Электрификация

Справочник домашнего мастера

Гетеродинный индикатор резонанса схема

Гетеродинный индикатор резонанса для определения резонансной частоты колебательного контура усилителя радиочастоты, элемента антенны радиопередатчика или иной активной колебательной системы обычно используют резонансный волномер. Такой прибор содержит колебательный контур, состоящий из калиброванной катушки индуктивности и образцового конденсатора переменной емкости, снабженного градуированной шкалой. Если колебательную систему связать индуктивно с контуром волномера и перестраивать его по частоте, добиваясь возникновения в нем максимального напряжения радиочастоты, то по шкале волномера можно определить резонансную частоту исследуемой колебательной системы.

В радиолюбительской практике для измерения резонансной частоты пассивной колебательной системы чаще всего применяют гетеродинный индикатор резонанса – ГИР. Он объединяет в себе резонансный волномер и маломощный генератор калиброванной радиочастоты. Колебательный контур волномера ГИРа является одновременно и контуром его гетеродина. С помощью такого измерительного прибора несложно определить резонансную частоту колебательного контура, отрезков соединительных линий, элементов антенн коротковолновых радиостанций. ГИР, кроме этого, можно использовать и как сигнал-генератор.

Гетеродинный индикатор резонанса принципиальная схема приведена на рис.

Его гетеродин выполнен на полевом транзисторе VT1, включенном по схеме с общим истоком. Такой транзистор обеспечивает прибору значительно большую стабильность частоты, чем биполярный. Диод VD1, подсоединенный к выводам затвора и истока транзистора, улучшает форму генерируемого напряжения, приближая ее к синусоидальной. Без диода положительная полуволна тока стока станет искажаться из-за увеличения коэффициента усиления транзистора с повышением напряжения на затворе, что неизбежно приводит к появлению четных гармоник в спектре сигнала гетеродина. Резистор R5 ограничивает ток стока полевого транзистора.

Колебательный контур прибора образуют сменная катушка L1, подключаемая к разъему X1, блок конденсаторов переменной емкости С1 и соединенные с ним последовательно конденсаторы С2, СЗ. Переключают прибор на работу в одном из пяти диапазонов измерения (3…6, 6…10, 8…15,13…25 и 24…35 МГц) включением катушки L1 соответствующей индуктивности.

Через конденсатор С5 напряжение радиочастоты поступает на вход высокочастотного вольтметра-индикатора, состоящего из детектора, диоды VD2 и VD4 которого включены по схеме удвоения напряжения, и усилителя постоянного тока на транзисторе VT2 с микроамперметром РА1 в коллекторной цепи. Диод VD3 стабилизирует образцовое напряжение на диодах VD2, VD4, тем самым повышая чувствительность детектора и стабильность работы усилителя. Переменным резистором R3, объединенным с выключателем питания SA1, устанавливают стрелку микроамперметра РА1 в исходное положение. Дроссель L2 — элемент развязки гетеродина от источника питания по высокой частоте.

Источником питания прибора может быть встроенная в него батарея напряжением 3…9 В (предпочтение следует отдать батарее «Корунд» или аккумуляторной 7 Д-0,1) или внешний сетевой блок питания с таким же выходным напряжением.

В описываемом ГИРе нет дополнительного стабилизатора питающего напряжения, поэтому при работе с ним необходимо пользоваться источником с одним и тем же значением напряжения постоянного тока.

Внешний вид прибора показан в заголовке статьи, а монтаж деталей в корпусе — на рис.

Его корпусом служит латунная хромированная коробка размерами 120x70x45 мм с плотно закрывающейся крышкой. Блок конденсаторов переменной емкости С1, индикатор РА1 и переменный резистор R3 размещены на лицевой стенке корпуса. Конденсаторы С2 и СЗ смонтированы непосредственно на выводах секций блока КПЕ и гнездах разъема X1. Остальные детали, кроме батареи питания, смонтированы на печатной плате (рис.), выполненной из фольгированного стеклотекстолита.

Блок КПЕ, использованный в ГИРе, от малогабаритного радиоприемника «Селга». Конденсаторы С2 и СЗ — КС0-1, С5— КД, С9 и С10—оксидные К52-1Б, остальные — КМ-5. Все постоянные резистора типа МЛТ, переменный R3 с выключателем питания SA1 — СПЗ-4вМ. Диоды КД512А (VD1), КД521Б (VD3) можно заменить на любые другие кремниевые 0,12. Катушка готового дросселя пропитана клеем “Суперцемент”.

