Электрификация

Справочник домашнего мастера

Инвертор 12 220 синус

Содержание

Две схемы инвертора 12 -220 вольт на ардуино

Инвертор 12 -220 вольт на Arduino чистым синусом с полным кодом программы.

Теория
Достижение выхода синусоидальной волны довольно сложно и не может быть рекомендовано для инверторов, потому что электронные устройства обычно не «любят» экспоненциально возрастающие токи или напряжения. Поскольку инверторы в основном изготавливаются с использованием твердотельных электронных устройств, синусоидальная форма волны обычно исключается.

Электронные силовые устройства при работе с синусоидальными волнами дают неэффективные результаты, так как устройства, как правило, греются по сравнению при работе с прямоугольными импульсами.
Таким образом, лучший вариант для реализации синусоидальной волны на инверторе это — ШИМ, что означает широтно-импульсную модуляцию или PWM .
PWM-это усовершенствованный способ (цифровой вариант) выставления экспоненциальной формы волны через пропорционально изменяющиеся квадратные ширины импульсов, чистое значение которых вычисляется точно в соответствии с чистым значением выбранной экспоненциальной формы волны, здесь «чистое» значение относится к СРЕДНЕКВАДРАТИЧЕСКОМУ значению. Поэтому вычисленная ШИМ со ссылкой на данную синусоидальную волну может использоваться в качестве идеального эквивалента для репликации данной синусоиды. Кроме того, PWMs будет идеально совместимым с электронными приборами силы (mosfets, BJTs, IGBTS) и позволяет использование их с минимальным тепловыделением.
Что такое SPWM
Самый обычный метод производить PWM sinewaver (синусоидную волну) или SPWM, путем подачи нескольких экспоненциально изменчивых сигналов к входу операционного усилителя для необходимой обработки. Среди двух входных сигналов один должен быть намного выше по частоте по сравнению с другим.
Использование двух входных сигналов
Как упоминалось в предыдущем разделе, процедура включает подачу двух экспоненциально изменяющихся сигналов на входы операционного усилителя.
Здесь операционный усилитель сконфигурирован как типичный компаратор, поэтому мы можем предположить, что операционный усилитель мгновенно начнет сравнивать мгновенные уровни напряжения этих двух наложенных сигналов в тот момент, когда они появляются или применяются к его входам.
Для того чтобы операционный усилитель мог правильно реализовать необходимые синусоидальные ШИМ на своем выходе, необходимо, чтобы один из сигналов имел гораздо более высокую частоту, чем другой. Более медленная частота здесь-та, которая должна быть синусоидальной волной образца, которая должна имитироваться (реплицироваться) PWMs.
В идеале, оба сигнала должны быть синусоидальными (один с более высокой частотой, чем другой), однако то же самое может быть реализовано путем включения треугольной волны (высокая частота) и синусоидальной волны (выборочная волна с низкой частотой). Как видно на следующих изображениях, высокочастотный сигнал неизменно подается на инвертирующий вход ( — ) операционного усилителя, в то время как другой более медленный синусоидальный сигнал подается на не инвертирующий ( + ) вход операционного усилителя. В худшем случае оба сигнала могут быть треугольными волнами с рекомендуемыми уровнями частоты, как описано выше. Тем не менее, это поможет в достижении достаточно хорошего эквивалента PWM sinewave.
Сигнал с более высокой частотой называется несущим сигналом, в то время как более медленный сигнал выборки называется модулирующим входом.

Создание SPWM с треугольной и сухожильной волной
Обращаясь к приведенному выше рисунку, возможно ясно визуализировать через нанесенные точки различные совпадающие или перекрывающиеся точки напряжения двух сигналов в течение заданного промежутка времени. Горизонтальная ось показывает период времени формы волны, пока вертикальная ось показывает уровни напряжения тока 2 одновременно бежит, наложенной формы волны. Рисунок информирует нас о том, как операционный усилитель будет реагировать на показанные совпадающие мгновенные уровни напряжения двух сигналов и производить соответственно меняющуюся синусоидальную ШИМ на своем выходе. Операционный усилитель (ОУ) просто сравнивает, уровни напряжения тока волны быстрого треугольника меняя мгновенно синусоидальную волну (это может также быть волна треугольника), и проверяет случаи, во время которых напряжение тока формы волны треугольника может быть ниже, чем напряжение тока волны синуса и отвечает немедленно создавать высокую логику на своих выходах.

Это сохраняется до тех пор, пока потенциал волны треугольника продолжает быть ниже потенциала волны синуса, и момент, когда потенциал волны синуса обнаружен, чтобы быть ниже, чем мгновенный потенциал волны треугольника, выходы возвращаются с минимумом и выдерживают, пока ситуация не повторяется.
Это непрерывное сравнение мгновенных уровней потенциала двух наложенных друг на друга волновых форм на двух входах операционных усилителей приводит к созданию соответственно изменяющихся ШИМ, которые могут точно повторять синусоидальную форму, приложенную к не инвертирующему входу операционного усилителя.
Операционный усилитель и SPWM
На следующем рисунке показано моделирование вышеуказанной операции:

Здесь мы можем наблюдать, как реализуется практически, и именно так операционный усилитель будет выполнять то же самое (хотя и с гораздо большей скоростью, в МС).
Операция вполне очевидна и отчетливо показывает, как операционный усилитель должен обрабатывать синусоидальную волну ШИМ путем сравнения двух одновременно меняющихся сигналов на его входах, как описано в предыдущих разделах.
На самом деле операционный усилитель будет обрабатывать синусоидальные ШИМ гораздо более точно, чем показанное выше моделирование, может быть в 100 раз лучше, создавая чрезвычайно однородные и хорошо измеренные ШИМ, соответствующие подаваемому образцу. Синусоида.
Инвертор на ардуино две схемы
список деталей
Все резисторы 1/4 ватт, 5% CFR
• 10K = 4
• 1K = 2
• BC547 = 4шт
• МОП-транзисторы IRF540 = 2шт
• Arduino UNO = 1
• Трансформатор = 9-0-9V/220V/120V .
• Батарея = 12V
Конструкция на самом деле очень проста, как показано на следующем рисунке.

