопротивление магнитному потоку значительно меньше, чем воздуха.

Маркировка катушек.

В результате магнитный поток, а следовательно, и индуктивность катушки увеличиваются в несколько раз, что позволяет уменьшить число витков, а значит, и сопротивление катушки постоянному току. Кроме того, используя магнитолроводы, удается значительно уменьшить размеры катушек и очень простым способом (перемещением магнитопровода) осуществить регулировку их индуктивности. Поскольку катушки с магнитопроводами обычно работают в цепях переменного тока (исключение — катушки электромагнитных реле и некоторые другие), применять оплошные магнитопроводы из обычных магнитных материалов нельзя.

Под действием переменного магнитного поля в сплошном магнитопроводе, который можно рассматривать как множество короткозамкнутых витков, возникают так называемые вихревые токи, которые нагревают магнитапровол, бесполезно потребляя часть энергии магнитного поля. Чтобы уменьшить эти потери, магнитопроводы катушек, работающих в диапазоне звуковых частот, набирают из отдельных тонких изолированных пластин, изготовленных из специальных электромеханических сталей или пермаллоя. В области радиочастот стальные магнитопроводы, даже набранные из очень тонких пластин, неприменимы, так как потери на вихревые тоКи в них недопустимо велики. Магнитопроводы для катушек, предназначенных для работы на радиочастотах, изготовляют из специальных материалов: маг-нитодиэлектриков и ферритов.

В магнитодиэлектриках мельчайшие частички вещества, содержащего в своем составе железо, равномерно распределены в массе какого-либо диэлектрика (бакелита, стирола, амино-пласта). Наиболее широко применяют магнитопроводы из альсифера (сплав алюминия, кремния и железа) и карбонильного железа.

Ферритовые магнитопроводы, катушки с ферритовыми сердечниками

Ферриты, получившие широкое распространение в последние три десятилетия, представляют собой твердые растворы окислов металлов или их солей, прошедшие специальную термическую обработку (обжиг). Получающееся при этом вещество — полупроводниковая керамика — обладает очень хорошими магнитными свойствами и малыми потерями даже на очень высоких частотах.

До введения ГОСТ 2.723—68 магнитопроводы из магнитодиэлектриков и ферритов обозначали на схемах одинаково—утолщенной штриховой линией.

Цвета маркировки.

Стандарт ЕСКД оставил этот символ для магнитопроводов из магнито-диэлектрика, а для ферритовых ввел обозначение, применявшееся ранее только для магнитопроводов низкочастотных дросселей и трансформаторов — сплошную жирную линию. Опасения некоторых специалистов, что одинаковые обозначения катушек с магнитопроводами из стали и феррита затруднят чтение схем не подтвердились. Дело в том, что при изучении схем обращают внимание не только на символы отдельных элементов, но и на то, как они соединены между собой в той или иной функциональной группе, какое место в цепи преобразования сигнала эти группы занимают.

И если, например, каскад радиочастотный, то катушку со сплошным магнитопроводом нельзя спутать с низкочастотным дросселем. Согласно последней редакции ГОСТ 2.723—68 (март 1983 г.) магнитопроводы катушек изображают линиями нормальной толщины. Желая показать на схеме катушку, индуктивность которой можно изменять с помощью магнитопровода, в ее условное обозначение вводят знак под-строечного регулирования. Сделать это можно двумя способами: либо пересекая этим знаком обозначения катушки и магнитопровода.

Для подстройку катушек на частотах выше 15… 20 МГц часто применяют магнитопроводы из так называемых немагнитных материалов (меди, алюминия и т. п.). Возникающие в таком магнитопроводе под действием магнитного .поля катушки вихревые токи создают свое поле, противодействующее основному, в результате чего индуктивность катушки уменьшается. Немагнитный магнитопровод-подстроечник обозначают так же, как и ферритовый, но рядом указывают химический символ металла, из которого он изготовлен (в обозначении катушки, показанном на рис. 6,в, изображен подстроечник, изготовленный из меди).

Материал в тему: устройство подстроечного резистора.

Цветовая маркировка дросселей

В данной статье речь пойдет об определении параметров дросселей по таблице цветовой маркировке дросселей. Цветовая маркировка дросселей практически совпадает с цветовой маркировкой индуктивностей. Структура маркировка дросселей следующая:

  • первые две метки (полосы или точки) указывают на значение номинальной индуктивности в микрогенри (мкГн);
  • третья метка – множитель;
  • четвертая метка – допуск.

Наиболее часто для маркировки дросселей используют 4 или 3 цветные полосы или точки. В случае использования маркировки дросселей с тремя метками по умолчанию подразумевается 20% допуск. Рассмотрим на примерах как определяются основные параметры дросселей.