Намоточные данные контурной катушки пяти диапазонов измерения приведены в таблице.

Каркасами катушек первых трех диапазонов могут служить отрезки полиэтиленовой изоляции коаксиального кабеля РК-106. Катушки двух последних диапазонов бескаркасные. Катушку диапазона 24…35 МГц желательно намотать медным посеребренным проводом диаметром 1 мм.

Конструктивно каждая контурная катушка размещена в карболитовом корпусе от кварцевого резонатора. Между основанием корпуса и защитным колпаком зажат согнутый из тонкого алюминия уголок, к которому приклеена шкала соответствующего диапазона измерения. Делать одну общую шкалу для всех диапазонов нецелесообразно — при различной плотности перестройки применяемых контуров это затруднит пользование прибором.

На торцевой стенке корпуса укреплена двухгнездная колодка кварцедержателя, в которую и вставляют штыри контурной катушки. Шкала при этом оказывается под ручкой блока КПЕ с указательной стрелкой.

Монтаж высокочастотных цепей и соединений выполнен голым медным посеребренным проводом диаметром 1 мм, низкочастотных — проводом МГШВ.

Налаживание ГИРа

начинают с тщательной проверки правильности всех соединений. Затем в гнезда разъема X1 вставляют контурную катушку любого из диапазонов измерения и включают питание. При этом стрелка микроамперметра РА1 должна отклониться от нулевой отметки. Переменным резистором R3 ее устанавливают на крайнюю правую отметку шкалы. Затем, вращая ручку блока КПЕ из одного крайнего положения в другое, наблюдают небольшое перемещение стрелки прибора. При минимальной емкости КПЕ стрелка должна отклоняться больше вправо, что объясняется повышением добротности контура с повышением частоты генератора.

Шкалы всех диапазонов измерения градуируют, пользуясь, например, калиброванным приемником.

Если в каких-то участках диапазона необходимо повысить точность шкалы, то параллельно катушке подключают слюдяной конденсатор постоянной емкости. Индуктивность контурной катушки и емкость контура с учетом дополнительного конденсатора можно рассчитать по формуле LC=25330/f2 где С — в пикофарадах, L — в микрогенри, f — в мегагерцах.

Определяя резонансную частоту исследуемого контура, к нему возможно ближе подносят катушку ГИРа и, медленно вращая ручку блока КПЕ, следят за показаниями индикатора. Как только его стрелка качнется влево, замечают соответствующее положение указателя на ручке КПЕ. При дальнейшем вращении ручки настройки стрелка прибора возвращается в исходное положение. Та отметка на шкале, где наблюдается максимальный «провал* стрелки, как раз и будет соответствовать резонансной частоте исследуемого контура.

Г. Гвоздицкий по материалам журнала Радио.

САЙТ МЕДИКОВ-РАДИОЛЮБИТЕЛЕЙ SMHAM

Особенность нашей рубрики «Советуем повторить…» заключается в том, что в ней публикуются материалы, основанные на практическом опыте повторения той или иной конструкции, схема и описание которой были ранее напечатаны в радиолюбительской литературе. Выполненные конструкции, как правило, носят сугубо утилитарный характер, т.е. опробованы радиолюбителями, содержат фото и практические советы, что особенно ценно для начинающих радиолюбителей.

На этот раз мы представляем конструкцию гетеродинного индикатора резонанса, предложенную Г.Гвоздицким в журнале Радио,1993, №1.

В радиолюбительской практике для измерения резонансной частоты пассивной колебательной системы чаще всего применяют гетеродинный индикатор резонан­са — ГИР. Он объединяет в себе резонансный волномер и маломощный генератор калиброванной радиочастоты. Такой прибор содержит колебательный контур, состоящий из калиброванной катушки индуктивности и образцового конденсатора переменной емкости, снабженного градуированной шкалой. Если колебательную систему связать индуктивно с контуром волномера и перестраивать его по частоте, добиваясь возникновения в нем максимального напряжения радиочастоты, то по шкале волномера можно определить резонанс­ную частоту исследуемой колебательной системы, Колебательный контур волномера ГИРа является одновременно и контуром его гетеродина. С помощью такого измерительного прибора несложно определить резонансную частоту колебательного контура, от­резков соединительных линий, элементов антенн коротковолновых радиостанций. ГИР, кроме этого, можно использовать и как сигнал-генератор.