Pin#8 и pin#9 создают ШИМ альтернативно и переключают Мосфеты с такой же ШИМ.
Мосфет в свою очередь наводит на трансформатор сильно токовую форму волны SPWM, используя силу батареи, заставляя вторичку трансформатора произвести идентичную форму волны.
Предлагаемая схема инвертора Arduino может быть обновлена до любого предпочтительного более высокого уровня мощности, просто заменив Мосфеты и трансформатор соответственно, в качестве альтернативы вы также можете преобразовать это в полный мост или Н-мостовой синусоидальный инвертор
Питание платы Arduino

Изображения формы волны для Arduino SPWM

Поскольку плата Arduino будет производить выход 5V, это может быть не идеальное значение для непосредственного управления МОП-транзисторами.
Поэтому необходимо поднимать уровень строба к 12V так, что Мосфеты будут работать правильно без нагрева приборов.

Чтобы убедиться, что Мосфеты не запускается во время загрузки или запуска Arduino, необходимо добавить следующий генератор задержки и подключить к базе транзисторов BC547.Это защитит Мосфеты и предотвратит их сгорание во время переключения питания и при загрузке Arduino.

Добавление автоматического регулятора напряжения
Так же, как и на любом другом инверторе, на выходе этой конструкции ток может подняться до небезопасных пределов, когда батарея полностью заряжена.
Чтобы контролировать это добавим автоматический регулятор напряжения тока.
Коллекторы BC547 должны быть подключены к основаниям левой пары BC547, которые подключены к Arduino через резисторы 10K.

Второй вариант инвертора с использованием микросхемы sn7404/к155лн1

Важно:
Чтобы избежать случайного включения перед загрузкой Arduino, простая задержка в цепи таймера может быть включена в вышеуказанную конструкцию, как показано ниже:

Код программы:
/* This code was based on Swagatam SPWM code with changes made to remove errors. Use this code as you would use any other Swagatam’s works. Atton Risk 2017 */ const int sPWMArray = {500,500,750,500,1250,500,2000,500,1250,500,750,500,500}; // This is the array with the SPWM values change them at will const int sPWMArrayValues = 13; // You need this since C doesn’t give you the length of an Array // The pins const int sPWMpin1 = 10; const int sPWMpin2 = 9; // The pin switches bool sPWMpin1Status = true; bool sPWMpin2Status = true; void setup() { pinMode(sPWMpin1, OUTPUT); pinMode(sPWMpin2, OUTPUT); } void loop() { // Loop for pin 1 for(int i(0); i != sPWMArrayValues; i++) { if(sPWMpin1Status) { digitalWrite(sPWMpin1, HIGH); delayMicroseconds(sPWMArray); sPWMpin1Status = false; } else { digitalWrite(sPWMpin1, LOW); delayMicroseconds(sPWMArray); sPWMpin1Status = true; } } // Loop for pin 2 for(int i(0); i != sPWMArrayValues; i++) { if(sPWMpin2Status) { digitalWrite(sPWMpin2, HIGH); delayMicroseconds(sPWMArray); sPWMpin2Status = false; } else { digitalWrite(sPWMpin2, LOW); delayMicroseconds(sPWMArray); sPWMpin2Status = true; } } }
Удачи.

Преобразователь из одной фазы в три (частотник), на ARDUINO+PCA9685 на FLProg.
Частотник позволяет подключить трех фазный двигатель к однофазной сети без потери мощности ,управлять оборотами двигателя, осуществлять реверс и многое другое. Основная идея заключается в использовании шим контроллера PCA9685. Ресурсов ARDUINO не достаточно для формирования 6 шим выходов, а PCA9685 имеет 12 не зависимых шим выходов что позволяет полностью разгрузить контроллер. Используем усовершенствованный скалярный метод формирования вращающего момента, диаграмма переключения транзисторов изображена на принципиальной схеме. Программируем 6 шим выходов со здвигом фаз 360/6=60 градусов, 12 бит шим 4096 делим на 6 и получаем фазовый сдвиг 0, 682, 1365, 2048, 2730, 3413. ШИМ контроллер может менять частоту от 25Гц до 1,5кГц, по низу немного многовато но куда деваться. При минимальных оборотах ширину импульсов необходимо уменьшить для исключения вхождения в насыщение магнитной системы статора, при увеличении оборотов ширину импульсов увеличиваем. То есть у нас получается и ШИМ и ЧИМ. Вариантов принципиальных схем частотников очень много, я использовал например такую, можно использовать и более простые или вообще трех фазную с инверторами на логике ( данная схема исключает появление сквозного тока но имеет малый КПД). Можно использовать готовый модуль с транзисторами и драйверами. Но в последних схемах нет гальванической развязки с сетью. Данная разработка только заготовка которая может быть использована для дальнейшего проектирования. Можно включить два двигателя, сделать ПИД регулятор, поддержание расхода, давления, уровня и тд.
Все опубликовано на Яндекс диске папка частотник.

Валерий RW4HDL

Инвертор «чистый синус» своими руками (со схемой)

Дата публикации: 15 марта 2019

Инвертор — это необходимый элемент в системе автономного дома, который приспосабливает параметры вырабатываемой альтернативными источниками энергии к параметрам, необходимым для питания технических приборов. Почитайте подробнее об опыте выстраивания такой системы .

Принцип работы

Инвертор — это прибор для преобразования напряжения. Например, он может преобразовать постоянный ток с напряжением в 12 Вольт (полученный при помощи солнечной панели) в переменный с напряжением в 220 Вольт (подходит для питания бытовых устройств). Без этого небольшого устройства практически невозможно полноценное использование энергии гелиопанелей и ветряков для домашних нужд.

Инверторы бывают разные. В зависимости от конструкции прибора и его предназначения он выдает выходной сигнал разной формы:

  • синусоида;
  • квазисинусоида;
  • импульсный.

Увидеть форму можно, если подключить к цепи специальный измерительный прибор — осциллограф. Он как бы разворачивает сигнал во времени: по оси Х мы видим временной интервал, а по оси У — уровень напряжения.

Самое качественное напряжение, близкое по параметрам к внешней электросети, выдает инвертор «чистый синус». Принцип его работы заключается в следующем:

  • При подаче энергии с аккумулятора на инвертор, она изменяется с 12 Вольт на 220 Вольт.
  • Преобразованная электроэнергия попадает на мостовой инвертор, где постоянный ток превращается в переменный.
  • Высокочастотный фильтр низких частот определяет форму чистой синусоиды у напряжения на выходе.

Плюсы и минусы

Если вы планируете превратить свое жилище в умный дом или поэкспериментировать с отдельными источниками альтернативной энергии, то рано или поздно вы придете к проблеме выбора инвертора для вашей системы. Иначе вы просто не сможете запитать бытовые приборы от сгенерированной и накопленной энергии.

