Электрификация

Справочник домашнего мастера

Гироскоп как сделать

Среди механических гироскопов выделяется ро́торный гироско́п — быстро вращающееся твёрдое тело, ось вращения которого способна изменять ориентацию в пространстве. При этом скорость
вращения гироскопа значительно превышает скорость поворота оси его
вращения. Основное свойство такого гироскопа — способность сохранять в
пространстве неизменное направление оси вращения при отсутствии
воздействия на неё моментов внешних сил.

Обязательно посмотрите это видео.
Это магазинный гироскоп:

далее вырежем из ламината рамку и согнём в кольцо проволоку,так же в
шурупах надо пробить по углублению шилом(я не делал заново,я просто
разобрал свой гироскоп и сфоткал части…))

потом соберём главную часть-ротор(или както по другому))берём донышко и
горлышко(они одинаковые)делаем в них по дырке(в цетре!!)дырка должна
быть толщиной с палку железную.Железный стержень обрежем по длине,концы
заточим.Что бы центровка была лучше,вставим стержень в дрель и как на
станке заточим напильником с 2 сторон так же надо сделать канавку для
завода ниткой(на фотке найдётё))на один из дисков намажем пластилина,а
в него напихаем гаек и грузил(у кого есть стальное кольцо-ваще
шикарно)затем соединим оба диска(бутерброд)и проткнём их через дырки
осью.Смаза всё ето дело поксиполом,засунем его(дело))в дрель и пока
поксипол стынет,будем центровать диск(чтоб не бил)ето самая важная
часть работы.Баланс должен быть идеальным.


собираем по картинке,свободный ход ротора вверх-вниз должен быть минимальным(чувствуется,но чутьчуть)

ставим защиту из проволоки,прикрепляем её ниткой,и готово.

Роторный гироскоп — быстро вращающееся твёрдое тело, ось вращения которого способна изменять ориентацию в пространстве. При этом скорость вращения гироскопа значительно превышает скорость поворота оси его вращения.
Данный гироскоп способен сохранять в пространстве неизменное направление оси вращения при отсутствии воздействия на неё моментов внешних сил.

Непонятно? Смотрим видео — как работает гироскоп.

Содержание

Как сделать гироскоп

Делать его будем из подручных средств.

Понадобится:

  • обрезок ламината;
  • 2 крышки/дна консервной банки;
  • стальной стержень;
  • гайки;
  • 2 шурупа;
  • кернер;
  • медная проволока;
  • клей «Поксипол»;
  • изолента.

Вырезаем из ламината основную рамку. Медную проволоку сгибаем в виде кольца, а в шурупах с помощью керна делаем углубления.

Обрезаем стальной стержень нужной длины и затачиваем концы. Так же нужно сделать канавку для нити.

Ротор

В двух крышках от консервных банок проделываем отверстия по центру. На одну из крышек намазываем пластилин и на него прикрепляем гайки. Закрываем второй крышкой и вставляем стержень. Смазываем с двух сторон «Поксиполом» и пока клей не застыл необходимо центрировать диск, вставив его в дрель. Баланс должен получиться идеальным.

Собираем гироскоп. Ротор должен шевелиться между шурупами совсем чуть-чуть.

Устанавливаем кольцо из проволоки. Готово.

Самодельный гироскоп

Гироскоп (от др.-греч. yupo «круговое вращение» и okoпеw «смотреть») — быстро вращающееся твёрдое тело, основа одноимённого устройства, способного измерять изменение углов ориентации связанного с ним тела относительно инерциальной системы координат, как правило основанное на законе сохранения вращательного момента (момента импульса).

Само название «гироскоп» и рабочий вариант этого устройства придумал в 1852 г. французский ученый Жан Фуко.

Среди механических гироскопов выделяется роторный гироскоп — быстро вращающееся твёрдое тело, ось вращения которого способна изменять ориентацию в пространстве. При этом скорость вращения гироскопа значительно превышает скорость поворота оси его вращения. Основное свойство такого гироскопа — способность сохранять в пространстве неизменное направление оси вращения при отсутствии воздействия на неё моментов внешних сил.

Для изготовления гироскопа нам понадобится:

Общая идея понятна изложена на рисунке:

Приступаем:

1) Берём ламинат и вырезаем из него 8-ми угольную рамку (на фото она 6-ти угольная). Далее высверливаем в ней 4 дырки: 2 (на концах) по фронту, 2 поперёк (то же на концах), смотри фото. Теперь согнём в кольцо проволоку (диаметр проволоки примерно равен диаметру рамки). Возьмём 2-ва шурупа (болта) и пробьём в них по углублению на концах шилом или керном (на худой конец можно высверлить дрелью).

2) Нужно собрать главную часть — ротор. Для этого берём 2-ва донышка от консервной банки и делаем в них по дырке в центре. Дырка диаметром должна соответствовать ось-стержню (который мы туда вставим). Чтобы сделать ось-стержень возьмём гвоздь или длинный болт и обрежем по длине, концы надо заточить. Чтобы центровка была лучше, вставим стержень в дрель и как на станке заточим напильником или точильным камнем с 2-х сторон. Хорошо бы ещё сделать канавку на нём для завода ниткой. На один из дисков намажем пластилина, и в него напихаем гаек и грузил (у кого есть стальные кольцо, то это ещё лучше). Теперь соединяем оба диска (по типу бутерброд) и протыкаем их через дырки осью-стержнем. Смазываем всё это дело поксиполом (или другим клеем), вставим наш ротор в дрель и пока поксипол застывает, будем центровать диск (это самая важная часть работы). Баланс должен быть идеальным.

3) Собираем по картинке, свободный ход ротора вверх-вниз должен быть минимальным (чувствуется, но чуть-чуть).

Механический гироскоп – не такое уж сложное устройство, при этом его работа – довольно красивое зрелище. Его свойства изучают ученые уже более двухсот лет. Можно было бы подумать, что все изучено, ведь давно уже найдено и практическое применение и тема должна быть закрытой.

Но находятся увлеченные люди, которые не устают утверждать, что при работе гироскопа происходит изменение его веса при вращении в ту или иную сторону или в определенной плоскости. Причем звучат такие выводы, как будто гироскоп преодолевает гравитацию. Или он образует так называемую зону гравитационной тени. И наконец, находятся люди, которые говорят, что если скорость вращения гироскопа превысить до некоторой критической величины, то данное устройство приобретает негативный вес начинает отлетать от Земли.

С чем же мы имеем дело? Возможность прорыва цивилизации или псевдонаучное заблуждение?

Теоретически изменение веса возможно, но на таких больших скоростях, что экспериментально это проверить невозможно в обычных условиях. Но есть люди, которые уверяют, что они видели преодоление земного тяготения при скорости вращения всего в пределах нескольких тысяч минут. Проверке этой гипотезе посвящен данный эксперимент.

Характеристики простейшего самодельного гироскопа.

Далеко не каждому по возможности собрать гироскоп. Авто ролика собрал гироскоп массой более 1 кг. Максимальная скорость вращения 5000 оборотов. Если эффект изменения веса действительно присутствует, он будет заметен на рычажных весах. Их точность, учитывая трение в шарнирах, лежит в пределах 1 гр.

Приступим к эксперименту.

Вначале раскрутим уравновешенный гироскоп в горизонтальной плоскости по часовой стрелке. Вращающийся маховик никогда не будет полностью уравновешен, так как невозможно произвести его идеальную балансировку. Да и нет идеальных подшипников.

Откуда возникает осевая и радиальная вибрация, которая переходит на коромысло весов? В результате чего может возникнуть мнимое увеличение или уменьшение веса? Попробуем раскрутить маховик в другую сторону, чтобы проверить теорию о том что именно направление вращения играет главную роль в гравитационном затмении. Но, похоже, чуда так и не произойдет.

Что будет, если подвесить и раскрутить гироскоп в вертикальной плоскости? Но и в этом случае не происходит никаких изменений на весах.

Принудительная прецессия.

Возможно в школе или в институте вам показывали такую установку для демонстрации принудительной прецессии. Если раскрутить гироскоп, например, по часовой стрелке в вертикальной плоскости, а потом повернуть его опять же по часовой стрелке, если смотреть сверху, но уже в горизонтальной плоскости, то он как бы взлетает. Таким образом он реагирует на внешние воздействия и стремится совместить оснь и направление своего вращения с осью и направлением вращения в новой плоскости.

У некоторых людей внезапно нарывших эту тему, складывается ошибочное понимание этого процесса. Мм кажется, что механический гироскоп способен взлететь, если его принудительно раскрутить во второй плоскости и таким образом якобы можно создать инновационный двигатель. В то же время гироскоп здесь поднимается лишь потому, что отталкивается от вращающейся подставки, а она в свою очередь отталкивается от стола. В невесомости суммарный импульс такой конструкции будет равен нулю.

Среди механических гироскопов выделяется ро́торный гироско́п — быстро вращающееся твёрдое тело, ось вращения которого способна изменять ориентацию в пространстве. При этом скорость
вращения гироскопа значительно превышает скорость поворота оси его
вращения. Основное свойство такого гироскопа — способность сохранять в
пространстве неизменное направление оси вращения при отсутствии
воздействия на неё моментов внешних сил.