ГИР Гвоздицкого является более совершенным, чем описанные в и отличается более высокими характеристиками, хотя их генераторы во всех случаях выполнены на полевом транзисторе, что обес­печивает значительно большую стабильность частоты, чем при применении биполярного транзистора.

«Принципиальная схема предлага­емого ГИРа приведена на рис.1. Его гетеродин выполнен на полевом транзисторе VT1, включенном по схеме с общим истоком. Резистор R5 ограничивает ток стока полевого тран­зистора. Дроссель L2 — элемент развязки гетеродина от источника питания по высокой частоте».

Диод VD1, подсоединенный к. выводам затвора и истока транзистора, улучшает форму генерируемого напряжения, приб­лижая ее к синусоидальной. Без диода по­ложительная полуволна на тока стока станет искажаться из-за увеличения коэффици­ента усиления транзистора с повышени­ем напряжения на затворе, что неизбежно приводит к появлению четных гармоник в спектре сигнала гетеродина».

Рис.1

В отличие от уже упоминавшихся выше схем колебательный контур прибора обра­зуют сменная катушка L1, подключаемая к разъему X1, не имеющая среднего вывода, что упрощает ее коммутацию. «Переключают» прибор на работу в нужном диапазоне частот вклю­чением катушки L1 соответствующей ин­дуктивности. Вариант таких катушек, выполненных на каркасах из лабораторных пробирок для забора крови, показаны на фото (рис.2) и подбираются радиолюбителем на желаемый диапазон, или выполняются согласно рекомендациям в первоисточнике .

Рис.2

«Через конденсатор С5 напряжение радиочастоты поступает на вход высоко­частотного вольтметра-индикатора, сос­тоящего из детектора, диоды VD2 и VD4 которого включены по схеме удвоения напряжения, что повышает чувствительность детектора и ста­бильность работы усилителя постоянного токи на транзисторе VT2 с микроамперметром РА1 в коллекторной цели. Диод VD3 стабилизирует образцовое напряже­ние на диодах VD2,VD4. Перемен­ным резистором R3 объединенным с выключателем питания SА1, устанавливают стрелку микроамперметра РА1 в исходное положение на крайнюю правую от­метку шкалы …».

В описываемом ГИРе нет дополни­тельного стабилизатора питающего нап­ряжения, поэтому при работе с ним рекомендовано пользоваться источником с од­ним и тем же значением напряжения пос­тоянного тока — оптимально сетевым блоком пита­ния со стабилизированным выходным напряжением.

Внешний вид прибора и монтаж деталей в корпусе показан на рис. 3,4,5.

Рис.3Рис.4Рис.5

Его корпусом служит латунная хромированная коробка размерами 120x70x45 мм с плотно закрывающейся крышкой (от бывшего стерилизатора шприцев типа «Рекорд») (рис.3). Ручка блока конденсаторов перемен­ной емкости С1.1 — С1.2 размещена на ли­цевой стенке корпуса. Блок КПЕ, использованный в ГИРе, от малогабаритного радиоприемника «Альпинист». Форма привода верньерного механизма позволяет отмечать карандашом через отверстие частоту в соответствующем диапазоне из­мерения на листке ватмана, приклеенного к корпусу ГИРа под ручкой блока КПЕ (рис.6).

Рис.6

Делать одну общую шкалу для всех диапазонов нецелесообразно из-за сложности такой работы. Тем более, что точность полученной шкалы при различной плотности перестройки при­меняемых контуров затруднит поль­зование прибором.

Катушки L1 пропи­таны эпоксидным клеем или НН88. Их намоточные данные определяются эмпирически или согласно рекомендациям из . На ВЧ диапазоны их жела­тельно намотать медным посеребрен­ным проводом диаметром 1,0 мм.

Конструктивно каждая контурная ка­тушка размещена на основании распространенного разъема СГ-3. Он вклеен в каркас катушки.

На торцевой стенке корпуса укреплена ответная часть СШ-3, в которую и вставляют штыри контурной катушки (рис.7).

Рис.7

Дроссель L2 применен готовый и состоит из двух соединенных параллельно дросселей типа ДМ0,1 номиналом по 100 мкГ.

Остальные примененные радиодетали соответствуют рекомендациям в первоисточнике .

Конкретную «калибровочную» отметку на шкале-листке прибора делают перед измерением, пользуясь, например, приемником с цифровой шкалой (или частотомером).