Плюсы использования устройства с чистым синусом:

  • Параметры выходного напряжения близки параметрам внешней электросети.
  • Возможность безопасного подключения сложных устройств, которые требовательны к качеству напряжения.
  • Улучшаются условия использования сетевой нагрузки: меньше шумов, перепадов напряжения и так далее.
  • Бытовые приборы и устройства, питаемые от инвертированной энергии, дольше служат.

К минусам прибора можно отнести лишь его высокую стоимость по сравнению с инверторами, выдающими выходное напряжение другого вида. Но с этим недостатком можно бороться, если сделать прибор самостоятельно. Составляющие элементы стоят значительно дешевле готового устройства.

Самодельный инвертор с чистым синусом

Цена ценой, но это достаточно сложный прибор. Поэтому за самостоятельное его изготовление стоит браться только при наличии определенного опыта. Пригодятся уверенные знания схемотехники, а также навыки и опыт пайки, монтажа схем, использования измерительных приборов и настройки элементов микросхемы.

Инвертор «чистый синус»: схема

Рассмотрим эту простую, но популярную даже в промышленности схему чуть подробнее. Сигналы генерируются при помощи микросхемы КП1114ЕУ. Два транзистора IRFZ44N используются как ключи. Конденсатор служит фильтром высокочастотного шума, а трансформатор обеспечивает выходное напряжение в 220 Вольт.

В первый раз схему лучше собрать на макетной плате. Для получения чистого синуса многие элементы придется подбирать или дополнительно настраивать (ориентируясь на показания осциллографа). Неопытным схемотехникам потребуется изрядная доля терпения, поэтому лучше заранее найти специалиста, у которого можно будет попросить совета или помощи.

Схема инвертора 12 220в чистый синус. Необходимость схем инверторов с чистой синусоидой

Преобразователь 12/220В с синусом на выходе.

Предисловие.
Около месяца назад я искал в нете схему простого преобразователя 12/220в с «чистым» синусом на выходе и к своему удивлению обнаружил, что её нет. Всё что обычно предлагается, сводится либо к получению псевдосинуса путём преобразования без использования низкочастотного повышающего трансформатора, либо к совету использовать усилитель D-класса, управляемый опорным синусоидальным напряжением. В качестве устройства управления и генерации синусоиды предлагается применять микроконтроллер. Либо даётся ссылка на смартапс. В общем, получается не слишком просто. Пришлось потратить довольно много отпускного времени, чтобы разработать схему более отвечающую требованиям простоты и «чистоты» синуса.

Характеристики:
Входное напряжение 12…14В
Выходное напряжение 50Гц 220+/-2В
Максимальная мощность 50Вт
КПД 84…90%.

Работа.
Задающий генератор, источник опорного напряжения и компаратор собраны на DA2. Внешние элементы DD1 и DD2 повторяют внутреннюю структуру TL494, в той её части, которая неустойчиво работает на низких частотах (ложные срабатывания D-триггера).
Далее с помощью ФНЧ подавляются верхние гармонические составляющие ШИМ. ФНЧ состоит из двух частей. Первая- DA1.1, ФНЧ с гладкой характеристикой АЧХ. Второй- DA1.2 режекторный фильтр с частотой подавления 150Гц. Анализ показывает, что в ШИМ содержаться только первая и нечётные гармоники, потому такого фильтра оказывается достаточно, чтобы сформировать «красивый» синус (осциллограмма 2). А, поскольку уровень первой гармоники практически линейно зависим от скважности, то получаем хорошо управляемый синус с точной постоянной составляющей, равной +2,5В. Далее, дополнительно получаем инверсную синусоиду (вывод 14 DA1.4).
На DA3, DA5, VT1, VT2 собран первый канал УНЧ класса D. Второй канал соответственно собран на DA4, DA7, VT3, VT4. На выходе первого и второго канала УНЧ формируются противофазные синусоиды (осциллограмма 3).
С выхода трансформатора, через диодный мост подаётся обратная связь по выходному напряжению. Таким образом выходное напряжение стабилизируется.

Конструкция и детали.
Трансформатор TV1 это доработанный ТП60-2, который применялся в знаменитом видеомагнитофоне «Электроника ВМ-12». С трансформатора сматываются все вторичные обмотки, и вместо них наматывается одна обмотка, содержащая 33 витка обмоточного провода диаметром 0,7мм, сложенного всемеро. Можно использовать и медную шину, подходящую по площади сечения. При подаче напряжения 220В на вторичной (в преобразователе она первичная) обмотке трансформатора, на холостом ходу, напряжение составляет 6,5В.
Дроссели L1 и L2 наматываются на ферритовых кольцах типоразмера 24*13*9,7мм и содержат 22 витка обмоточного провода диаметром 1,5мм. К сожалению марка и магнитная проницаемость этих ферритовых колец мне неизвестна. Они используются во вторичных цепях импульсных компьютерных блоков питания типа ATX.
Транзисторы и микросхемы драйверов DA5, DA7 можно найти на материнских платах.
Все транзисторы устанавливаются на один радиатор площадью 15…20см2. Для их изоляции от радиатора используются слюдяные прокладки.
Конденсаторы С21…С24 типа К73-17 на напряжение 63В.
Конденсатор С25 типа К73-17 на напряжение 630В.
Диоды можно использовать любые, с максимальным обратным напряжением не менее 400В.
Резисторы R44, R45 мощностью не менее 0,25Вт.

Настройка.
1. Отсоединить первичную обмотку трансформатора.
2. Резистором R9 установить частоту следования импульсов 100Гц на выходе DA2 (осциллограмма 1).
3. Проверить наличие синусоидального сигнала (осциллограмма 2) на выводах 7 и 14 DA1. Сигналы должны быть противофазны, но одинаковы по форме.
4. Резисторами R22 и R31 установить сигнал на выходе первого канала УНЧ согласно осциллограмме 3. Тоже проделать со вторым каналом (R24 и R34).
5. Установить подвижный контакт резистора R4 в верхнее по схеме положение.
6. Подключить к выходу преобразователя эквивалент нагрузки. Можно использовать лампу накаливания мощностью 25Вт.
7. Подключить первичную обмотку трансформатора.
8. Резистором R4 установить напряжение 220В на выходе преобразователя.

P.S.
По моему схема легко поддаётся масштабированию в сторону увеличения мощности. В принципе, схема, с соответствующими доработками пригодна и для получения других выходных частот. Например, 60Гц или 400Гц.
КПД, можно несколько увеличить, если заменить дроссели L1 и L2 на более мощные.