Обязательно посмотрите это видео.
Это магазинный гироскоп:

далее вырежем из ламината рамку и согнём в кольцо проволоку,так же в
шурупах надо пробить по углублению шилом(я не делал заново,я просто
разобрал свой гироскоп и сфоткал части…))

потом соберём главную часть-ротор(или както по другому))берём донышко и
горлышко(они одинаковые)делаем в них по дырке(в цетре!!)дырка должна
быть толщиной с палку железную.Железный стержень обрежем по длине,концы
заточим.Что бы центровка была лучше,вставим стержень в дрель и как на
станке заточим напильником с 2 сторон так же надо сделать канавку для
завода ниткой(на фотке найдётё))на один из дисков намажем пластилина,а
в него напихаем гаек и грузил(у кого есть стальное кольцо-ваще
шикарно)затем соединим оба диска(бутерброд)и проткнём их через дырки
осью.Смаза всё ето дело поксиполом,засунем его(дело))в дрель и пока
поксипол стынет,будем центровать диск(чтоб не бил)ето самая важная
часть работы.Баланс должен быть идеальным.

Однажды я наблюдал разговор двух друзей, точнее подруг:

А: О, знаешь, у меня новый смартфон, в нем есть даже встроенный гироскоп

Б: Аа, да, я тоже скачала себе, поставила гироскоп на месяц

А: Эмм, ты точно уверена, что это гироскоп?

Б: Да, гироскоп для всех знаков зодиака.

Чтобы таких диалогов в мире стало чуть меньше, предлагаем узнать, что такое гироскоп и как он работает.

Гироскоп: история, определение

Гироскоп – прибор, имеющий свободную ось вращения и способный реагировать на изменение углов ориентации тела, на котором он установлен. При вращении гироскоп сохраняет свое положение неизменным.

Само слово происходит от греческих gyreuо – вращаться и skopeo – смотреть, наблюдать. Впервые термин гироскоп был введен Жаном Фуко в 1852 году, но изобрели прибор раньше. Это сделал немецкий астроном Иоганн Боненбергер в 1817 году.

Представляют собой вращающиеся с высокой частотой твердые тела. Ось вращения гироскопа может изменять свое направление в пространстве. Свойствами гироскопа обладают вращающиеся артиллерийские снаряды, винты самолетов, роторы турбин.

Простейший пример гироскопа – волчок или хорошо всем известная детская игрушка юла. Тело, вращающееся вокруг определенной оси, которая сохраняет положение в пространстве, если на гироскоп не действуют какие-то внешние силы и моменты этих сил. При этом гироскоп обладает устойчивостью и способен противостоять воздействию внешней силы, что во многом определяется его скоростью вращения.

Например, если мы быстро раскрутим юлу, а потом толкнем ее, она не упадет, а продолжит вращение. А когда скорость волчка упадет до определенного значения, начнется прецессия – явление, когда ось вращения описывает конус, а момент импульса волчка меняет направление в пространстве.

Виды гироскопов

Существует множество видов гироскопов: двух и трехстепенные (разделение по степеням свободы или возможным осям вращения), механические , лазерные и оптические гироскопы (разделение по принципу действия).

Рассмотрим самый распространенный пример — механический роторный гироскоп . По сути это волчок, вращающийся вокруг вертикальной оси, которая поворачивается вокруг горизонтальной оси и в свою очередь закреплена в еще одной раме, поворачивающейся уже вокруг третьей оси. Как бы мы не поворачивали волчок, он всегда будет находится именно в вертикальном положении.

Применение гироскопов

Благодаря своим свойствам гироскопы находят очень широкое применение. Они используются в системах стабилизации космических аппаратов, в системах навигации кораблей и самолетов, в мобильных устройствах и игровых приставках, а также в качестве тренажеров.

Интересует, как такой прибор может поместиться в современный мобильный телефон и зачем он там нужен? Дело в том, что гироскоп помогает определить положение устройства в пространстве и узнать угол отклонения. Конечно, в телефоне нет непосредственно вращающегося волчка, гироскоп представляет собой микроэлектромеханическую систему (МЭМС), содержащую микроэлектронные и микромеханические компоненты.

Как это работает на практике? Представим, что вы играете в любимую игру. Например, гонки. Чтобы повернуть руль виртуального автомобиля не нужно нажимать никаких кнопок, достаточно лишь изменить положение своего гаджета в руках.

Как видим, гироскопы – удивительные приборы, обладающие полезными свойствами. Если вам понадобится решить задачу на расчет движения гироскопа в поле внешних сил, обращайтесь к специалистам студенческого сервиса , которые помогут вам справится с ней быстро и качественно!

Сейчас все смартфоны оснащены как минимум одним датчиком, а чаще всего несколькими. Самыми распространенными стали датчики приближения, освещения и движения. Большинство смартфонов оснащены акселерометром, реагирующим на перемещение устройства в двух или максимум в трех плоскостях. Для полноценного взаимодействия с гарнитурой виртуальной реальности нужен гироскоп, который определяет движения в любом направлении.

Гироскоп в смартфоне – это микроэлектромеханический преобразователь угловых скоростей в электрический сигнал. Другими словами этот датчик рассчитывает изменение угла наклона относительно оси при повороте устройства.

Гироскоп относится к микроэлектромеханическим системам (МЭМС), которые совмещают в себе механическую и электронную часть. Подобные чипы имеют размеры порядка пары миллиметров или меньше.

Как работает гироскоп

Обычный гироскоп состоит из инерционного предмета, который быстро вращается вокруг своей оси. Тем самым он сохраняет свое направление, а смещение контролируемого объекта измеряется по изменению положения подвесов. В смартфоны такой волчок явно не поместиться, вместо него используется МЭМС.

Преобразование механического движения в электрический сигнал

В самом простом одноосевом гироскопе есть две подвижные массы, двигающиеся в противоположных направлениях (на картинке изображены синим цветом). Как только прикладывается внешняя угловая скорость, на массу действует сила Кориолиса, которая направлена перпендикулярно их движению (отмечена оранжевым цветом).

Под действием силы Кориолиса происходит смещение масс на величину пропорциональную прикладываемой скорости. Изменение положения масс меняет расстояние между подвижными электродами (роторами) и неподвижными (статорами), что приводит к изменению емкости конденсатора и соответственно напряжения на его обкладках, а это уже электрический сигнал. Вот такие множественные сигналы и распознаются гироскопом MEMS, определяя направление и скорость движения.

Вычисление ориентации смартфона

Микроконтроллер получает сведения о напряжении и преобразует их в угловую скорость в данный момент. Величину угловой скорости можно определять с заданной точностью, например до 0,001 градусов в секунду. Чтобы определить насколько градусов вокруг оси повернули устройство, необходимо мгновенную скорость умножить на время между двумя показаниями датчика. Если использовать трехосевой гироскоп, то получим данные о поворотах относительно всех трех осей, то есть таким образом определить ориентацию смартфона в пространстве.

Здесь стоит отметить, что для получения значений углов, необходимо интегрировать первоначальные уравнения, в которые входят угловые скорости. При каждом интегрировании увеличивается погрешность. Если вычислять положение только при помощи гироскопа, то со временем рассчитываемые значения станут некорректными.

Поэтому в смартфонах для точного определения ориентации в пространстве необходимы данные еще и акселерометра. Этот датчик измеряет линейное ускорение, но не реагирует на повороты. Оба датчика способны полностью описать все виды движения. Основное преимущество гироскопа над акселерометром в том, что он реагирует на движение в любом направлении.

Зачем нужен гироскоп в смартфоне

Повышенное внимание этому датчику оказывается последние пару лет, когда активно начали развиваться игры и приложения виртуальной реальности. Для взаимодействия пользователя с виртуальной реальностью программе необходимо точно определить положение человека в пространстве. Сейчас даже в самых бюджетных смартфонах установлен акселерометр, но его показания сопровождаются шумами, и датчик не реагирует на повороты и движения в горизонтальной плоскости. Следовательно, для полного погружения в виртуальную реальность в смартфоне обязательно должен быть гироскоп и акселерометр.

Как узнать есть ли в смартфоне гироскоп

Обычно в характеристиках смартфона указано, какие в нем есть датчики. Если же вы сомневаетесь в правдивости информации, то помогут специальные программы. Например, Sensor Box for Android показывает информацию о всех встроенных датчиках. Гироскоп в нем обозначен как Gyroscope. Есть и другие способы, которые мы описывали в этой статье.

3-х осевой гироскоп и акселерометр GY-521 (MPU 6050)

Обзор датчика пространства GY-521 (MPU6050)

GY-521 (рис. 1) – модуль с гироскопом, акселерометром и термометром на базе микросхемы MPU-6050 используется в любительской робототехнике для определения положения в пространстве.

Рисунок 1. Модуль GY521.

Модуль GY-521 построен на базе микросхемы MPU6050. На плате модуля также расположена необходимая обвязка MPU6050, включая подтягивающие резисторы интерфейса I2C. Гироскоп используется для измерения линейных ускорений, а акселерометр – угловых скоростей. Совместное использование акселерометра и гироскопа позволяет определить движение тела в трехмерном пространстве.

Характеристики модуля GY-521 (MPU6050)

  • Питание: 3,5 – 6 В;

  • Ток потребления: 500 мкА;

  • Акселерометр диапазон измерений: ± 2 ± 4 ± 8 ± 16g,

  • Гироскоп диапазон измерений: ± 250 500 1000 2000 ° / s,

  • Интерфейс: I2C.