«Если а каких-то участках диапазона необходимо повысить точность шкалы, то параллельно катушке подключайте слюдяной конденсатор постоянной ем­кости (рис.8).

Рис.8

Индуктивность контурной катуш­ки и емкость контура с учетом дополни­тельного конденсатора можно рассчи­тать по формуле

LC=25330/f²

где С— в пикофарадах, L — в микрогенри, f — в мегагерцах.

Определяя резонансную частоту ис­следуемого контура, к нему возможно ближе подносят катушку ГИРаи, медлен­но вращая ручку блока КПЕ, следят за показаниями индикатора. Как только его стрелка качнется влево, отмечают соот­ветствующее положение ручки КПЕ. При дальнейшем вращении ручки настройки стрелка прибора возвра­щается в исходное положение. Та отметка на шкале, где наблюдается максималь­ный *провал* стрелки, как раз и будет соответстовать резонансной частоте исследуемого контура».

Выделенные цветом абзацы «в кавычках» — оригинальный текст

из статьи Г.Гвоздицкого в журнале «Радио».

Гетеродинный индикатор резонанса (ГИР)


При конструировании и настройке радиоаппаратуры, весьма полезен такой остроумный прибор как гетеродинный индикатор резонанса. Прибор, в большинстве случаев, довольно прост и может быть изготовлен даже начинающим радиолюбителем.
Применяется, в основном для измерения частоты резонанса в колебательных контурах радиоаппаратуры. С помощью ГИР, можно также измерять емкости конденсаторов и индуктивности катушек, измерять резонанс антенны.
Гетеродинный – значит генерирующий колебания высокой частоты. У генератора ВЧ нашего прибора, катушка колебательного контура вынесена наружу и выполнена на манер этакого щупа. Принцип измерений основан на том факте, что в случае настройки на одну частоту двух близко расположенных контуров, они входят в резонанс и наблюдается «отсос» энергии колебаний из одного контура в другой. Колебательный контур ГИРа перестраиваемый — имеет переменный конденсатор с проградуированной шкалой.
Чтобы определить частоту резонанса исследуемого контура, катушку ГИРа (или катушку связи) подносят к контуру и изменяя частоту прибора, добиваются минимума показаний индикатора. Настройка довольно «острая». Этакий провал стрелки индикатора. Искомую частоту считывают со шкалы.
Прибор был изготовлен по простейшей схеме, опубликованной в журнале «Радио» №3 1975г. Автор В. Борисов.


Собрать схему ничего не стоит, но для того чтобы прибором было удобно пользоваться, придется повозиться.
Нам потребуется.
Инструменты.
Минимальный набор слесарного инструмента преимущественно для мелких работ, обязательно ножницы по металлу, несколько разных надфилей. Инструмент для разметки. Хорошо бы располагать ювелирным лобзиком или гравёром — для выпиливания окон в корпусе, но можно и обойтись. Лобзик «пионерский», по дереву, плюс подставку «ласточкин хвост» для выпиливания. Понадобится что-то сверлильное – электрическая дрель или сверлильный станок, сойдет и шуруповерт. В отдельных случаях, могут быть полезны вытяжные заклепки с соответствующим инструментом для их установки.
Паяльник небольшой мощности и все что к нему полагается, в том числе набор инструментов для электромонтажа. Паяльник мощностью около 75…100Вт, для конструкционной пайки. Кое-где удобен клеющий пистолет. Немного терпения и аккуратности.
Материалы.
Кроме радиоэлементов, понадобиться немного кровельной оцинкованной стали, кусочек оргсекла и ДВП или текстолит. Немного мелких метизов. Пластиковые каркасы для сменных катушек.
Для начала стоит подобрать все радиоэлементы и зная их габариты заняться компоновкой прибора. Удобно это делать в САПР Автокад. Для домашнего, хоббийного использования, достаточно освоить принцип построения и несколько основных инструментов.