Как вам эта статья?

При использовании маломощных бытовых приборов часто возникает потребность в преобразователе напряжения с 12 на 220 вольт. Это может быть ноутбук, зарядное устройство для мобильного телефона или планшета, и даже телевизор на LED элементах.

  1. Продолжительная авария централизованного энергоснабжения;
  2. Аварийное энергоснабжение электроники газового котла;
  3. Отсутствие бытовой сети 220 вольт (удаленный садовый участок, гаражный кооператив);
  4. Автомобиль;
  5. Туристическая стоянка (при наличии возможности взять с собой 12 вольтовой аккумулятор).

Во всех этих случаях, достаточно иметь заряженный аккумулятор, и вы сможете полноценно использовать сетевое электрооборудования. Важно! Потребляемая мощность прибора не должна превышать несколько сотен ватт. Более мощные устройства быстро посадят аккумулятор, используемый в качестве донора.

Справедливости ради отметим, что для использования в автомобиле существуют блоки питания и зарядные устройства, подключаемые у бортовой сети 12 вольт. Выполнены они в виде разъема, соединяемого с розеткой прикуривателя.

Однако, если у вас несколько гаджетов, вам придется разориться на покупку такого же количества зарядок. А имея один преобразователь с 12 на 220 — вы обеспечите полную универсальность подключения.

В продаже имеется большой ассортимент готовых преобразователей.

Мощность варьируется от 150 Вт до нескольких киловатт. Разумеется, для каждой мощности потребителя необходимо подбирать соответствующий аккумулятор. Также необходимо внимательно читать технические характеристики — часто, в рекламных целях, производители указывают на упаковке пиковую мощность, которую преобразователь выдерживает всего несколько секунд. Рабочая мощность, как правило, на 25% — 30% ниже.

Разновидности преобразователей 12 на 220 вольт

Для правильного выбора, ознакомьтесь с основными видами преобразователей напряжения, представленными на рынке электротоваров:

По форме сигнала выходного напряжения

Устройства делятся на чистый синус и модифицированный синус. Разницу в форме сигнала видно на иллюстрации.

Дело в том, что преобразователи работают не так, как генераторы переменного тока. На входе в устройство подается постоянный ток определенной величины.

Сначала он преобразуется в импульсный (для обеспечения работы повышающего трансформатора), затем из полученного пульсирующего тока формируется синусоидальная кривая, привычная для большинства потребителей переменного напряжения 220 вольт. Для получения гладкой кривой необходима дорогостоящая схема, а большинство производителей стараются предложить покупателю экономную цену.

Зарядным устройствам и блокам питания ноутбуков подойдет и модифицированная кривая. А звуковоспроизводящая аппаратура может работать с перебоями и сильными помехами. Некоторые блоки питания, например, в LED телевизорах, сильно греются при таком входном сигнале.

Имеются случаи выхода из строя блоков питания. Устройства с электродвигателями (например, компрессор холодильника или насос газового котла) также может работать со сбоями при подключении к преобразователю с модифицированным синусом.

По реализации повышающей функции. Способов получить переменное напряжение из постоянного достаточно много. Рассмотрим основные из них:

Трансформаторные устройства

Имеют достаточно примитивную, но при этом эффективную конструкцию. Это самый простой преобразователь, который можно собрать своими руками.

При помощи мультивибратора постоянный ток преобразуется в импульсный, с частотой 50 Гц. Затем повышающий трансформатор преобразует напряжение до уровня 220 вольт, на выходе монтируется стабилизатор.

Недостатком такой компоновки является большой размер и невозможность получить чистый синус. Но для простейших задач (работа зарядного устройства или паяльника) вполне сгодится. Главная задача, которую нужно решить – как намотать трансформатор для преобразователя. Подойдет тороидальный сердечник (для компактности) от любого ненужного блока питания.

Понятное дело, во вторичной обмотке витков должно быть больше в соответствие с коэффициентом повышения. Мощность подобных устройств обычно не превышает 200 Вт.

Следующий тип преобразователей – на задающем генераторе. Обычно для этих целей используется микросхема КР1211ЕУ1. Главная деталь преобразователя отечественного производства, поэтому ее стоимость невысокая. После того, как генератор задаст переменное напряжение – сигнал уходит на ключи, выполненные на транзисторах IRL2505.

Далее подключается повышающий трансформатор, на выходе которого сформировано переменное напряжение 220 вольт. Для снижения влияния высокочастотных импульсов, которые многократно усиливаются на вторичной обмотке – установлен подавляющий конденсатор.

Мощность преобразователя может достигать 500 Вт, в зависимости от трансформатора. Его подбирают с запасом, превышающим номинал в 2,5 раза. Нагрузка на остальные элементы не такая высокая. Например, при выходной мощности, не превышающей значение 200 Вт, ключевые транзисторы работают без радиаторов.

Схема настолько удачная, что ее применяют многие производители в промышленных преобразователях. А доступность элементной базы позволяет собрать преобразователь с 12 на 220 своими руками.

Более совершенными с технической точки зрения являются преобразователи на ШИМ контроллерах. Такие устройства на выходе дают чистый синус, а также имеют высокий КПД.

Совершенная схема позволяет создать мощные устройства (1-2 кВт) при относительно компактных размерах. Габариты определяют радиаторы охлаждения и система вентиляции. Высокая стоимость элементной базы выводит прибор из разряда бюджетных.

Однако в сравнении с промышленными образцами, экономия при самостоятельной сборке существенная. Такой преобразователь осилит и питание холодильника. А качественная форма выходного сигнала позволит подключать требовательные потребители – телевизоры и музыкальные центры.

Важно! Не стоит забывать, что высокая выходная мощность преобразователя потребует емкого первичного источника электроэнергии. Для продолжительной работы при нагрузке 800-1000Ви, аккумуляторная батарея должна быть не менее 100 а/ч.

Однако наибольшим спросом все же пользуются компактные устройства, предназначенные для питания гаджетов поменьше. Схема преобразователя 12 220 на транзисторах доступна каждому радиолюбителю, умеющему держать в руках паяльник.

Собрав такую схему в аккуратном корпусе, можно установить ее в автомобиле, и у вас будет настоящая бортовая розетка 220 вольт.

Лучший самодельный преобразователь:
Если у вас в компьютерном блоке бесперебойного питания приказала долго жить аккумуляторная батарея, у вас появляется прекрасный донор для создания автономного источника 220 вольт. Преобразователь из бесперебойника практически не требует вмешательства со стороны.