Подключение к плате Arduino

Подключение к плате Arduino по интерфейсу I2C. Схема подключения показана на рис. 2.

Рисунок 2.

Загрузив на плату Arduino скетч сканирования I2C-устройств (Листинг 1), в мониторе последовательного порта увидим I2C-адрес модуля MPU6050 – 0x68 (рис. 3).

Листинг 1

#include «Wire.h»

//#define MY_SERIAL //

void setup()

{

// put your setup code here, to run once:

Serial.begin(9600);

Serial.println(«\nI2C Scanner»);

Wire.begin();

}

void loop()

{

int nDevices;

byte error, address;

Serial.println(«Scanning I2C bus…\n»);

nDevices = 0;

Serial.print(» 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F»);

for(address = 0; address < 128; address++ )

{

if((address % 0x10) == 0)

{

Serial.println();

if(address < 16)

Serial.print(‘0’);

Serial.print(address, 16);

Serial.print(» «);

}

// The i2c_scanner uses the return value of

// the Write.endTransmisstion to see if

// a device did acknowledge to the address.

Wire.beginTransmission(address);error = Wire.endTransmission();

if (error == 0)

{

if (address<16)

Serial.print(«0»);

Serial.print(address, HEX);

nDevices++;

}

{

Serial.print(«—«);

}

Serial.print(» «);

delay(1);

}

Serial.println();

if (nDevices == 0)

Serial.println(«No I2C devices found\n»);

{

Serial.print(«Found «);

Serial.print(nDevices);

Serial.println(» device(s) «);

}

delay(2500); // wait 5 seconds for next scan

}

Рисунок 3.

Получение показаний датчика MPU6050

Для работы с датчиком MPU6050 будем использовать библиотеки I2Cdev и MPU6050. После установки библиотек загрузим на плату Arduino скетч для отображения показаний акселерометра по одной из осей – оси x. Содержимое скетча показано в листинге 2.

Листинг 2

#include «I2Cdev.h»

#include «MPU6050.h»

#define TIME_OUT 20

MPU6050 accgyro;

unsigned long int t1;

void setup() {

Serial.begin(9600);

accgyro.initialize();

}

void loop() {

long int t = millis();

if( t1 < t ){

int16_t ax, ay, az, gx, gy, gz;

t1 = t + TIME_OUT;

accgyro.getMotion6(&ax, &ay, &az, &gx, &gy, &gz);

Serial.println(ax);

}

}

Для отображения данных выбираем в настройках Плоттер по последовательному соединению (рис. 4). Смотрим показания вращая датчик по оси x в одну и другую стороны.

Рисунок 4.

Библиотека MPU6050 по умолчанию настраивает датчик на диапазон ±8g (возможные значения ±2g, 4g, 8g и 16g). для 16 разрядного АЦП датчика это значения от -215 до 215 , поэтому возможные значения на графике ±215/16*8 (-16384 до 16384).

Скетч из листинга 3 преобразует сырые показания датчика MPU6050 в угол наклона датчика относительно оси x.

Листинг 3

#include «I2Cdev.h»

#include «MPU6050.h»

#define TO_DEG 57.2957f

#define TIME_OUT 20

MPU6050 accgyro;

float anglex;

long int t1;

void setup() {

Serial.begin(9600);

// инициализация датчика

accgyro.initialize();

}

void loop() {

long int t = millis();

if( t1 < t ){

int16_t ax, ay, az, gx, gy, gz;

float accy,gyrox;

t1 = t + TIME_OUT;

accgyro.getMotion6(&ax, &ay, &az, &gx, &gy, &gz);

// преобразование в единицы гравитации при настройках 1G

accy = ax /4096.0;

// границы от -1G до +1G

accy = clamp(accy, -1.0, 1.0);

// получить значение в градусах

if( accy >= 0){

anglex = 90 — TO_DEG*acos(accy);

} else {

anglex = TO_DEG*acos(-ay) — 90;

}

Serial.println(anglex);

}

}

И смотрим показания угла наклона, вращая датчик по оси x в одну и другую стороны (рис. 5).

Рисунок 5.

Пример использования

В качестве примера рассмотрим проект по созданию пульта на MPU6050 для удаленного управления движущейся платформой.

Нам потребуются следующие компоненты. Для пульта управления:

  • Плата Arduino Nano – 1;

  • Плата прототипирования – 1;

  • Модуль MPU6050 – 1;

  • передатчик FS1000A – 1;

  • Провода.

Для движущейся платформы:

  • Плата Arduino Nano – 1;

  • Двухколесная движущаяся платформа – 1;

  • Модуль драйвера L298N – 1;

  • приемник MX-RM-5V – 1;

  • Блок батарей 18650 – 1;

  • Провода.

Схема соединения элементов пульта управления показана на рис. 6.

Рисунок 6.

Схема соединений для компонентов для движущейся платформы показана на рис. 7.

Рисунок 7.

Приступим к написанию скетчей. Передатчик отправляет 3 значения – начальный байт отправки B11111111 и 2 значения наклона датчика – по оси x и по оси y.

Содержимое скетча показано в листинге 4.

Листинг 4

#include «I2Cdev.h»

#include «MPU6050.h»

#include <RCSwitch.h>

#define TO_DEG 57.2957f

#define TIME_OUT 20

MPU6050 accgyro;

RCSwitch mySwitch = RCSwitch();

float anglex;

float angley;

long int t1;

void setup() {

Serial.begin(9600);

// инициализация датчика

accgyro.initialize();

mySwitch.enableTransmit(2);

}

void loop() {

long int t = millis();

if( t1 < t ){

int16_t ax, ay, az, gx, gy, gz;

float accy,gyrox;

t1 = t + TIME_OUT;

accgyro.getMotion6(&ax, &ay, &az, &gx, &gy, &gz);

// преобразование в единицы гравитации при настройках 1G = 4096

accx = ax/4096.0;

accy = ax/4096.0;

// границы от -1G до +1G

accx = clamp(accx, -1.0, 1.0);

accy = clamp(accy, -1.0, 1.0);

// получить значение в градусах

if( accy >= 0){

anglex = 90 — TO_DEG*acos(accy);

} else {

anglex = TO_DEG*acos(-accy) — 90;

}

if( accx >= 0){

angley = 90 — TO_DEG*acos(accx);

} else {

angley = TO_DEG*acos(-accx) — 90;

}

// отправка данных

mySwitch.send(B11111111, 8);

delay(50);

mySwitch.send((byte)anglex, 8);

delay(50);

mySwitch.send((byte)angley, 8);

delay(100);

}

}

Плата Arduino на движущейся платформе должна получать данные и преобразовывать их в команды установки скорости для двух моторов.

Содержимое скетча показано в листинге 5.

Листинг 5

// подключение библитеки

#include <RCSwitch.h>

// создание объекта

RCSwitch mySwitch = RCSwitch();

int motor=0;

void setup() {

pinMode(10,OUTPUT);

pinMode(9,OUTPUT);

pinMode(8,OUTPUT);

pinMode(5,OUTPUT);

pinMode(7,OUTPUT);

pinMode(6,OUTPUT);

// запуск приемника

mySwitch.enableReceive(0);

}

void loop() {

if( mySwitch.available() ){

// получить данные

int value = mySwitch.getReceivedValue();

if( value == B11111111 ) {// начало передачи

motor=1;

}

else {

if(motor==1) {

go(10,9,8,value);

}

else if(motor==2) {

go(5,7,6,value);

}

motor++;

}

mySwitch.resetAvailable();

}

}

// запуск двигателей

void go(int pina,int pin1,int pin2,int val) {

Гироскоп, что это в телефоне и как он используется

Современные смартфоны оснащены множеством датчиков, которые не только садят аккумулятор, но и постоянно отслеживают состояние телефона и делают пользование им значительно удобнее. Сегодня мы разберёмся с таким датчиком, как гироскоп в телефоне, что это, зачем он нужен и где пригождается.

Немного истории

Самым примитивным примером гироскопа может стать детский волчок или юла. Именно они наглядно визуализируют принцип действия датчика.

Общественности прибор был впервые представлен немецким учёным в области математики и астрономии И. Боненбергером. Хотя в некоторых научных документах указано, что на самом деле изобретение было сделано тремя годами раньше.

Первая компания, которая применила датчик в своём устройстве, Apple. Именно iPhone первыми смогли похвастаться подобным оснащением. Сегодня почти каждый современный смартфон имеет гироскоп. Уточнить его наличие можно в технической документации к устройству. Как правило, в характеристиках устройства в разделе датчиков находится полная информация о наличии приборов. Если по каким-то причинам кажется, что информация недостоверная можно установить дополнительный софт, например, Sensor Box for Android. Программа показывает данные обо всех обнаруженных датчиках.

Гироскоп в телефоне, что это?

Фактически это специальный чип, расположенный внутри устройства. Чтобы его увидеть придётся разобрать смартфон, так как он скрыт от глаз пользователей. Он распознает и анализирует положение гаджета в окружающем пространстве и вычисляет углы его размещения.

Помимо смартфонов, подобные датчики успешно зарекомендовали себя и в других сферах деятельности человека: авиация, судоходство, космонавтика. Также можно встретить подобные датчики в некоторых приборах и бытовой технике.