Корпус прибора решено было изготовить из оцинкованной кровельной стали 0,5мм, методом гибки из двух П-образных деталей. Металлический корпус, также, хорошо экранирует схему. Окна в корпусе для установки приборов, разъема, были выпилены гравером с отрезным диском. Удобно будет использовать и ювелирный лобзик.
В этом варианте ГИРа — разъем для сменных катушек должен быть, как минимум три контакта (используется катушка с отводом). Для уменьшения габаритов прибора решено было применить DB-9, похожий на разъем COM порта системного блока компьютера. В схеме предполагается использовать индикатор – микроамперметр на ток 50мкА. Такой прибор имеет значительные габариты. Значительно меньше микроамперметры, использующиеся для индикации уровня записи в старой аппаратуре магнитной записи звука. Для возможности применить такой индикатор, нужно в исходную схему прибора добавить усилительный каскад на низкочастотном транзисторе (схема б). Сам индикатор разбирал, заменил штатную шкалу на самодельную с нулем посередине.

Конденсатор переменной емкости применен с твердым диэлектриком, от импортного радиоприемника.
Изготовлена металлическая коробочка. Две половинки корпуса скрепляются четырьмя винтиками М4. На внутренних стенках припаяны гаечки. Оцинкованная сталь хорошо паяется обычным оловянно-свинцовым припоем с «паяльной кислотой» (хлористый цинк). Не забываем хорошо промыть места паек.

На конденсатор одевается ручка-шкала выточенная из кусочка органического стекла.
На заготовке чертится окружность нужного диаметра. Это можно сделать циркулем, разметочным циркулем (с двумя иглами). Также, для оргстекла, удобно для такой цели использовать штангенциркуль, нужный размер зафиксировать стопорным винтом и чертить острыми лапками для измерения отверстий.

Заготовка была выпилена обычным «пионерским» лобзиком. Края отшлифованы шлифовальной шкуркой, для этого заготовку зажимал в шуруповерте.
Изнутри на прозрачном диске сделаны две глубокие радиальные риски и заполнены краской. На кончиках просверлены маленькие отверстия для удобной разметки шкалы — в нужных местах отметки делают иглой или остро отточенным карандашом. Крепится на ось конденсатора его штатным крепежом от того же радиоприемника. Под подвижным прозрачным диском, на одной с ним оси, расположен неподвижный диск из ДВП закрепленный к корпусу. Диаметр чуть меньше прозрачного, чтобы подвижный диск удобно вращать большим пальцем, держа прибор в руке. Диск выпилен лобзиком и покрыт для прочности несколькими слоями лака. На него приклеена бумажная шкала.

Монтаж мелких элементов, на выводах установочных, выводы максимально короткие, особенно в ВЧ части. Батарея «Крона» расположена внутри корпуса прибора, подключается колодкой от такой же вышедшей из строя. Чтобы она не бултыхалась внутри корпуса на проводах, сделан некий «батарейный отсек» — С-образная деталь из той же кровельной стали. Припаян к снимаемой крышке. Напротив батареи кусочек поролончика, при сборе корпуса он поджимает батарею. На фото, первый вариант катушек.
При помощи гетеродина самодельного радиоприемника оснащенного частотометром, проградуирована шкала. Градуировку можно также осуществить при помощи частотометра, ВЧ генератора, генератора стандартных сигналов (ГСС), наконец, при помощи КВ радиоприемника с точной шкалой.

Прибор в сборе, с двумя сменными катушками, изготовленными из одноразовых шприцев с применением термоклея.
При необходимости измерений в диапазоне сотен килогерц – единиц мегагерц, конструкцию сменной катушки следует применить аналогичную магнитной антенне радиоприемника, на отрезке ферритового стержня.

Для измерения частоты резонанса параллельного колебательного контура, нужно включить питание ГИР, ручкой переменного резистора установить стрелку индикатора на ноль (середина шкалы) и максимально приблизив катушку ГИР предполагаемого диапазона к катушке исследуемого контура, медленно и плавно вращать лимб переменного конденсатора. При этом внимательно следим за стрелкой индикатора. Стрелка при изменении частоты ГИР, будет совершать небольшие колебания, но в момент резонанса, будет сильный провал. В этом месте, частота на шкале ГИР будет соответствовать частоте резонанса исследуемого колебательного контура.
При невозможности приблизить катушку ГИР к исследуемой, изготавливаем и применяем катушку связи. Несколько витков тонкого монтажного провода вокруг катушки ГИР, соединяются с несколькими же витками вокруг исследуемой катушки.
Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. .

ГИР позволяет определять частоту настройки негенерирующих колебательных контуров, производить настройку приемных и передающих устройств, измерять частоту гетеродина, а также проводить ряд других измерений. Основой ГИР является маломощный автогенератор, работающий в определенном диапазоне частот и настраиваемый в резонанс с частотой исследуемой цепи. В качестве индикатора используются микроамперметры.