Достаточно подключить более мощную батарею (например, автомобильную) и преобразователь готов.
Изучив наш материал – вы сможете не только выбрать подходящий в магазине, но и сделать его самостоятельно.

Смотрите ниже: Преобразователь с 12 на 220 — видео, схема, подробная инструкция

Решил посветить отдельную статью изготовлению DC AC повышающего преобразователя напряжения на 220В. Это конечно отдалённо относится к теме светодиодных прожекторов и ламп, но такой мобильный источник питания широко применяется дома и в автомобиле

  • 1. Варианты сборки
  • 2. Конструкция преобразователя напряжения
  • 3. Синусоида
  • 4. Пример начинки преобразователя
  • 5. Сборка из ИБП
  • 6. Сборка из готовых блоков
  • 7. Радиоконструкторы
  • 8. Схемы мощных преобразователей

Варианты сборки

Существует 3 оптимальных способы изготовления инвертора 12 в 220 своими руками:

  1. сборка из готовых блоков или радиоконструкторов;
  2. изготовление из источника бесперебойного питания;
  3. использование радиолюбительских схем.

У китайцев можно найти хорошие радиоконструкторы и готовые блоки для сборки преобразователей постоянной тока в переменный 220В. По цене этот способ будет самый затратный, но требуется минимум времени.

Второй способ, это апгрейд источника бесперебойного питания (ИБП), который без аккумулятора в больших количествах продаются на Авито и стоят от 100 до 300руб.

Самый сложный вариант это сборка с ноля, без радиолюбительского опыта никак не обойтись. Придется изготавливать печатные платы, подбирать компоненты, работы очень много.

Конструкция преобразователя напряжения

Рассмотрим конструкцию обычного повышающего преобразователя напряжения с 12 на 220. Принцип работы для всех современных инверторов будет одинаковым. Высокочастотный ШИМ контроллер задаёт режим работы, частоту и амплитуду. Силовая часть выполнена на мощных транзисторах, тепло с которых отводится на корпус устройства.

На входе установлен предохранитель, защищающий от короткого замыкания автомобильный аккумулятор. Рядом с транзисторами крепится термодатчик, который следит за их нагревом. В случае перегрева инвертора 12в 220в включается система активного охлаждения состоящая из одного или нескольких вентиляторов. В бюджетных моделях вентилятор может работать постоянно, а не только при высокой нагрузке.

Силовые транзисторы на выходе

Синусоида

Форма сигнала на выходе автомобильного инвертора формируется за счёт высокочастотного генератора. Синусоида может быть быть двух видов:

  1. модифицированная синусоида;
  2. чистая синусоида, чистый синус.

Не каждый электрический прибор может работать с модифицированной синусоидой, которая имеет прямоугольную форму. У некоторых компонентов в меняется режим работы, они могут нагреваться и начать шабарчать. Похожее можно получить,если диммировать светодиодную лампу, у которой яркость не регулируется. Начинается треск и мигание.

Дорогие DC AC повышающие преобразователи напряжения 12в 220в имеют на выходе чистый синус. Стоят гораздо дороже, но электрические приборы отлично с ним работают.

Пример начинки преобразователя

Чтобы ничего не изобретать и не покупать готовые модули, можно попробовать компьютерный источник бесперебойного питания, сокращенно ИПБ. Они рассчитаны на 300-600вт. У меня Ippon на 6 розеток, подключено 2 монитора, 1 системник, 1телевизор, 3 камеры наблюдения, система управления видеонаблюдением. Периодически перевожу в рабочий режим отключением от сети 220, чтобы батарейка разряжалась, иначе срок службы сильно сократиться.

Коллеги электрики подключали обычный автомобильный кислотный аккумулятор к бесперебойнику, отлично работал непрерывно 6 часов, смотрели футбол на даче. В ИБП обычно встроена система диагностики гелевого аккумулятора, которая определяет его низкую емкость. Как она отнесется к автомобильному неизвестно, хотя основное отличие, это гель вместо кислоты.

Начинка ИБП

Единственная проблема, бесперебойнику могут не понравится скачки в автомобильной сети при заведённом двигателе. Для настоящего радиолюбителя эта проблема решается. Можно использовать только при заглушенном двигателе.

Преимущественно ИБП предназначены для кратковременной работы, когда пропадает 220В в розетке. При длительной постоянной работе очень желательно поставить активное охлаждение. Вентиляция пригодится для стационарного варианта и для автомобильного инвертора.

Как и все приборы, он непредсказуемо себя поведёт при запуске двигателя с подключённой нагрузкой. Стартёр машины сильно просаживает Вольты, в лучшем случае уйдёт в защиту как при выходе батареи из строя. В худшем будут скачки на выходе 220V, синусоида исказится.

Сборка из готовых блоков

Для сборки стационарного или автомобильного инвертора 12в 220в своими руками можно использовать готовые блоки, которые продаются на Ебее или у китайцев. Это сэкономит время на изготовление платы, пайку и окончательную настройку. Достаточно добавить к ним корпус и провода с крокодилами.

Приобрести можно и радиоконструктор, который укомплектован всеми радиодеталями, остаётся только спаять.

Примерная цена на осень 2016:

  1. 300вт – 400руб;
  2. 500вт – 700руб;
  3. 1000вт – 1500руб;
  4. 2000вт – 1700руб;
  5. 3000вт — 2500руб.

Для поиска на Aliexpress укажите запрос в поисковой строке «inverter 220 diy». Сокращение «DIY» обозначает для «сборки своими руками».

Плата на 500W, выход на 160, 220, 380 вольт

Радиоконструкторы

Радиоконструктор стоит дешевле, чем готовая плата. Самые сложные элементы могут быть уже находится на плате. После сборки практически не требует настройки, для которой необходим осциллограф. Разброс параметров радиокомпонентов и номиналы неплохо подобраны. Иногда в пакетик кладут запасные детали, вдруг по неопытности ножку оторвёте.

Схемы мощных преобразователей

Мощный инвертор в основном используют для подключения строительных электроинструментов при строительстве дачи или фазенды. Маломощный преобразователь напряжения на 500вт от мощного на 5000 — 10000 Ватт отличается количеством трансформаторов и силовых транзисторов на выходе. Поэтому сложность изготовления и цена практически одинаковые, транзисторы стоят недорого. По мощности оптимально 3000вт, можно подключить дрель, болгарку и другой инструмент.