Функции гироскопа в смартфоне

Внедрение технологии позволило реализовать новые возможности для мобильных устройств. Разберёмся что именно берёт на себя гироскоп и какие функции выполняет в современных гаджетах.

  • Встряхивание телефона. Это тот момент работы гироскопа, который трудно пропустить. Если раньше пользователю приходилось нажимать на кнопку или выполнять свайп по экрану, чтобы принять звонок, то сейчас сделать это можно, встряхнув телефон. Аналогичный принцип распространяется на пролистывание фотографий, смену текущей мелодии в проигрывателе или переход к следующей странице электронной книги.
  • Также удобным становится технология при использовании калькулятора. Появляется возможность выполнить вычисления с минимальным количеством функций без использования рук. А поворот экрана на 90 градусов в горизонтальное расположение раскрывает панель дополнительных возможностей.
  • Возможность повторного поиска смартфонов с активной функцией Bluetooth.
  • Возможность пользоваться специфическими программами, позволяющими вычислить угол наклона и определить его уровень, например, в строительстве.
  • Также технология удобна в процессе определения местности, на которой находится владелец смартфона. То есть GPS находит координаты нахождения, а гироскоп отвечает за направление, что не менее важно в работе навигатора.

Технология помогает ориентироваться на местности с большей точностью. Исходя из описанных функций, гироскоп удобная и нужная в смартфоне вещь.

Есть, конечно, и некоторые нюансы, портящие впечатление от пользования датчиком. Ряд приложений могут потерять часть быстродействия и медленнее реагировать на команды пользователя при включённом гироскопе. Также может наблюдаться ненужный отклик датчика, например, когда владелец смартфона лёжа читает книгу и переворачивается на другой бок. Но это погрешности незначительны и устраняются путём временного отключения датчика.

Отличие от акселерометра

Многие, отвечая на вопрос, гироскоп в телефоне, что это, искренне полагают, будто он и акселерометр — это либо идентичные устройства, либо вовсе разные названия одной технологии. На самом деле оба этих суждения ложны. Эти датчики фиксируют положение смартфона в пространстве, но в разных плоскостях. Акселерометр призван отследить повороты, гироскоп же имеет значительно больше возможностей:

  • не только повороты, но и перемещение устройства в пространстве;
  • определение сторон света, то есть функции компаса;
  • скорость перемещения в пространстве.

То есть гироскоп фиксирует перемещения прибора сразу в трёх плоскостях. Отсюда и большие возможности смартфонов, оснащённых датчиком. А если устройство совмещает оба прибора, то это делает его ещё более функциональным.

Где чаще используется

Итак, мы немного разобрались с вопросом, что такое гироскоп в телефоне. Теперь постараемся наглядно привести примеры его наиболее частого использования.

По статистике, на практике устройство, оснащённое гироскопом, приходится по душе любителям поиграть в мобильные игры. Гироскоп меняет принцип игры в лучшую сторону. Помимо того, что картинка получается более качественной, а сам процесс игры интерактивным и захватывающим. Если раньше для смены положения персонажа приходилось водить пальцами по экрану и нажимать на определённые зоны, то сейчас достаточно повернуть в пространстве сам гаджет, датчик захватит положение и интерпретирует его в игре. В зависимости от угла поворота смартфона сменяется и угол поворота персонажа. В итоге получается почти виртуальная реальность. В шутерах гироскоп очень удобен для прицела. Также датчик активно используется в различных симуляторах.

Ещё одна категория пользователей, которая не обошла датчик стороной – представители усложнённых профессий, в которых требуется точный расчёт и измерения. Например, автослесарь может определить расположение детали, просто приложив к ней телефон. В строительной отрасли таким же образом отслеживаются несущие конструкции на предмет ровного расположения. При этом информация о градусе наклона выводится прямо на экран смартфона и отличается удивительной точностью.

В качестве вывода, хочется отметить, что гироскоп – очень удобное и практичное изобретение. Благодаря ему мобильные устройства имеют значительно больше доступных возможностей, которые облегчают и упрощают их использование. Телефон, оснащённый датчиком способен выступать в качестве измерительного прибора, навигатора, компаса и т. д. Также позволяет выполнять частичное управление системой, не касаясь экрана, особенно удобно последнее в период зимы, когда не очень хочется снимать варежки, чтобы ответить на звонок или сменить текущую мелодию. Кроме того, производители постоянно сокращают энергозатратность датчика, что позволяет использовать его без заметного расхода заряда аккумулятора.

Вот мы и ответили на вопрос: гироскоп в телефоне, что это и как используется. А ваш смартфон оснащён таким датчиком? Насколько он оказался полезным в жизни? Используете или отключаете.

Для успокоения морской качки, передвижении на гироскутере и ориентации картинки в телефоне служат совершенно разные устройства с общим названием — гироскопы. Подборка видеороликов поможет вам разобраться в принципах работы современных систем стабилизации.

Механические гироскопы

Вращение придает объекту стабильность в пространстве, этот принцип используют детский волчок, тарелочка-фрисби и пуля нарезного оружия. Любой из этих предметов можно назвать гироскопом, противодействующим отклонению от оси вращения.

Если вращающийся объект будет закреплен на оси с несколькими степенями свободы, то получится роторный гироскоп. Как только ротор будет раскручен, его ось приобретает устойчивость в пространстве и старается сохранить ориентацию, заданную в начальный момент.

Чем больше масса ротора и скорость его вращения, тем выше способность такого гироскопа сохранять заданное положение главной оси. Так, установка успокоения качки для 10-метровой лодки в сборе весит около 350 кг и имеет ротор, вращающийся со скоростью от 6000 до 10 000 об/мин.

Такие стабилизаторы требуют очень высокой точности изготовления, потребляют значительное количество энергии и издают шум при работе. Все это сказывается на цене и ограничивает их применение в быту. Зато они незаменимы в случаях, когда стабилизируемый объект не имеет возможности опираться на какую-либо поверхность — в воде, воздухе и космическом пространстве.

Электромеханические гироскопы

Моноколеса, стабилизаторы для камер и даже смартфоны также оснащены гироскопами, но их системы работают по совершенно иному принципу. В их основе лежат микроэлектромеханические системы — это микросхемы со встроенным датчиком инерции, которые способны переводить его механические перемещения в электрические импульсы. Общий принцип действия можно понять из следующего ролика.

Управляющие системы по показаниям таких датчиков вычисляют текущее положение объекта и стабилизируют его при помощи электромоторов. Принцип работы хорошо виден на примере стабилизатора для видеосъемки. При просмотре ролика можно включить субтитры с переводом на русский.

Электронный гироскоп

Изобретение относится к области измерительной техники и может быть использовано в приборостроении и машиностроении для измерения угловой скорости. Гироскоп содержит пластину пьезоэлектрика, на которую нанесены встречно-штыревые преобразователи (ВШП), отражающие структуры драйвера поверхностных акустических волн, а также электроды чувствительного элемента разности потенциалов, размещенные попарно за пределами ВШП на расстояниях, не меньших половины периода стоячих поверхностных акустических волн, и параллельно направлению распространения поверхностных акустических волн, по одному электроду каждой пары у одного из противоположных краев пластины пьезоэлектрика. Электроды, которые находятся ближе к одному и тому же краю пластины пьезоэлектрика, электрически соединены под слоем поглотителя акустических колебаний с одной и той же контактной шиной, а находящиеся в одной паре электроды размещены вдоль одной и той же пучности стоячей поверхностной акустической волны, но ближе к противоположным краям пластины пьезоэлектрика. Контактные шины могут быть размещены на ребрах жесткости, находящихся на краях пластины пьезоэлектрика и параллельных основному направлению распространения поверхностных акустических волн. Техническим результатом является повышение точности измерения угловой скорости. 1 з.п. ф-лы, 1 ил.

Изобретение относится к области приборостроения, а именно к приборам ориентации, навигации и систем управления подвижными объектами, и предназначено для измерения угловой скорости в этих системах.

Известные волоконно-оптические гироскопы и лазерные гироскопы широко используются в инерциальной навигации и в системах наведения. Преимуществом этих гироскопов является достаточно высокая точность. Недостатком этих гироскопов является достаточно высокая стоимость и относительно большие габариты. К областям применения, требующим гироскопов менее дорогих и меньшего размера, относятся: системы автомобильной безопасности (системы против скольжения, системы камер), потребительские товары (видеокамеры, GPS, спортивное оборудование), промышленные товары (роботы, управление оборудованием), медицинские изделия (хирургические инструменты) .

Известны микромеханические гироскопы на основе кремния . Такие гироскопы представляют собой пластину, закрепленную на торсионах и совершающую вынужденные колебания на собственной резонансной частоте. Гироскоп приводится в колебательное движение путем подачи сигнала на драйвер (как правило, электростатический). При внешнем вращении микромеханического гироскопа возникает сила Кориолиса, создающая колебания относительно измерительной оси. При этом зазор между подвижной массой микромеханического гироскопа и основанием изменяется, что приводит к изменению расстояния между электродами и соответствующей емкости. Измеряя изменение величины емкости, можно определить изменение угловой скорости вращения микромеханического гироскопа.

Однако вышеуказанные гироскопы имеют низкую точность и низкую механическую прочность.