Цветовая маркировка дросселей.

Обозначение, параметры и разновидности катушек индуктивности

Одним из самых известных и необходимых элементов аналоговых радиотехнических схем является катушка индуктивности. В цифровых электронных схемах индуктивные элементы практически потеряли свою актуальность и применяются только в устройствах питания как сглаживающие фильтры. Катушки индуктивности на принципиальных схемах обозначаются латинской буквой “L” и имеют следующее изображение. Разновидностей катушек индуктивности существуют десятки. Они бывают высокочастотные, низкочастотные, с подстроечными сердечниками и без них. Бывают катушки с отводами, катушки, рассчитанные на большие напряжения. Вот так, например, выглядят бескаркасные катушки. Катушки для СВЧ аппаратуры называются микрополосковыми линиями.

Они даже внешне не похожи на катушки. С катушками индуктивности связан такой эффект как резонанс и гениальный Никола Тесла получал на резонансных трансформаторах миллионы вольт. Основной параметр катушки это её индуктивность. Величина индуктивности измеряется в Генри (Гн, англ. – «H»). Это достаточно большая величина и поэтому на практике применяют меньшие значения (мГн, mH – миллигенри и мкГн, μH– микрогенри) соответственно 10 -3 и 10 -6 Генри. Величина индуктивности катушки указывается рядом с её условным изображением (например, 100 μH). Чтобы не запутаться в микрогенри и миллигенри, советую узнать, что такое сокращённая запись численных величин.

Маркировка цветная.

Многие факторы влияют на индуктивность катушки. Это и диаметр провода, и число витков, а на высоких частотах, когда применяют бескаркасные катушки с небольшим числом витков, то индуктивность изменяют, сближая или раздвигая соседние витки. Часто для увеличения индуктивности внутрь каркаса вводят сердечник из ферромагнетика, а для уменьшения индуктивности сердечник должен быть латунным. То есть можно получить нужную индуктивность не увеличением числа витков, что ведёт к увеличению сопротивления, а использовать катушку с меньшим числом витков, но использовать ферритовый сердечник. Катушка индуктивности с сердечником изображается на схемах следующим образом.

В реальности катушка с сердечником может выглядеть так. Также можно встретить катушки индуктивности с подстроечным сердечником. Изображаются они вот так. Катушка с подстроечным сердечником вживую выглядит так. Такая катушка, как правило, имеет сердечник, положение которого можно регулировать в небольших пределах. При этом величина индуктивности также меняется. Подстроечные катушки индуктивности применяются в устройствах, где требуется одноразовая подстройка. В дальнейшем индуктивность не регулируют. Наряду с подстроечными катушками можно встретить и катушки с регулируемой индуктивностью. На схемах такие катушки обозначаются вот так. В отличие от подстроечных катушек, регулируемые катушки индуктивности допускают многократную регулировку положения сердечника, а, следовательно, и индуктивности. Ещё один параметр, который встречается достаточно часто это добротность контура.

Под добротностью понимается отношение между реактивным и активным сопротивлением катушки индуктивности. Добротность обычно бывает в пределах 15 – 350. На основе катушки индуктивности и конденсатора выполнен самый необходимый узел радиотехнических устройств, колебательный контур. На схеме изображён входной контур простого радиоприёмника рассчитанного на работу в диапазонах средних и длинных волн. В настоящее время в этих диапазонах станций практически нет. Катушка индуктивности L1 имеет достаточно большое число витков, чтобы перекрыть диапазон по максимуму. Для улучшения приёма к первой обмотке L1 подключается внешняя антенна. Это может быть простой кусок проволоки длиной в пределах двух метров.

Благодаря большому числу витков в индуктивности L1 присутствует целый спектр частот и как минимум пять — шесть работающих радиостанций. Две индуктивности L1 и L2 намотанные на одном каркасе представляют собой высокочастотный трансформатор. Для того чтобы выделить на катушке индуктивности L2 станцию, работающую, допустим на частоте 650 КГц необходимо с помощью переменного конденсатора C1 настроить колебательный контур на данную частоту. После этого выделенный сигнал можно подавать на базу транзистора усилителя высокой частоты. Это одно из применений катушки индуктивности. Точно на таком же принципе построены выходные каскады радио- и телевизионных передатчиков только наоборот. Антенна не принимает слабый сигнал, а отдаёт в пространство ЭДС.

Обозначение катушек индуктивности.

Более подробно о маркировки дросселей можно узнать прочитав статью Маркировка. Если у вас остались вопросы, можно задать их в комментариях на сайте. Также в нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессионалов.