Покажу несколько схем инверторов с 12, 24, 36 на 220В. Такие ставить в легковой автомобиль не рекомендуется, можно случайно электрику подпортить. Схемотехника DC AC преобразователей 12 на 220 простая, задающий генератор и силовая часть. Генератор делают на популярной TL494 или аналогах.

Большое количество схем повышателей с 12v на 220v для изготовления своими руками можно найти по ссылке
http://cxema.my1.ru/publ/istochniki_pitanija/preobrazovateli_naprjazhenija/101-4
Всего там около 140 схем, половина из них повышающие преобразователи с 12, 24 на 220В. Мощности от 50 до 5000вт.

После сборки потребуется наладка всей схемы при помощи осциллографа, желательно иметь опыт работы с высоковольтными схемами.

Для сборки мощного инвертора на 2500 Ватт потребуется 16 транзисторов и 4 подходящих трансформатора. Стоимость изделия будет немалая, сопоставимая со стоимостью похожего радиоконструктора. Плюсом таких затрат будет чистый синус на выходе.

  • Дополнительный фильтр

Разработкой схем инвертора с чистой синусоидой заняты не только многие народные умельцы, но и научно-технические центры. Инверторы, или блоки бесперебойного питания, приобрели популярность с развитием компьютерных технологий. Сбои в программном обеспечении, потеря информации при внезапном отключении питания вынудили принять необходимые меры безопасности. Первые устройства выдавали импульсное напряжение прямоугольной формы – меандр. Они обеспечивали небольшой промежуток времени, в течении которого можно было сохранить информацию и выполнить штатное выключение компьютера. Дальнейшие разработки позволили создать усовершенствованные модели преобразователей.

Увеличение емкости аккумуляторов, номинальной мощности инверторов позволило не только увеличить время работы компьютеров, но и применить ИБП для работы других устройств и приборов при перебоях в электроснабжении.

Первый опыт эксплуатации показал, что длительная работа оборудования на импульсном напряжении приводит к ускоренному износу и отказу техники. Определенные категории оборудования оказались не способными работать на напряжении, отличающемся от синусоиды. Мощность источников питания не позволяла подключать несколько устройств одновременно.

Возникла необходимость в инверторах с синусоидальной формой напряжения, способных выдержать нагрузку в несколько киловатт. Частичное решение проблемы было найдено. Производители предложили преобразователи с квази – синусом. Такая форма представляет собой синусоиду, состоящую из множества небольших ступенек.

Естественная и искусственная синусоида

Рисунок 1. Схема питания преобразователя.

Синусоидальная форма напряжения, вырабатываемая промышленными генераторами, создается вращением полюсов магнитного поля. Работа электродвигателей основана на создании электроэнергией вращающегося магнитного поля для воздействия на ротор. При форме напряжения, отличающейся от синусоиды, вращение ротора будет происходить неравномерно, с ускорением или замедлением, что отразится на техническом состоянии двигателя и рабочей части.

Использование напряжения искаженной формы пока не прошло достаточных испытаний на практике, поэтому использовать его для питания дорогостоящего оборудования без гарантий производителя нежелательно. Большинство ИБП предназначено для поддержания основных жизненно необходимых функций.

Сетевое напряжение не всегда имеет идеальную форму. Повышающие и понижающие трансформаторные станции, различные виды потребляющего оборудования создают определенные изменения в форму сетевого напряжения. Преобладающее использование индуктивных нагрузок без компенсационных конденсаторных установок создает в сети определенный сдвиг фаз, влияющий на форму синусоиды. Массовое подключение импульсных блоков питания также вносит свою долю искажений, несмотря на наличие фильтров.

Рисунок 2. Установка на выходе фильтра.

Получить чистый синус при использовании радиоэлектронных компонентов довольно сложно. Решение вроде бы лежит на поверхности. Прямоугольный импульс в упрощенном представлении состоит из гармонического ряда синусоид, первая из которых соответствует частоте импульсов. Требуется всего лишь установить на выходе соответствующий фильтр.

Эффективность эксплуатации такого устройства довольно низкая. Значительная часть энергии задержится на элементах фильтра и преобразуется в тепло. Вес и габаритные размеры преобразователя значительно возрастут. Выделить и использовать отфильтрованную энергию для зарядки также довольно сложно. Схема значительно усложнится, возрастет ее стоимость, снизится надежность.

Большинство экспериментаторов сходится во мнении, что модифицированная синусоида вполне приемлема для большинства бытовых и промышленных устройств, приборов.

Схема инвертора с чистым синусом

Питание преобразователя (рис.1) может быть от источника со сложной формой напряжения или постоянного тока. При использовании аккумулятора фильтр Ф и диодный мост М можно не устанавливать. Для работы низковольтной части схемы используется мост М1, собранный на маломощных диодах. Изготовить такую схему своими руками довольно сложно. У исполнителя должен быть определенный опыт выполнения подобных работ.

Рисунок 3. Подгонка катушек под напряжением 220 В.

Схема работает следующим образом. Задающий генератор на микросхеме D5 создает синусоидальный сигнал с частотой 50 Гц. Его схема представляет собой модифицированный вариант генератора Вина. Изменения внесены для увеличения надежности схемы и уменьшения потребления энергии. Контроллеры D1, D2 модулируют синусоидальный сигнал. Для модуляции на микросхемах используются различные входы: прямой и инвертирующий. Поэтому одна сторона запускается при положительной волне, вторая – при отрицательной. С контроллеров выходной сигнал поступает на микросхемы D3, D4, формирующие сигнал для управления транзисторами.

Силовая часть собрана по принципу мостовой схемы. Нагрузка подключается в одну диагональ моста, питающее напряжение – в другую. При прохождении одного из полупериодов ток проходит от минусовой клеммы через VT4, обмотку L1, нагрузку, VT1, плюсовую клемму источника питания. При другом полупериоде работают транзисторы VT2, VT3.

Защита по превышению максимально допустимого тока собрана на резисторах R17-19, R22 и диодах VD11,12. При превышении падения напряжения на резисторах в силовой цепи разница поступает на соответствующие контакты D1, D2, и схема прекращает работу.

Инвертор чистый синус

Инвертор – это техническое устройство, служащее для преобразования напряжения одного типа в другое.

В системах преобразования альтернативной энергии в электрическую (солнечные электростанции, ветровые установки), инвертор преобразует напряжение 12 Вольт постоянного тока в напряжение питания бытовых приборов 220 Вольт частотой 50 Гц.