Известен также Виброгироскоп (патент РФ №2123219, H01L 41/08, 1998.12.10.), содержащий твердотельный элемент из сегнетоэлектрической керамики с размытым фазовым переходом, в виде монолитного стержня с крестообразным поперечным сечением, с двумя парами сплошных и двумя парами встречно-штыревых электродов. Сплошные электроды соединены параллельно и подключены к выходу первого генератора. Встречно-штыревые электроды подключены к частотно-задающим цепям второго и третьего генераторов. Выходы второго и третьего генераторов подключены к входам смесителя, выход которого подключен к входу детектора, а выход детектора подключен к входу индикатора.

Стабильность и помехоустойчивость позволяют применять виброгироскоп в компактных системах навигации и автоматического управления подвижными объектами.

Однако виброгироскоп имеет ограничения по рабочим характеристикам из-за принципа действия, который основан на вибрации подвешенных механических структур. Кроме того, эта подвешенная механическая структура очень чувствительна к внешним ударам и вибрации, т.к. она не может быть жестко присоединена к подложке из-за резонансной вибрации. Это ограничивает диапазон его применения.

Микро-электро-механический гироскоп включает в себя пластину пьезоэлектрика, на которую нанесены встречно-штыревые преобразователи (ВШП) драйвера поверхностных акустических волн (ПАВ), ВШП чувствительного элемента колебаний ПАВ и отражающие структуры, расположенные за пределами встречно-штыревых преобразователей.

Принцип действия микро-электро-механического гироскопа основан на использовании поверхностной акустической волны, распространяющейся по пьезоэлектрической подложке. В отличие от других, этот гироскоп имеет планарную конфигурацию без подвешенных резонансных механических структур, вследствие чего является устойчивым и ударопрочным.

Недостатком микро-электро-механического гироскопа является низкая точность и соответственно невозможность использования его для высокоточных применений вследствие того, что электроды ВШП чувствительного элемента колебаний ПАВ неизбирательно воспринимают изменения пьезоэлектрических потенциалов, возникающие при действии разнонаправленных сил Кориолиса, соответствующих разнонаправленным движениям частиц пьезоэлектрической пластины, участвующих в формировании ПАВ. Вышеизложенные факты приводят к снижению чувствительности и точности оценивания угловой скорости, что и является недостатками прототипа.

Задачей настоящего изобретения является повышение чувствительности и точности при измерениях угловой скорости вращения с использованием пьезоэлектрических устройств.

Техническим результатом является повышение точности и чувствительности измерений.

Технический результат достигается тем, что в электронном гироскопе, содержащем пьезопластину, на которую нанесены встречно-штыревые преобразователи и отражающие структуры драйвера поверхностных акустических волн, согласно изобретению за пределами встречно-штыревых преобразователей драйвера поверхностных акустических волн параллельно направлению распространения поверхностных акустических волн дополнительно попарно, на расстояниях, между двумя соседними парами электродов, не меньших половины периода поверхностных акустических волн, размещены электроды чувствительного элемента разности потенциалов, по одному электроду каждой пары у одного из противоположных краев пьезопластины, причем те из электродов каждой пары, которые находятся ближе к одному и тому же краю пьезопластины, электрически соединены под слоем поглотителя акустических колебаний с одной и той же контактной шиной, а находящиеся в одной паре электроды размещены один напротив другого, но ближе к противоположным краям пьезопластины, выполненной из пьезоэлектрика или пьезополупроводника.

Драйвер поверхностных акустических волн создает поверхностные акустические волны на поверхности пьезопластины, что является первичным вибрационным перемещением для этого гироскопа. Силы Кориолиса и первичные поверхностные акустические волны определяют вторичное вибрационное перемещение (вторичные поверхностные акустические волны) в направлении, ортогональном к направлению первичных поверхностных акустических волн. При этом силы Кориолиса, возникающие при наличии внешнего вращения основания гироскопа и приложенные к частицам пьезоэлектрика или пьезополупроводника, движущимся в одном направлении, противоположны по направлению силам Кориолиса, приложенным к другим частицам пьезоэлектрика или пьезополупроводника, в тот же момент времени на соседнем участке поверхностных акустических волн, движущимся в противоположном направлении.

В отличие от прототипа в электронном гироскопе измеряется не разность потенциалов, создаваемая под действием одновременно разнонаправленных сил Кориолиса всеми пучностями стоячей первичной ПАВ на электродах чувствительного элемента вторичной поверхностной акустической волны, а разность потенциалов, образованная под действием эффекта увлечения частиц пьезоэлектрика или пьезополупроводника одновременно однонаправленными силами Кориолиса, то есть при движении частиц пьезоэлектрика только вдоль тех участков первичной поверхностной акустической волны, которые находятся на расстояниях, кратных периоду поверхностных акустических волн, что позволяет повысить показатели чувствительности и точности при измерении угловой скорости пьезопластины.

Другим отличием от прототипа является то, что расстояния между электродами одной пары электродов чувствительного элемента разности потенциалов, образующими одну пару, примерно равны апертуре драйвера первичных поверхностных акустических волн, а не как у прототипа, у которого расстояния между электродами одной пары электродов встречно-штыревого преобразователя чувствительного элемента вторичной поверхностной акустической волны соответствуют четверти длины волны вторичной поверхностной акустической волны в той ее части, которая распространяется за пределами апертуры встречно-штыревого преобразователя драйвера первичных поверхностных акустических волн.

Технический результат достигается за счет того, что разности потенциалов вдоль одного из участков первичной поверхностной акустической волны образуются в некоторые моменты времени только под действием однонаправленных сил Кориолиса, что обеспечивает увеличение амплитуды совокупной разности потенциалов на контактных шинах и, тем самым, повышение точности и чувствительности измерений по сравнению с прототипом.

Проведенный заявителем анализ уровня техники установил, что аналоги, характеризующиеся совокупностями признаков, тождественным всем признакам заявленного устройства, отсутствуют, следовательно, заявленное изобретение соответствует условию «новизна».

В настоящее время автору не известны гироскопы, которые имели бы такую высокую чувствительность и динамический диапазон, подходящий для многих промышленных применений, которые обеспечивает предлагаемая конструкция гироскопа.

Результаты поиска известных технических решений в данной и смежных областях техники с целью выявления признаков, совпадающих с отличительными от прототипов признаками заявленного изобретения, показали, что они не следуют явным образом из уровня техники.

Из определенного заявителем уровня техники не выявлена известность влияния предусматриваемых существенными признаками заявленного изобретения преобразований на достижение указанного технического результата, следовательно, заявленное изобретение соответствует «изобретательскому уровню».

Сущность изобретения поясняется чертежом, где представлена схема электронного гироскопа.

Электронный гироскоп состоит из основания и выполненных на нем встречно-штыревых преобразователей и отражающих структур.

Основанием электронного гироскопа на ПАВ служит прямоугольная пьезопластина 1, выполненная из пьезоэлектрика или пьезополупроводника, например из кварца, ниобата лития или из CdS, CdSe, слоистой структуры LiNbO3 — Si соответственно .

На двух противоположных краях поверхности прямоугольной пьезопластины 1 в направлении распространения первичной ПАВ сформированы отражающие структуры 4 и ВШП 5 драйвера ПАВ, а в ортогональном направлении по обе стороны от апертуры драйвера ПАВ вдоль направления распространения первичной ПАВ сформированы электроды чувствительного элемента разности потенциалов 6, поглотители акустических колебаний 3 с контактными шинами 2 в соответствующей последовательности.

Отражающие структуры 4 расположены за ВШП 5 драйвера ПАВ, а электроды чувствительного элемента разности потенциалов 6, поглотители акустических колебаний 3 и контактные шины 2 — между другими двумя противоположными краями пьезопластины 1 вдоль направления распространения первичной ПАВ. Поглотители акустических колебаний 3 выполняют функции поглощения ПАВ так, чтобы поверхность пьезопластины 1 за поглотителями акустических колебаний была нечувствительной к ПАВ, создаваемым ВШП 5 драйвера ПАВ, что позволяет аккумулировать на одной контактной шине потенциалы, одновременно сформированные на электродах чувствительного элемента разности потенциалов 6 под действием сил Кориолиса одного направления.

Устройство работает следующим образом. На ВШП 5 драйвера ПАВ от внешнего генератора (не показан) подается электрический сигнал с заданной частотой. Если пьезопластина 1 выполнена из ниобата лития, то электрический сигнал может иметь частоту около 1 ГГц.

Первичные ПАВ создаются на пьезопластине 1 встречно-штыревыми преобразователями 5 драйвера ПАВ и отражающими структурами 4. Поверхностные акустические волны распространяются по пьезопластине 1 в области, ограниченной поглотителями акустических колебаний 3. Распространяясь дальше, первичная ПАВ взаимодействует с отражающими структурами 4.

При появлении внешнего вращения основания гироскопа к вибрирующим заряженным частицам материала пластины пьезоэлектрика 1 прикладываются силы Кориолиса. Напряжение на контактных шинах обусловлено поперечным акустоэлектрическим эффектом, возникающим под действием сил Кориолиса .

В результате действия сил Кориолиса вибрирующие заряженные частицы материала пластины пьезоэлектрика 1 смещаются в направлении действия силы Кориолиса, изменяя распределение электрического потенциала. Так возникает разность потенциалов между электродами чувствительного элемента разности потенциалов 6, размещенными у противоположных краев пластины пьезоэлектрика.