ГИР на одном транзисторе

Автогенератор собран по схеме с общей базой и емкостной связью (через конденсатор С2). Частота генерируемых колебаний определяется индуктивностью L1, L2 и емкостью переменного конденсатора С1. Для того чтобы перекрыть диапазон частот 5,8-59 МГц и определить частоту колебаний по шкале конденсатора С1, весь диапазон разбит на шесть поддиапазонов. Выбор диапазона — с помощью переключателя В1. Режим работы транзистора определяется делителем R1, R2. Переменное напряжение высокой частоты на R3, пропорциональное амплитуде ВЧ колебаний в контуре, через конденсатор С5 поступает на детектор Д1. Ток в цепи детектора измеряется микроамперметром на 50-100 мкА.

  1. 5,8-9,0 МГц
  2. 7,2-11,0 МГц
  3. 10,0-16,5 МГц
  4. 16,0-27,0 МГц
  5. 37,0-59,0 МГц

Если катушку индуктивности L1 приблизить к колебательному контуру LC (изображен штриховыми линиями), частоту которого требуется измерить, а конденсатором переменной емкости С1 частоту ГИРа сделать равной собственной частоте контура LC, то часть ВЧ энергии из контура L1L2C1 будет «отсасываться». Это вызовет уменьшение ВЧ напряжения, подаваемого на детектор, а следовательно, и уменьшение показаний микроамперметра. Таким образом, если шкалу ГИРа проградуировать по частоте, легко определить резонансную частоту контура LC. Чем слабее будет связь между катушками L1 и L, тем точнее будут результаты измерения. Чувствительность микроамперметра можно изменять переменным резистором R4.

Измерение частоты гетеродина. При разомкнутом выключателе В2 питание на ГИР не подается и прибор преобразуется в обычный резонансный абсорбционный волномер. При этом о настройке контура L1L2C1 в резонанс с частотой гетеродина судят по максимальным показаниям микроамперметра.

ГИР вместе с источником питания «Крона» размещают в футляре размерами 50x75x130 мм. Катушка индуктивности L2 намотана на полистироловом каркасе диаметром 19 мм и длиной 40 мм. Она содержит 37 витков провода ПЭЛ 0,59 с отводами от 15, 23, 29 и 33-го витков, считая от нижнего (по схеме) вывода катушки. Шаг намотки 0,9 мм. Катушка индуктивности L1 состоит из одного витка провода ПЭЛ 1,35. Катушку L1 устанавливают на торцевой части корпуса ГИРа, а L2 — внутри корпуса, как можно ближе к переключателю В1. Для защиты от повреждений катушка L1 закрывается циллиндрическим каркасом из оргстекла.

Налаживание ГИРа

Подключив питание, подбирают номиналы R1, R3 и конденсатора С2 такими, чтобы в пределах рабочего диапазона автогенератор устойчиво возбуждался. Ток коллектора при этом 2-4 мА. Если автогенератор работает, то при перемещениии движка R4 показания микроамперметра должны плавно изменяться. Далее определяют пределы первого поддиапазона 37-59 МГц и градуируют шкалу конденсатора С1 по волномеру, генератору стандартных сигналов (ГСС) или по радиоприемнику с диапазоном 5-60 МГц.

При использовании волномера, который наиболее доступен радиолюбителю, его катушку индуктивно связывают с катушкой L1, конденсатор С1 — в положение максимальной емкости, включают ГИР, резистором R4 устанавливают микроамперметр в среднее положение и, меняя частоту настройки резонансного волномера, настраивают его на частоту ГИРа (по минимуму показаний микроамперметра). Это значение наносят на шкалу конденсатора С1. Верхнюю границу частоты поддиапазона I определяют при минимальной емкости С1.

Градуировку шкалы ГИРа внутри поддиапазона производится аналогично, при этом сначала устанавливают частоту волномера через 0,5-1 МГц, а затем на эту же частоту настраивают ГИР. Закончив градуировку поддиапазона I, переключатель В1 устанавливают вo II положение 26-41 МГц и переходят к установлению пределов и градуировки шкалы на этом поддиапазоне. Если необходимо устранить смещение частоты, следует более тщательно подобрать положение отвода «а» к виткам катушки L2. На следующих поддиапазонах уточняют положение отвода от витков катушки L2 (точки «б», «в», «г»). Закончив градуировку, витки катушки L2 скрепляют полистироловым лаком.