Форма получаемого напряжения на выходе может быть различной конфигурации: синусоидальное, приближенное к синусоидальной (квазисинусоида) и прямоугольное (импульсное). Вид синусоиды определяет конструкция прибора и его предназначение (возможность использования).

Инвертор чистый синус – это более сложный прибор, чем его аналоги, обеспечивающий параметры напряжения, необходимые для нормальной работы сложных технических устройств, чувствительных к качеству напряжения питающей сети (медицинская и прочая сложная техника, автоматика газового и иного оборудования, сложные бытовые приборы).

Работа аппаратов типа «чистый синус», обеспечивающих параметры напряжения на выходе, соответствующие параметрам внешних электрических сетей, осуществляется следующим образом:

  • Постоянное напряжение, подается на прибор с аккумуляторных батарей (12,0 В) и проходит предварительную обработку, в процессе которое его значение достигает значения цепи питания нагрузки (220,0 В);
  • Электрическая энергия, преобразованная в требуемые значения напряжения, поступает на мостовой инвертор, где напряжение постоянного тока преобразуется в переменное.

Форма выходного сигнала близка к чистой синусоиде, что достигается путем использования транзисторов, управляемых по методу многократной широтно-импульсной модуляции;

  • Установленный в приборе высокочастотный фильтр низких частот придает выходному сигналу вид чистой синусоиды.

К достоинствам инверторов типа «чистый синус» можно отнести их следующие свойства:

  1. Синусоида на выходе близка к форме кривой напряжения бытовой сети 220 Вольт промышленного способа производства электрической энергии.
  2. Форма выходного сигнала позволяет подключать к приборам данного типа различные технические устройства, работа которых зависит от качества напряжения питающей сети.
  3. Использование инверторов типа «чистый синус» увеличивает сроки эксплуатации бытовых приборов и технических устройств, чувствительных к качеству напряжения.
  4. Улучшаются условия эксплуатации подключенной нагрузки: снижается шум при работе циркуляционных насосов и их нагрев, работа различных источников света и электронных устройств, не происходит «зависание» компьютера и электронных гаджетов.

Основным недостатком инверторов «чистый синус» является их высокая стоимость, в сравнении с приборами, выдающими выходной сигнал иной формы.

Схема

Инверторы данного типа могут устанавливаться для преобразования напряжения в сетях, в которых имеются аккумуляторные батареи служащие накопителями электрической энергии, а также в прочих электрических сетях, когда форма напряжения (выходного сигнала) не соответствует требуемой конфигурации.

Ниже приведена принципиальная схема инвертора типа «чистый синус» в которой учтены разные варианты использования.

Фильтр «Ф» и диодный мост «М» работают, когда инвертор улучшает качество напряжения и не требуются — при подключении прибора к аккумуляторам.

При работе с накопителями энергии (аккумуляторными батареями), выпрямление напряжения осуществляет диодный мост М1.

Генератор, задающий сигнал напряжением 220 В частотой 50 Гц, построен на основе микросхемы D5, а контроллеры D1, D2 формируют сигнал синусоидальной формы.

С контроллеров, выходной сигнал поступает на микросхемы D3, D4, где формируется сигнал управления транзисторами.

Силовая схема построена по мостовому принципу. Нагрузка подключается в одно плечо диодного моста, питающее напряжение – в другое.

Защита по тока собрана на резисторах R17-19, R22 и диодах VD11,12.

Где купить

Инвертор — это прибор, который не относится к товарам повседневного спроса, поэтому его нельзя приобрести в простом магазине или супермаркете. Реализацией подобных изделий занимаются специализированные организации и торговые сети, ориентированные на альтернативные виды энергии, используемые для автономного электроснабжения объектов различных типов.

Если у потребителя уже установлена солнечная электростанция или ветровой генератор, то лучше всего приобрести модель того производителя, оборудование которого уже используется. Для этого необходимо найти дилера этой компании и заключить с ним договор поставки.

Если создается новая система автономного электроснабжения и пользователь самостоятельно выполняет ее комплектацию, то можно пойти несколькими путями, это:

  1. Опять же найти дилера компании, производящей подобные устройства и приобрести товар у него.
  2. Обратиться в торговую компанию, реализующую приборы из этой группы товаров.
  3. Поискать необходимое устройство в сети интернет, где представлен достаточно широкий ассортимент подобных устройств.

Как сделать своими руками

При желании изготовить инвертор типа «чистый синус» своими руками, необходимо помнить, что это достаточно сложное электронное устройство. При самостоятельном изготовлении необходимо не только уметь работать с паяльником, а также нужно знать, как правильно монтировать микросхемы и прочие электронные комплектующие. Уметь работать с электронными приборами, с помощью которых можно отслеживать форму выходного сигнала, а также подстраивать элементы схемы, обеспечивающие соответствие формы и силы выходного сигнала, предъявляемым требованиям.

Ниже, приведена одна из схем, используя которую, можно самостоятельно собрать подобный прибор. Это достаточно простая схема, но тем не менее, она широко используется и промышленными производителями таких устройств.

В качестве генератора сигналов используется микросхема КР1211ЕУ1, а в качестве ключей — транзисторы IRL2505. Повышающий трансформатор повышает напряжение на выходе до 220 вольт, а снижение высокочастотных помех осуществляет конденсатор.

Мощность устройства, собранного по этой схеме – до 0,5 кВт, в зависимости от мощности трансформатора.

Сетевое напряжение, один из важнейших показателей качества поставляемой электроэнергии.

Вопрос особо актуален в пригородных поселках и сельской местности. В этом году я тоже столкнулся с данной проблемой, напряжение плавало в течении суток от 120 до 205 вольт, и как на зло при составлении акта с эксплуатирующей сети организацией приборы зафиксировали 200В. что вписывается в пределы ГОСТ 220+-10%.

Как говорится не мытьем так катаньем- ARDUINO нам в помощь, и пусть показания прибора не занесенного в реестр и не поверенного в метрологических службах пришить куда-то сложно, но сделать определенные выводы вполне реально.

И так к делу -задача непрерывно мониторить напряжение сети в течении определенного промежутка времени и складывать их на SD карту.
Для этого нам потребуются:

  1. Arduino – мозг системы
  2. Модуль часов реального времен 1307RTC и — показания должны быть привязаны к реальному времени
  3. Модуль SD карты — сюда собственно мы и будем писать показания
  4. Ненужный трансформаторный блок питания — согласование сетевого напряжения.