Вибрирующие частицы материала пластины пьезоэлектрика 1, смещенные вследствие действия сил Кориолиса, через электроды 6 изменяют потенциалы на контактных шинах 2. Разность потенциалов между контактными шинами 2 является высокочастотным сигналом и может быть измерена, например, анализатором спектра .

Для обеспечения возможности суммирования на контактных шинах 2 разностей потенциалов одного знака между электродами 6 и контактными шинами 2 наносится слой поглотителя акустических колебаний 3 или контактные шины размещаются на ребрах жесткости (не показаны), нечувствительных к колебаниям поверхности пьезоэлектрической пластины. В качестве поглотителя акустических колебаний 3 могут использоваться резиноподобные клеи различных марок.

По разности потенциалов между контактными шинами 2 судят о величине угловой скорости вращения пластины пьезоэлектрика 1. Угловую скорость определяют, например, по градуировочной характеристике гироскопа. При отсутствии внешнего вращения основания гироскопа силы Кориолиса не возникают, поэтому не возникает и разность потенциалов между контактными шинами 2, которая в этом случае практически равна нулю.

Таким образом, приведенные сведения доказывают, что при осуществлении заявленного изобретения выполнены следующие условия:

— средство, воплощающее устройство-изобретение при его осуществлении, предназначено для использования в приборостроении, а именно в системах навигации динамических объектов, в системах управления, в том числе в автомобильной промышленности и робототехнике;

— для заявленного изобретения в том виде, как оно охарактеризовано в независимом пункте формулы изобретения, подтверждена возможность его осуществления с помощью описанных и других известных до даты подачи заявки средств;

— средство, воплощающее заявленное изобретение при его осуществлении, способно обеспечить получение указанного технического результата.

Следовательно, заявленное изобретение соответствует условию патентоспособности «промышленная применимость».

Источники информации

1. Морган Д. Устройства обработки сигналов на поверхностных акустических волнах / Пер. с англ. М.: Радио и связь, 1990.

2. Физическая акустика / Под ред. У.Мэзона. М.: Мир, 1969.

1. Электронный гироскоп, содержащий пьезопластину, на которую нанесены встречно-штыревые преобразователи и отражающие структуры драйвера поверхностных акустических волн, отличающийся тем, что за пределами встречно-штыревых преобразователей драйвера поверхностных акустических волн параллельно направлению распространения поверхностных акустических волн дополнительно попарно, на расстояниях между двумя соседними парами электродов, не меньших половины периода поверхностных акустических волн, размещены электроды чувствительного элемента разности потенциалов, по одному электроду каждой пары у одного из противоположных краев пьезопластины, причем те из электродов каждой пары, которые находятся ближе к одному и тому же краю пьезопластины, электрически соединены под слоем поглотителя акустических колебаний с одной и той же контактной шиной, а находящиеся в одной паре электроды размещены один против другого, но ближе к противоположным краям пьезопластины.

2. Электронный гироскоп по п.1, отличающийся тем, что контактные шины размещены на ребрах жесткости, находящихся на краях пьезопластины и параллельных основному направлению распространения поверхностных акустических волн.

28-072011
Современные МЭМС-гироскопы и акселерометры

За последние несколько лет широкое распространение по всему миру получили датчики, основанные на микроэлектромеханических системах, так называемых МЭМС. Популярность данных устройств обусловлена рядом причин, основными из которых являются простота их использования, относительно низкая цена и малые габариты. МЭМС-датчики, как правило, оснащаются интегрированной электроникой обработки сигнала и не имеют движущихся частей. Этим обуславливается их высокая надежность и способность обеспечивать стабильные показания в достаточно жестких условиях окружающей среды (перепады температур, удары, влажность, вибрация, электромагнитные и высокочастотные помехи). Совокупность данных преимуществ побуждает производителей систем для различных сфер применения (от авиа — и автомобилестроения до бытовой техники) использовать в своих разработках те или иные МЭМС-сенсоры.
В данной статье будут рассмотрены МЭМС-датчики для измерения ускорения (акселерометры) и угловой скорости (гироскопы). Данные устройства активно используются в системах управления летательными аппаратами, для обеспечения безопасности движения автомобилей, в сельскохозяйственной технике, изделиях специального назначения и др. В настоящее время существует достаточно много различных решений по исполнению МЭМС-устройств. В их числе – одноосевой МЭМС-гироскоп с вибрирующим кольцом и трехосевой емкостной МЭМС-акселерометр.
Одноосевой МЭМС-датчик угловой скорости (гироскоп) с вибрирующим кремниевым кольцом
Данный кремниевый цифровой гироскоп разработан с учетом требований к низкой стоимости изделия и экономичному энергопотреблению для систем навигации и наведения нового поколения. Он способен измерять угловую скорость до ± 1,0 є/с и имеет два режима вывода: аналоговый сигнал напряжения, линейно-пропорциональный угловой скорости, и цифровой по протоколу SPI®.
Режима вывода – аналоговый или цифровой – выбирается пользователем при подключении датчика к какой-либо системной плате. Главной отличительной особенностью гироскопа является применение технологии сбалансированного вибрирующего кольца в качестве датчика угловой скорости. Именно она обеспечивает надежную работу и точное измерение скорости вращения даже в условиях сильной вибрации.
Возможны две основные конфигурации гироскопа, одна из них позволяет датчику измерять угловую скорость по оси, перпендикулярной к плоскости системной платы, другая дает возможность определять угловую скорость по оси, параллельной плоскости материнской платы. Сочетание в одном устройстве гироскопов обеих конфигураций позволяет получить инерциальную систему, измеряющую угловую скорость по нескольким осям (любые сочетания тангажа, крена и рысканья летательного аппарата). Размеры датчиков обеих конфигураций и оси измерения угловой скорости приведены на рис.1.

Рис. 1

Как правило, подобные гироскопы выпускаются в герметичных керамических LCC корпусах которые можно устанавливать на системные платы. Датчик состоит из пяти основных компонентов:
— кремниевый кольцевой МЭМС-сенсор (MEMS-ring),
— основание из кремния (Pedestal),
— интегральная микросхема гироскопа (ASIC),
— корпус (Package Base),
— крышка (Lid).

Рис. 2

Кремниевый кольцевой МЭМС-сенсор, микросхема и кремниевое основание размещены в герметичной части корпуса с вакуумом, частично заполненным азотом. Это дает серьезные преимущества перед сенсорами, которые поставляются в пластиковых корпусах, которые имеют определенные ограничения чувствительности в зависимости от уровня влажности.
Кремниевый кольцевой МЭМС-сенсор
Диаметр кремниевого МЭМС-кольца равен 3 мм., толщина – 65 мкм. Его изготавливают методом глубокого реактивного ионного травления объемных кремниевых структур на 5” пластинах. Кольцо поддерживается в свободном пространстве восемью парами симметричных спиц, которые исходят из твердого концентратора диаметром 1 мм. в центре кольца.
Процесс объемного травления кремния и уникальная технология изготовления кольца позволяют получить хорошие геометрические свойства, необходимые для точного баланса и термической стабильности сенсорного кольца. В отличие от других гироскопов здесь нет мелких расхождений, создающих проблемы с интерференцией и трением. Указанные особенности существенно определяют стабильность датчика при колебаниях температуры, вибрации или ударе. Еще одним преимуществом подобной конструкции является ее «врожденный» иммунитет к ошибкам, которые датчики могут выдавать под влиянием ускорения, или «g – чувствительности».
Пленочные приводы и преобразователи прикреплены к верхней поверхности кремниевого кольца по периметру и для получения электроэнергии подключены к связующим контактам в центре концентратора через треки на спицах. Это активирует или «заводит» периметр кольца в рабочий режим вибрации на уровне Cos2и с частотой 22 кГц, определяя радиальное перемещение, которое может осуществляться по причине первичного движения привода либо за счет действия кориолиосовой силы, когда гироскоп вращается относительно его оси чувствительности. Существует одна пара приводов первичного движения, одна пара первичных снимающих преобразователей и две пары вторичных снимающих преобразователей.
Комбинация сенсорной технологии и восьми вторичных снимающих преобразователей улучшает в датчике соотношение «сигнал/шум», что позволяет получать малошумящие устройства с отличными свойствами по угловому случайному дрейфу гироскопа, которые являются ключевыми для применения в сферах инерциальной навигации (например, стабильность наведения камеры или антенны). Описанную схему можно сравнить с камертонной структурой, содержащей бесконечное количество камертонов, интегрированных в единую балансирующую вибрирующую кольцевую конструкцию. Это обеспечивает наиболее высокую стабильность измерения угловой скорости по времени, температуре, вибрациям и ударам для МЕМС-гироскопов данного класса.
Концентратор в центре кольца сенсора установлен на цилиндрическом кремниевом основании диаметром 1 мм., которое связано с кольцом и ASIC с помощью эпоксидной смолы. Микросхема гироскопа имеет габариты 3х3 мм и изготовлена по технологии 0,35 мкм КМОП. ASIC и МЭМС-сенсор (кольцо) разделены физически, но соединены электрической цепью через золотые проводки. В связи с этим в подобной схеме отсутствуют внутренние каналы, что позволяет уменьшить шумовую нагрузку и получить отличные электромагнитные свойства.
Керамический корпус датчика изготовлен по технологии LCC и представляет из себя многослойную оксидно-алюминиевую конструкцию с внутренними контактными площадками для разварки, соединенными через корпус с наружными контактными площадками посредством многослойных вольфрамовых межсоединений. Аналогичные интегральные межсоединения есть в крышке гироскопа, что обеспечивает размещение чувствительного элемента датчика внутри щита Фарадея и хорошие электромагнитные показатели гироскопа. При этом внутренние и наружные контактные площадки покрыты гальваническим путем слоем никеля и золота.
Корпус включает в себя уплотнительное кольцо, на верхней части которого шовной сваркой приварена металлическая крышка. Сварка произведена электродом сопротивления, что создает полную герметичность конструкции. В отличие от большинства МЭМС-корпусов, доступных сегодня на рынке, при изготовлении корпуса данного устройства используется специально разработанная шовная сварка, при которой исключена возможность образования комочков (брызг) сварки внутри гироскопа. При использовании других технологий сварки сварочные брызги могут попадать на нижние конструкции и негативно влиять на надежность гироскопа за счет воздействия на вибрирующий МЭМС-элемент, особенно в тех местах, где конструкции имеют небольшие зазоры. В корпусе также есть встроенный датчик температуры для обеспечения внешней термокомпенсации.
Принцип действия системы гироскопа
Описываемые гироскопы обычно являются твердотельными устройствами и не имеют движущихся частей за исключением сенсорного кольца, которое имеет возможность отклоняться. Оно показывает величину и направление угловой скорости за счет использования эффекта «силы Кориолиса». Во время вращения гироскопа силы Кориолиса действуют на кремниевое кольцо, являясь причиной радиального движения по периметру кольца.
По периметру кольца равномерно расположены восемь приводов/преобразователей. При этом есть одна пара приводов «первичного движения» и одна пара первичных снимающих преобразователей, расположенных относительно их главных осей (0° и 90°). Две пары вторичных переключающих преобразователей расположены относительно их вторичных осей (45° и 135°). Приводы первичного движения и первичные переключающие преобразователи действуют вместе в замкнутой системе, чтобы возбуждать и контролировать первичную рабочую амплитуду вибрации и частоты (22 кГц).
Вторичные снимающие преобразователи распознают радиальное движение на вторичных осях, величина которого пропорциональна угловой скорости вращения, благодаря которой гироскоп обретает угловую скорость. Преобразователи производят двухполосный сжатый передающий сигнал, демодулирующийся обратно в полосы, ширина которых контролируется пользователем одним простым внешним конденсатором. Это дает пользователю возможность полностью контролировать производительность системы и делает преобразование абсолютно независимым от постоянного напряжения или низкочастотных параметрических условий электроники.
На рисунках 3 и 4 продемонстрирована структура кремниевого кольца сенсора, показывающая приводы первичного движения «PD» (одна пара), первичные снимающие преобразователи «PPO» (одна пара) и вторичные снимающие преобразователи «SPO» (две пары).