Чтобы подписаться на группу, вам необходимо будет перейти по следующей ссылке: https://vк.coм/еlеctroinfonеt. В завершение статьи хочу выразить благодарность источникам, откуда мы черпали информацию:

А.Кузьменко, RV4LK
«Радио-дизайн» №11

Анодный дроссель

В схеме лампового усилителя мощности с параллельным питанием анодный дроссель играет чрезвычайно важную роль. Судите сами. К нему приложено все ВЧ напряжение, он подключен параллельно к катушкам П-контура и, соответственно, уменьшает их индуктивность и добротность, а также увеличивает начальную емкость «анодного» конденсатора П-контура.

Кроме этого, дроссель не должен иметь резонансов на рабочих частотах — любительских диапазонах. Он должен обладать высоким сопротивлением на рабочих частотах и иметь малую собственную емкость. Очень часто неудовлетворительная работа усилителя, особенно, на ВЧ диапазонах, связана с паразитными резонансами анодного дросселя.

Из вышесказанного видно, какими особенностями должен обладать всего лишь один из элементов усилителя мощности — анодный дроссель.

Прежде всего, чтобы удовлетворить всем перечисленным характеристикам, надо понять какое важное значение имеет длина провода, которым наматывается дроссель. Ни в коем случае нельзя использовать даже проверенные данные по числу витков и применять их с каркасом другого диаметра. Основной подход при выборе длины провода — она не должна быть кратной полуволне на любом из используемых рабочих диапазонов. Существует несколько вариантов изготовления анодного дросселя. Приведем два из них, наиболее часто встречающихся в радиолюбительской практике.
Первый вариант.

Понятно, что, работая с высокочастотными напряжениями, потребуется каркас для намотки анодного дросселя из соответствующего материала — радиофарфора, фторопласта и т.п. Имея в своем распоряжении подходящий каркас, можно воспользоваться данными анодного дросселя от любой известной и проверенной конструкции и обязательно, зная диаметр его каркаса и число витков, определить длину провода. Затем проверить полученное значение на соответствие неравенства длины провода ln/2 для каждого диапазона. Если все в порядке и длина провода подходит, следует пересчитать количество витков по следующей формуле
Wd2= Wd1 d1/d2 , гдe
Wd1 — число витков дросселя диаметром d1;
Wd2 — число витков дросселя диаметром d2;
d1 — диаметр каркаса дросселя из описания;
d2 — диаметр имеющегося каркаса.

Не менее важно знать диаметр провода для намотки. Его можно определить из соотношения
D = 0,46 sqrt (Ia) , где
la — максимальный ток анода (постоянная составляющая).
Второй вариант.

Предлагаю, проверенную на практике, конструкцию анодного дросселя. Его можно порекомендовать для использования в усилителях мощности с максимальным анодным током до 1 А, рис.1.

Дроссель содержит пять секций, намотанных виток к витку, проводом ПЭВ-2 0,41 мм на фарфоровом каркасе диаметром 19 мм. Вывод секции с максимальным количеством витков подсоединяется к источнику анодного напряжения и блокировочному конденсатору Cбл, а другой вывод (секция с наименьшим числом витков) — к аноду лампы. Зазор между секциями выбирается от 3 до 6 мм (лучше 6) и его длина зависит от имеющегося каркаса.

Дроссель хорошо работает на основных коротковолновых диапазонах- На WARC диапазонах желательно проверить его на отсутствие паразитных резонансов. Простейший способ проверки можно осуществить с помощью неоновой лампочки. В рабочем режиме под нагрузкой (не обязательно на полной мощности) следует поднести неоновую лампочку к «горячему» концу дросселя (у анода лампы). Она должна очень ярко засветиться и по мере продвижения к концу дросселя яркость свечения должна плавно уменьшаться без ярких вспышек и полностью прекратиться у «холодного» конца дросселя (возле блокировочного конденсатора). Яркие вспышки свидетельствуют о наличии паразитных резонансов. Если это условие выполняется, значит анодный дроссель пригоден для работы в Вашем усилителе.

Здесь рассмотрен, так называемый, секционированный тонкий анодный дроссель. К ним относятся дроссели, намотанные на каркасах диаметром 16 … 20 мм. Но существуют еще и «толстые» дроссели, каркасы которых имеют диаметр от 25 до 30 мм и более. Эти дроссели имеют собственные особенности и используют их, как правило, в промышленной аппаратуре большой мощности.

А. Кузьменко, г. Ульяновск. Анодный дроссель — за и против

А. КУЗЬМЕНКО (RV4LK),

г. Ульяновск.