ГИР на трех транзисторах

Схема современного ГИРа содержит модулятор (Т2) и усилитель в индикаторном устройстве (Т3). Питание прибора осуществляется от четырех элементов типа 316, соединенных последовательно. Микроамперметр можно использовать на 0,5-1,0 мА.

Перекрываемый диапазон 1,3-50,0 МГц с помощью шести сменных катушек (L1-L6), работающими в частотных поддиапазонах :

  1. 1,3-2,5 МГц
  2. 2,3-5,0 МГц
  3. 4,8-10,0 МГц
  4. 9,7-20,0 МГц
  5. 9,0-35,0 МГц
  6. 33,0-50,0 МГц

Модулятор собран по схеме с индуктивной обратной связью. В качестве колебательного контура модулятора, представляющего собой звуковой генератор на 1000 Гц, используется обмотка I трансформатора Тр1 и конденсатор С5. На коллектор и базу транзистора Т1 напряжение питания подается с коллектора Т2, благодаря чему осуществляется процесс модуляции ВЧ колебаний. Детектор собран по схеме удвоения напряжения на диодах Д1, Д2. R6 — регулировка чувствительности индикатора.

При выключенном модуляторе и подключенном телефоне прибор работает в режиме гетеродинного волномера и позволяет измерить частоту fx рaзличных генерирующих устройств методом «нулевых биений». В таком режиме прибор можно применить в качестве ГИРа для измерения частоты настройки негенерирующих колебательных контуров. Момент резонанса фиксируется по минимуму показаний микроамперметра. При включенном выключателе В1 ГИР используется как сигнал-генератор при проверке и настройке ВЧ каскадов приемника. Одна из катушек L1-L6 в этом случае индуктивно связывается с соответствующими контурами в приемнике.

Прибор смонтирован в футляре размерами 80x60x150 мм. Все катушки намотаны на полистироловых каркасах диаметром 18 мм, намотка — рядовая. Катушка L1 содержит 140 витков провода ПЭЛ 0,1; L2 — 60 витков ПЭЛ 0,14; L3 — 20 витков ПЭЛ 0,25; L4 — 10 витков провода ПЭЛ 0,44; L5 — 5 витков ПЭЛ 0,8 и L6 — 2,5 витка ПЭЛ 0,9. Для защиты от повреждений катушки помещены в полистироловые корпуса, в донышке которых укрепляют контакты для соединения с гнездами на футляре ГИРа. Дроссель Др1 содержит 200 витков провода ПЭЛШО, намотка «внавал», ширина секции — 4 мм, диаметр каркаса 15 мм. Конденсатор С3 — с воздушным диэлектриком. Согласующий трансформатор от радиоприемника типа «Сокол». Процесс градуировки особенностей не имеет.

Лаборатория ЦРК ДОСААФ. 1974 год

Назначение и принципы работы ГИР

Гетеродинные индикаторы резонанса (ГИР) — это простые измерительные приборы, предназначенные для обнаружения и индикации резонанса в радиоэлектронных устройствах, содержащих резонансные цепи. Обычно ГИР представляет собой небольшую коробочку, в которой смонтирован ХС-генератор синусоидальных колебаний и измеритель потребляемого им тока или простой индикатор ВЧ-сигнала. Катушка генератора сменная и устанавливается на колодке, конденсатор переменной емкости (воздушный или слюдяной) имеет шкалу, отградуированную (для каждой сменной катушки) по частоте.

Если поместить катушку ГИР вблизи резонансного контура, то при приближении частоты настройки генератора к частоте контура начнется отсос энергии генератора в контур. Это хорошо заметно даже тогда, когда катушка ГИР удалена от контура на расстояние в несколько сантиметров. При отсосе меняется потребляемый генератором от источника питания ток, что и позволяет определить момент резонанса.

ГИР довольно удобный прибор. Обычно его применение даже не требует подключения к испытуемой цепи. При испытании радиоприемника могут быть оценены частоты настройки входных контуров, контуров усилителя промежуточной частоты и контуров гетеродина. Часто ГИР используется для определения резонансной частоты антенн, например коротковолновых радиостанций, а также резонансных частот фидеров и отрезков коаксиальных кабелей.

В СССР выпускались серийно приборы ГИР-1 и ГИР-2. Однако ГИР не относится к профессиональным приборам из-за невысокой точности измерений и сильного влияния на испытуемое устройство. Тем не менее, ГИР широко распространены в радиолюбительской практике. Описания этих полезных приборов можно найти в радиолюбительской литературе (например, в подборках журнала «Радио») и в Интернете.