Рис. 3, 4

На рисунке 5 схематично показано кольцо, при этом спицы, приводы и преобразователи удалены для ясности. В данном случае гироскоп выключен, кольцо круглое.

Рис. 5

В момент, когда датчик находится в выключенном состоянии, в кольце возбуждается движение вдоль его основных осей за счет приводов первичного движения и первичных снимающих преобразователей, воздействуя в замкнутом контуре на систему контроля ASIC. Круглое кольцо принимает в режиме Cos2и эллиптическую форму и вибрирует с частотой 22 кГц. Это показано на Рис.6, на котором гироскоп уже включен, но еще не вращается. На четырех вторичных снимающих узлах расположенных на периметре кольца под углом 45 по отношению к основным осям нет радиального движения.

Рис. 6

Если гироскоп подвергается воздействию угловой скорости, то на кольцо действуют силы Кориолиса: по касательной к периметру кольца относительно главных осей. Эти силы деформируют кольцо, что вызывает радиальное движение вторичных снимающих преобразователей. Данное движение, определяемое на вторичных снимающих преобразователях, пропорционально прилагаемой угловой скорости. При этом двухполосный сжатый передающий сигнал демодулируется с учетом основного движения. В итоге получается низкочастотный компонент, который пропорционален угловой скорости.

Рис. 7 Режимы работы сенсорного кольца при вращающемся гироскопе

Схема управления всем гироскопом расположена в ASIC.

Рис. 8 Блоковая диаграмма функционирования ASIC-сенсора
Рис. 9 Внешний вид ASIC-гироскопа

Подобные датчики обладают миниатюрными габаритами (6,5х1,2 мм) при сверхнизком потреблении энергии (12 мВт). Для них характерен широкий диапазон измерения (до 900 градусов/сек), сверхмалый вес 0,08 грамм и высокая стабильность работы.
Гироскопы подобной конструкции можно с успехом применять для измерения скоростей вращения объекта по трем осям в транспортных и персональных навигаторах для определения и сохранения параметров движения и определения местоположения; в системах отслеживания по трассе на сельскохозяйственной технике для стабилизации антенн; в промышленной аппаратуре, робототехнике и других сферах. Использование данных датчиков угловой скорости на летательных аппаратах позволяет на порядок уменьшить габариты, вес, энергопотребление приборов и в результате значительно снизить цену навигационной системы в целом. Надежность и точность в управлении широкого спектра самолетов, вертолетов и других летательных аппаратов при этом увеличивается. Таким образом, данный вид гироскопов оптимально подходит для использования в ситуации, когда есть ограничения по габаритам, весу и стоимости изделия.
Технические характеристики гироскопа

Емкостной трехосевой МЭМС-акселерометр с цифровым выходом
Высокопроизводительный трехосевой емкостной акселерометр изготовлен по специальной технологии 3D-МЭМС.

Рис. 10 Оси датчика, по которым проводится измерение ускорения

В корпусе датчика находятся высокоточный чувствительный элемент для определения ускорений и сервисная электроника (ASIC) с гибким цифровым выходом SPI.

Рис. 11 Высокопроизводительный 3-осевой емкостной акселерометр

Схематичное расположение ASIC и блока сенсорного элемента в датчиках подобной конструкции показано на рисунке 12.

Рис. 12

Корпус акселерометра изготовлен из пластика, а крышка из металла. В нижней части корпуса по обеим сторонам расположены плоские свинцовые выводы для поверхностного монтажа на печатную плату.