Arduino имеет аналоговые входы с АЦП разрешением 8 бит (1024), но подавать на них можно лишь 5 вольт.

Задачи ясны приступаем к творчеству.

  1. Разбираем блок питания и выкидываем все что стабилизирует выходное напряжение, остаются только трансформатор и выпрямительный мост, замеряем напряжение в сети и на выходе БП, у меня получилось 195 и 6.8 расчитывам делитель напряжения получаем 28,6. Считаем максимально возможное напряжение на выходе при напряжении в сети (с запасом) 260В и получаем 9,1В. Расчитываем делитель напряжения так чтобы на Arduinку поступало максимум 5 вольт под рукой оказались следующие резисторы R1 — 2.2К, R2 — 2К, что вполне устраивает, ожидаемое максимальное напряжение 4,8 вольт .
  2. Калибруем наш новый датчик, для этого цепляем его следующим образом заливаем в ардуинку маленький скетч:
    //————————————————————————
    void setup()
    {
    Serial.begin(9600);
    }
    //————————————————————————
    void loop()
    {
    int analogPin = 0;
    Serial.println(analogRead(analogPin));
    delay(1000);
    }

    Включаем датчик в сеть и наблюдаем в мониторе порта обновляющиеся показания, также к сети подключаем образцовый вольтметр. Теперь мы готовы вычислить поправочный коэффициент для будущего скетча,, мои данные: com порт — 669, вольтметр- 187 вольт, итого поделив первое на второе получаем коэффициент 3,58 на 1 вольт.

  3. Модуль часов реального времени. Для настройки и работы данного модуля нам понадобятся библиотеки DS1307RTC и Time. Подключаем модуль по следующей схеме
    В примерах от 1307 находим скетч SetTime и загружаем его в Arduino. Открываем монитор com порта и видим что часы синхронизировались с компьютером. Отлично, часы подключены и настроены, дальше они будут идти уже за счет встроенной батарейки.
  4. Ну и последний элемент куда мы будем писать свои данные это SD шильд здесь никаких дополнительных настроек не требуется, светодиод на 5 пине будет указывать на наличие ошибок.
  5. С железом покончено начинаем программировать

//Подключаем библиотеки //Библиотека для чтения, записи SD карты #include <SD.h> // Библиотеки для работы часов #include <DS1307RTC.h> #include <Time.h> #include <Wire.h> // объявляем пин датчика int analogPin =0; const int chipSelect = 10; //буфер char dataString ; // пин светодиода int led = 5; //———————————————————————— void setup() { //инициализация SD карты pinMode(10, OUTPUT); if (!SD.begin(chipSelect)) { digitalWrite(led, HIGH); return; } digitalWrite(led, LOW); } //———————————————————————— void loop() { tmElements_t tm; // читаем данные с часов RTC.read(tm); // читаем данные с датчика и делим на коэффициент int sensor = analogRead(analogPin)/3.58; //разбираем данные и пишем в буфер sprintf(dataString, «%4d/%2d/%2d %2d:%2d %3d»,tmYearToCalendar(tm.Year),tm.Month,tm.Day,tm.Hour,tm.Minute,sensor); //Открываем SD для записи File dataFile = SD.open(«log.txt», FILE_WRITE); //пишем буфер на карту if (dataFile) { dataFile.println(dataString); dataFile.close(); digitalWrite(led, LOW); //ждем 5 минут delay(300000); } else { digitalWrite(led, HIGH); } }

Данная плата позволит быстро и без особых сложностей собрать инвертор 12/220 по мостовой схеме с чистым синусом на выходе. Плата имеет на борту драйверы управления ключами самый ходовой драйвер IR2110, на фото плата с драйверами IR2113. В datasheet приведено несколько схем с разными типами драйверов.

Ядром платы является специальный микроконтроллер EG8010

Параметры

Напряжение питания цифровой части: +5v

Напряжение питания драйверов: +12v (для MOSFET лучше 20v)

Частота ШИМ(PWM): 23.4KHz

Тактовая частота контроллера: 12MHz

Возможность установки фиксированных значений частоты 50Hz и 60Hz

Плавное изменение частоты два режима 0-100Hz и 0-400Hz

Установка мертвого времени 4 фиксированных значения 300nS; 500nS; 1.0uS; 1.5uS

Плавный пуск(Soft-start) время 1S

Обратная связь по напряжению, току, температуре

Защита от перегрузок по напряжению и току

Возможность подключения по последовательной шине, для регулировки выходного напряжения, частоты и других параметров

Возможность подключения по последовательной шине LCD модуля 128 * 32 либо 1602 дисплея для отображения напряжения, частоты, температуры, значения тока

Datasheet на плату:

Инвертор можно собрать по двум схемам

Схема с внешним источником 400V.

impulsnik ›
Блог ›
Самодельный инвертор 12-220 вольт с чистым синусом

Напрягает ситуация когда отключают свет, я живу в частном доме и воду добываю с помощью погружного вибрационного насоса, не то чтобы часто отключают, но пару раз без воды оставался, неприятно. Так вот, что бы исключить повторения такой ситуации в будущем, решил собирать инвертор, решался честно долго, не мог подобрать оптимальный вариант получения синуса, мучить насос модифицированной синусоидой не стал, и вот как то наткнулся на специальный модуль под названием EGS002. Модуль представляет из себя плату, на которой расположена микросхема eg8010, этот контроллер заточен для получения синуса, и пары драйверов.

Для получения синуса одной платки конечно мало, самое главное нам потребуется преобразователь напряжения с 12 до 350 вольт ватт на 300, четыре полевых транзистора для коммутации постоянного напряжения (350в) и выходной фильтр, для превращения прямоугольных импульсов разной длительность в синусоиду.
На схеме все что выделено слева, это сам модуль, а то что с права это то что нам нужно прикрутить.

Первая версия печатной платы была испытана Николаем Шумиловым на радиоскоте.

Все заработало практически с первого раза, форму сигнала на выходе было нечем посмотреть, работало все исправно, но только на лампочках, стоило подключить индукционную нагрузку и через некоторое время броском напряжения вышибло выходные ключи, так как я допустил фатальную ошибку, не предусмотрел места на печатке для снабберов.
А это уже исправленная версия платы, со всем необходимым для нормальной работы инвертора.
Прилагаю пока только скрины печатки, те кто ждал готовое устройство, уж простите) работаю сейчас над плазморезом) за инвертор возьмусь после.

admin

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Наверх