АНОДНЫЙ ДРОССЕЛЬ ЗА И ПРОТИВ

В схеме усилителя мощности с параллельным питанием (рис.1) анодный дроссель ифает чрезвычайно важную роль.

Судите сами — к нему приложено выходное ВЧ-напряжение, т. к. он подключен по ВЧ параллельно П-контуру, и, соответственно, уменьшает индуктивность и добротность его катушки, а также увеличивает начальную емкость «анодного» конденсатора за счет собственной межвитковой емкости. Кроме того, дроссель не должен иметь последовательных резонансов на рабочих частотах любительских диапазонов. Желательно, чтобы собственная резонансная частота дросселя была в 2…3 раза выше рабочей:

(1)

Очень часто неудовлетворительная работа усилителя, особенно на ВЧ-диапазонах, связана с паразитными резонансами анодного дросселя. Дроссель также должен иметь большое реактивное (желательно индуктивное) сопротивление и высокую добротность, т. к. он шунтирует П-контур выходного каскада. Индуктивность дросселя должна быть достаточно большой:

(2)

где Lк — индуктивность катушки П-контура.

Реактивное (индуктивное) сопротивление дросселя:

(3)

где f— в мегагерцах, L — в микрогенри.

Но формула (3) применима только при расчетах в диапазонах 160 и 80 м, а на остальных диапазонах длина провода, которым намотан дроссель (не путать с длиной намотки!), становится соизмеримой с длиной волны, и формула становится неприменимой.

На этих диапазонах (40…10 м) реактивное сопротивление дросселя вычисляется как сопротивление короткозам-кнутой длинной линии:

(4)

где Лямбда — длина волны, на которой работает усилитель, м;

Lдр — индуктивность дросселя, мкГн;

Со — собственная (паразитная межвитковая) емкость дросселя, пФ;

lдр — длина провода, которым намотан дроссель, м.

Из формулы (4) видно, почему должно выполняться условие:

(5)

т. е. дроссель работает как полуволновый повторитель, сопротивление нагрузки лампы практически равно нулю — присутствует режим короткого замыкания по ВЧ. Видно, что величину Z в формуле (4) определяют два сомножителя:

Рассмотрим вначале сомножитель, стоящий под знаком функции тангенса. Очевидно, необходимо стремиться к тому, чтобы эти сомножители были максимально большими:

Т. е. в идеале на каждом диапазоне необходимо применять отдельный дроссель, но число любительских КВ-диапазонов — 9, а 9 дросселей — это многовато, к тому же, их требуется коммутировать вместе с элементами П-контура. Удовлетворительную работу дроссель может обеспечить только в двух смежных диапазонах, максимум, в трех.

При помощи компьютерного анализа была найдена оптимальная длина провода дросселя, при котором Zдр имеет максимальное значение на всех девяти диапазонах:

lдр= 12,81Зм.

Z160 = 0,55*К.

Z80 = 1,45*K,

Z40=-2,98*K,

Z30= 0,4531*К,

Z20= 0,7985*К,

Z16=-12,53*K,

Z15= -0,675*K,

Z12=0,4534*K,

Z10 = 14,67*K,

где

т. е. неравенство Z > I0.453I*K должно выполняться на всех диапазонах.

Рассмотрим подробнее влияние параметров дросселя на сомножитель К.

Величина емкости Со лежит в пределах от 5 до 15 пФ (примем ее равной 10 пФ), а индуктивность 1др рассчитывается по формуле:

(6)

где Пи = 3,14;

D — диаметр каркаса, см;

lн — длина намотки дросселя, см;

lпр — длина провода дросселя, м;

d — диаметр провода, мм;

а = 1,12 — коэффициент неплотности намотки.

Итак:

Пустьd=0,4мм, lпр= 12,813м, О=2см,

Следовательно,

1др = 2,8(12,813-2)/0,4 =179,38 мкГн,

Если Со min = 5пф.

Реактивное сопротивление анодного дросселя должно быть в 3…4 раза выше Roe лампы:

Делаем вывод, что схему с параллельным питанием можно применять только при:

(8)

В случае большого Roe (Roe > 1 кОм), необходимо применять схему с последовательным питанием (рис.2). Частота собственного последовательного резонанса дросселя равна:

(9)

В нашем случае:

что явно неудовлетворительно. Необходимо изменить емкость Сo, что достигается изменением конструкции дросселя (секционированием обмоток, как показано на рис.3) и изменением его расположения относительно металлических частей конструкции (шасси, перегородки, стенки корпуса и т. д.).

Однако lпр = 12,813 м должна остаться неизменной.