Простой ГИР на одном полевом транзисторе

В Большой Советской Энциклопедии был описан ГИР на ламповом триоде. В наше время куда удобнее применить полевой транзистор. На рис. 1.59 показана схема простейшего ГИР на полевом транзисторе, часто встречающаяся в Интернете. Это типичная схема индуктивной трехточки.

Рис. 1.59. Схема простейшего ГИР на полевом транзисторе

Конструктивно этот ГИР монтируется в небольшой металлической коробочке. На лицевой панели устанавливается индикаторный прибор и конденсатор переменной емкости, снабженный шкалой настройки. На боковой стороне корпуса устанавливается разъем, к которому подключается катушка индуктивности XI.

Для перекрытия диапазона 25—40 МГц катушка имеет следующие параметры: диаметр каркаса 20 мм, длина намотки 30 мм, обмотка состоит из 9 витков провода ПЭВ-2 диаметром 1,6 мм с отводом от второго витка (считая от нижнего по схеме). При использовании набора сменных катушек прибор перекрывает диапазон частот от 3,0 до 150 МГц. ГИР используется для определения резонансных частот LC контуров, антенн и отрезков коаксиального кабеля. Как отмечалось, работа прибора основана на поглощении высокочастотной энергии исследуемым контуром или антенной в момент совпадения их собственной резонансной частоты и частоты настройки ГИР. В этот момент показания индикаторного прибора имеют резкий провал. Этот провал тем больше, чем сильнее связь между ГИРом и колебательным контуром и чем выше добротность этого контура.

Для точного измерения резонанса необходимо, чтобы ГИР был индуктивно связан с антенной в точке пучности тока. Как известно, пучность тока располагается на расстоянии 1/4 длины волны от конца вибратора. К этой точке и следует подносить ГИР. Изменяя частоту настройки прибора, находят минимум показаний индикатора и считывают в этот момент соответствующую частоту со шкалы. Эта частота и является резонансной частотой антенны. Необходимо помнить, что индикация резонанса происходит не только на основной частоте, но и на гармониках.

Если частота резонанса антенны измеряется в непосредственной близости от земли, то она смещается в сторону более низких частот. При подъеме антенны на мачту резонансная частота сместится вверх на 0,2—0,4 МГц. Используя ГИР, можно подобрать длину коаксиального кабеля для работы в режиме настроенной линии передачи (электрическая длина такой линии равна целому числу полуволн). Для этого один конец кабеля закорачивают, а к другому подносят ГИР и определяют резонанс вблизи частоты 27 МГц. Постепенно укорачивая кабель, добиваются резонанса на средней частоте используемого диапазона.

ГИР на транзисторном аналоге негатрона

Интересная схема ГИР приведена в (рис. 1.60). В ней используется транзисторный аналог негатрона с А-образной ВАХ на основе двух биполярных транзисторов Т1 и Т2. Благодаря этому контур генератора не требует отводов и отдельных цепей положительной обратной связи. На полевом транзисторе ТЗ и операционном усилителе построен высокочувствительный детектор ВЧ-напряжения со стрелочным индикатором.

Рис. 1.60. ГИР на транзисторном аналоге негатрона

Этот ГИР может служить индикатором работы внешних генераторов и обычным индикатором резонанса в пассивных резонансных цепях. Резистором-потенциомет- ром Р1 можно устанавливать режим отсутствия генерации или ее наличия. При отсутствии генерации прибор реагирует на внешнее ВЧ-излучение: если частота настройки близка к частоте этого излучения, показания индикатора возрастают. Можно также задать режим генерации, при которой стрелка индикатора отклоняется на заданную установкой потенциометра Р2 величину. Тогда, если частота генератора совпадает с частотой внешней резонансной цепи, показания индикатора уменьшаются из-за отсоса энергии от генератора внешней цепью.

В можно найти данные катушек ГИР в диапазоне частот от 1,3 до 50 МГц. Описан также вариант схемы с амплитудной модуляцией сигнала генератора. Это позволят более точно определять резонанс по звучанию телефонов.

Источник: Дьяконов В. П. Генерация и генераторы сигналов / В. П. Дьяконов. — М. : ДМК Пресс, 2009. — 384 е., ил.

admin

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Наверх