Рис. 13 Конструкция корпуса акселерометра

Подобная конструкция корпуса гарантирует надежную работу сенсора на протяжении всего жизненного цикла. Для обеспечения стабильного выхода акселерометры подобного класса разрабатываются, производятся и тестируются в широком диапазоне температур, влажности и механического шума. У датчика есть возможность самодиагностики по нескольким сценариям. Он полностью совместим с одно- и двухосевыми акселерометрами данного типа, что дает возможность комбинировать датчики при построении различных сенсорных систем.
Описание технологии «3D-МЭМС»
Понятие «3D-МЭМС» представляет собой инновационное сочетание технологий для формирования кремния в трехмерные структуры, инкапсуляции и контактирования для легкого монтажа и сборки. В результате это обеспечивает высокую точность сенсора, маленький размер устройства и низкое потребление энергии. Таким образом, усовершенствованный сенсор может быть изготовлен в виде крошечного кусочка кремния, способного измерять ускорение в трех ортогональных направлениях.
Применяя технологию «3D-МЭМС», можно производить оптимизированные структуры для точных датчиков угла наклона, например, для обеспечения механического затухания в акселерометрах с целью использования сенсоров в условиях сильной вибрации и высокоточных альтиметрах. Энергопотребление рассматриваемых акселерометров является крайне низким, что дает им значительное преимущество при использовании в устройствах с батарейным питанием. В то же время при производстве инклинометров, 3D-МЭМС-технология обеспечивает точность уровней лучше одной угловой минуты и отвечает самым высоким требованиям к качеству измерения.
Преимущества технологии «3D-МЭМС»
В качестве преимуществ технологии «3D-МЭМС» можно выделить следующие:
— использование монокристаллического кремния для изготовления МЭМС (идеально упругий материал: нет пластической деформации, выдерживает до 70000g циклов ускорений);
— емкостной принцип действия датчиков (обеспечивает прямое измерение отклонения в зависимости от большого числа вариантов величины зазора между двумя плоскими поверхностями; при этом емкость или заряд на паре пластин зависят от ширины зазора между ними и площади пластины);
— высокий уровень точности и стабильности;
— легкая диагностика при помощи ограниченного числа конденсаторов;
— низкая потребляемая мощность;
— высокая герметичность датчиков (позволяет снизить требования к упаковке; обеспечивает высокую надежность, так как частицы или химические вещества не могут попасть в элемент);
— симметричные структуры элементов (улучшенная стабильность нуля акселерометра, линейность и чувствительность по оси; низкая зависимость показаний от температуры; нелинейность обычно ниже 1%; чувствительность по оси обычно не превышает 3%);
— возможность производств датчиков по индивидуальному заказу (получение конкретных уровней чувствительности и частотных характеристик, необходимых заказчику; гибкие двухчиповые решения);
— реальные 3D-структуры (большие защитная масса и емкость обеспечивают высокую производительность при работе в диапазоне измерений при малых g; хорошая стабильность по «0» и низкое влияние шума на показания датчика; образование 3D-сенсорных элементов).
Принцип действия емкостного акселерометра
В рассматриваемом типе трехосевых акселерометров принцип определения ускорения достаточно прост и надежен: инерционная масса дает людям возможность ощущать ускорение за счет перемещения в соответствии со вторым Законом Ньютона. Основные элементы акселерометра – тело, пружина и инерционная масса (ИМ). Когда скорость тела сенсора изменяется, ИМ через пружину так же побуждается последовать этим изменениям. Сила, воздействующая на ИМ, является причиной изменения ее движения, поэтому пружина изгибается, и расстояние между телом и ИМ изменяется пропорционально ускорению тела.
Рабочие принципы сенсоров различаются в зависимости о того, по какому принципу определяется движение между телом и ИМ. В емкостном сенсоре тело и ИМ изолированы друг от друга и их емкость или емкостной заряд измеряются. Когда дистанция между ними уменьшается, емкость увеличивается и электрический ток идет по направлению к сенсору. В случае, когда расстояние увеличивается, наблюдается обратная ситуация: сенсор преобразует ускорение тела в электрический ток, заряд или напряжение.
Превосходные характеристики рассматриваемых датчиков основаны на технологии емкостного измерения и хорошо подходят для определения малых изменений в движении. Чувствительный элемент для определения ускорения сделан из монокристального кремния и стекла. Это обеспечивает сенсору исключительную надежность, высокую точность и устойчивость показаний по отношению к воздействию времени и температуры.
Как правило, чувствительный элемент датчика с диапазоном измерений ±1g выдерживает как минимум 50000g ускорений (1g = ускорение, вызванное силой тяжести Земли). Датчик измеряет ускорение, как в положительном, так и в отрицательном направлении, и чувствителен к статическому ускорению и вибрации. «Сердцем» акселерометра является симметричный чувствительный элемент (ЧЭ), изготовленный по технологиям объемной микромеханики, у которого есть два чувствительных конденсатора. Симметрия ЧЭ уменьшает зависимость от температуры и чувствительности по оси и улучшает линейность. Герметичность датчика обеспечивается за счет анодного соединения пластин друг с другом. Это облегчает корпусирование элементов, повышает надежность и позволяет использовать газовое затухание в сенсорном элементе.
Концепция гетерогенной Chip-on-MEMS-интеграции МЭМС-элементов и интегральных микросхем
В ходе производства трехосевого акселерометра применяют новую концепцию гетерогенной интеграции для объединения чувствительного элемента МЭМС и микросхемы (ASIC): «ЧИП-на-МЭМС» или CoM (chip-on-MEMS). Эта концепция основана на комбинации инкапсулированных на уровне пластины 3D-МЭМС-структур, технологии корпусирования на уровне пластины и технологии чипа на пластине. Все указанные процессы уже существуют на протяжении несколько лет. Их комбинация позволяет решать наиболее сложную проблему корпусирования: как экономически эффективно совместить МЭМС-элементы и интегральные микросхемы.
Исходя из описанной концепции, технология включает в себя следующие шаги:
— перераспределение и изоляция слоев на МЭМС пластине,
— нанесение 300 микронных шариков припоя,
— установка на МЭМС-пластину микросхем,
— пассивация зазоров между микросхемами и МЭМС,
— тестирование пластины с МЭМС-устройствами,
— резка пластины,
— финальное тестирование и калибровка сенсоров после резки.

Рис. 14 Симметричный чувствительный элемент емкостного акселерометра
Рис. 15 Схема установки на МЭМС-пластину интегральных микросхем

Таким образом, благодаря е технологии CoM, можно получить полноценное функциональное МЭМС-устройство с размером корпуса по периметру 4х2 мм. и высотой 1 мм. Данная технология полностью готова для производства датчиков, как для небольших партий, так и в промышленных масштабах.

Рис. 16 Некоторые этапы технологии производства акселерометров
Рис. 17 Двухосевая инерциальная система на основе акселерометра

Технические характеристики емкостного трехосевого акселерометра:

Параметр Типовая величина
Электропитание 3.3 В
Диапазон измерений ±6 g
Разрешение АЦП 12 бит
AEC-Q полностью совместимы
Встроенный температурный сенсор
Цифровой выход SPI
Максимальный удар 20 Kg
Рабочая температура С
Полоса пропускания 45…50 Гц
Улучшенная самодиагностика
Размер 7.7 х 8.6 х 3.3 мм
Совместимость с 2 и 1-осевыми датчиками аналогичного типа

Благодаря отличным характеристикам по стабильности и вибрационной надежности рассматриваемые акселерометры могут успешно применяться в следующих сферах:
• электронный контроль стабильности движения контролируемого устройства,
• система помощи при старте двигателя на подъеме,
• электронный стояночный тормоз,
• электронная защита от переворачивания,
• регулировка подвески,
• контроль углов наклона,
• встроенные инерциальные системы,
• применение в промышленности для различных устройств.
Роль «Русской Ассоциации МЭМС» в развитии технологий производства сенсорных систем в России
Из большого количества возможных вариантов было рассмотрено только два типа МЭМС-датчиков. В настоящий момент существует множество способов производства и применения микроэлектромеханических сенсоров, и многие компаний по всему миру серьезно занимаются разработкой дизайна и технологий изготовления различных сенсорных устройств, в том числе на основе МЭМС.
«Русская Ассоциация МЭМС» (далее Ассоциация. прим.авт.) установила хорошие партнерские отношения с рядом ведущих российских и зарубежных разработчиков-производителей МЭМС-датчиков различного назначения. Среди них можно отметить некоторые немецкие предприятия, входящие в состав Ассоциации Silicon Saxony e.V., институт Fraunhofer, корпорации Honeywell International Inc. и Analog Devices Inc. (США), Московский государственный институт электронной техники (МИЭТ), a так же ряд компаний расположенных в разных странах мира. Благодаря контактам такого уровня у Ассоциации есть доступ к современным микросистемным технологиям, что дает ей возможность совместно с партнерами организовывать в России работу по следующим направлениям:
1) выработка рекомендаций для заказчиков по применению тех или иных сенсоров мировых производителей при производстве российских систем;
2) поставка различных датчиков (на базе МЭМС и других принципах) для измерения ускорения, угловых скоростей, давления, скорости потока жидкости или газа, температуры, влажности, определения движения объекта и его скорости, распознавания магнитных полей (компас);
3) доработка различных сенсорных компонентов известных мировых производителей под требования заказчика (изменение в ту или иную сторону диапазона измерений, функциональных характеристик и т.д.) с дальнейшим производством доработанных датчиков на «родном» заводе-изготовителе;
4) организация проведения программы испытаний сенсорной ЭКБ в одном из российских или зарубежных Сертификационных центров с выдачей Сертификата установленного образца;
5) организация разработки и изготовления под индивидуальные требования заказчика сенсорных систем, включающих различные датчики (на базе МЭМС и других принципах), для измерения ускорения, угловых скоростей, давления, скорости потока жидкости или газа, температуры, влажности, определения движения объекта и его скорости, распознавания магнитных полей и др. (как сами системы, так и датчики, могут быть доработаны и сертифицированы в России, если заказчику необходимо, что бы изделия имели российское происхождение.
6) Предложение отечественным разработчикам и производителям технологий производства современных МЭМС сенсоров (акселерометров, гироскопов, инклинометров, датчиков давления, вибрации и др.) для внедрения на российском производстве и изготовления полностью российского сенсорного продукта;
7) Обучение специалистов российских предприятий по вопросам проектирования, разработки и производства МЭМС-сенсоров. К учебному процессу привлекаются ведущие российские и зарубежные специалисты в этой сфере.
В качестве положительного примера научно-коммерческой кооперации Ассоциации и одного их российских предприятий можно привести двухосевую инерциальную измерительную систему, созданную на базе МЭМС-акселерометра. В настоящий момент разработан и изготовлен действующий прототип сенсорной системы начального уровня. Изготовленный прототип системы в качестве чувствительного элемента содержит в себе микроструктуры с воздушным зазором, обладает высокими чувствительностью и соотношением «сигнал/шум», низкой чувствительностью к помехам, хорошей температурной стабильностью.
Подобную инерциальную систему в совокупности с другими компонентами и датчиками уже можно применять в автомобильной промышленности (срабатывание подушек безопасности и др.), для диагностики рельсового пути (контроль угла наклона), в системах навигации (измерение рысканья, крена и тангажа летального аппарата), контроль угла наклона трубопроводов и в других сферах. Изготовленное изделие обладает базовой конфигурацией с начальными характеристиками и может быть доработано в соответствии с требованиями Заказчика (диапазон измерений, уровень чувствительности и т.д.), а также проведено через программу испытаний в России с выдачей государственного сертификата установленного образца и представлено в виде готового изделия, но уже российского происхождения. Таким образом, у российского партнера появляется возможность существенно расширить свою рыночную долю за счет предложения потребителям систем и устройств, состоящих из современных сенсоров (МЭМС-акселерометры, гироскопы и др.), имеющих российское происхождение.

При написании статьи были использованы информационные материалы о продуктах компаний Silicon Sensing (Англия) и VTI Technologies (Финляндия).

Получите подробную информацию о технических характеристиках, ценах и условиях поставки оборудования, направив официальный запрос с сайта.

admin

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Наверх