Рассмотрим влияние анодного дросселя на параметры П-контура. Ранее указывалось, что дроссель и П-контур включены по ВЧ параллельно, поэтому индуктивность катушки П-контура L п-к уменьшается, и эквивалентная индуктивность:

(10)

Например,

(11)

Например, Qn. K =250, О. др=30 (как правило, Одр = 30…50). Тогда

что меньше исходной на 42,4%, и, кроме того, заметно ухудшается коэффициент полезного действия П-контура:

вместо обычных 96%, что существенно при больших подводимых мощностях (QHarp — нагруженная добротность П-контура, С хх — ненагруженная добротность П-контура).

При мощностях до 50 Вт анодный дроссель можно выполнить на ферритовом стержне от магнитной антенны диаметром 10…12 мм. Поверх стержня наматывается несколько слоев из фторопластовой пленки таким образом, чтобы диаметр каркаса увеличился на 10… 15%. Длину провода (1пр) можно взять равной 8,8 м, а за счет увеличения отношения

такой дроссель можно применить в каскадах с Roe = 2,5…3 кОм, например, в усилителе на лампе ГУ-19. При больших мощностях такие дроссели следует применять с осторожностью из-за возможного подмагничивания сердечника анодным током. Это явление может вызывать изменение индуктивности дросселя и приводить к нелинейным искажениям выходного сигнала. Побочным фактором может стать появление помех приему телевидения (TVI).

Поговорим о конструктивном исполнении анодного дросселя. Наиболее подходящий материал для него—фторопласт-4. Его диэлектрическая проницаемость равна 2 (е = 2). У радиокерамики, стеклотекстолита Е = 6, что увеличивает межвитковую емкость дросселя. При сильном нагреве фторопласт может деформироваться, поэтому дроссель, изготовленный из него, необходимо армировать стержнем из текстолита. Количество витков W дросселя рассчитывается по формуле:

(12)

например, при D=2 CM, d = 0,046 см и lпр = 12,81 Зм

Дроссель лучше всего выполнить секционированным, т. к. это уменьшает его собственную емкость С0. Применять более 7 секций нецелесообразно, т. к. величина С0 снижается незначительно. Как правило, число секций берется равным 4…6..

Для намотки лучше применять провод ПЭЛШО, или вести намотку с шагом для уменьшения межвитковой емкости. Секционированный дроссель имеет преимущество еще и в том, что если 2-3 секции имеют паразитный резонанс на рабочей частоте, остальные продолжают выполнять свои функции.

Если надо пересчитать число витков для другого диаметра каркаса (D2), это можно сделать, используя следующие выражения:

(13)

(14),

где D1 — известный диаметр каркаса.

Простейшим способом проверки работы анодного дросселя является исследование при помощи неоновой лампочки. В рабочем режиме усилителя мощности (под нагрузкой, но не обязательно на полной мощности) следует поднести неоновую лампочку к «горячему» концу дросселя (у анода лампы). Она должна очень ярко засветиться, и по мере продвижения к «холодному» концу дросселя яркость свечения должна плавно уменьшаться без ярких вспышек, и полностью прекратить свечение около блокировочного конденсатора. Яркие вспышки свидетельствуют о наличии паразитных резонансов. Проверку необходимо произвести на всех диапазонах. Если паразитные резонансы отсутствуют в пределах любительских диапазонов, дроссель пригоден для работы в усилителе. При наличии паразитных резонанасов необходимо «сбивать» их частоты, изменяя число секций и количество витков в них, но суммарное число витков дросселя должно остаться неизменным. Возможно, потребуется изменить расположение дросселя относительно металлических элементов конструкции. Наконец, для увеличения емкости С0 можно подгибать в сторону дросселя металлическую пластину, установленную параллельно ему (как это делается в некоторых схемах нейтрализации проходной емкости генераторной лампы).

Если при проверке и настройке анодного дросселя все же не удалось избавиться от паразитных резонансов, от схемы с параллельным питанием лучше отказаться и применить схему последовательного питания. В этом случае требования к параметрам дросселя минимальные, и он не ограничивает использование ламп с высоким Roe и не ухудшает параметры П-контура. Иногда переход на последовательное питание дает на ВЧ-диапазонах прирост мощности на 25…30%. В схеме, изображенной на рис.2, от постоянного напряжения на конденсаторах переменной емкости можно избавиться, применив разделительные конденсаторы Ср, емкость которых в 10…20 раз больше величины емкости соответствующего КПЕ.

У схемы с параллельным питанием есть только один плюс — отсутствует анодное напряжение на катушке П-контура. К сожалению, в остальном — одни недостатки.

admin

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Наверх