Электрификация

Справочник домашнего мастера

Диод и стабилитрон

Проверить исправность стабилитрона совсем несложно, он звонится как обычный диод, но иногда при сборке схем или ремонте аппаратуры возникает необходимость определить напряжение стабилитрона. Также бывают случаи, когда нужно подобрать из своих запасов стабилитрон, с определенным напряжением стабилизации. Для таких целей существуют специальные справочники или сайты, где по маркировке стабилитрона мы можем узнать абсолютно все его параметры. Но, что делать, если нет времени для поиска или частично затерта маркировка элемента, как проверить напряжение стабилитрона? Об этом читаем ниже…

Содержание

Как проверить напряжение стабилитрона?

Как видим, данная схема проверки стабилитрона совсем нехитрая и ее можно собирать буквально за пару минут навесным монтажом.

Для этого нам понадобится:

  • блок питания 16 — 18 В (для большинства стабилитронов такого блока питания будет достаточно);
  • резистор на 1,5 – 2 кОм;
  • мультиметр (цифровой или стрелочный вольтметр);
  • проверяемый стабилитрон.



Для наглядного теста мы выбрали три стабилитрона: Д809; КС156А; КС147А, сейчас измерим их напряжение стабилизации. Собираем схему и подключаем поочередно стабилитроны, смотрим на полученный результат.

Д809 – напряжение стабилизации 9,44 В (по паспортным данным напряжение составляет 8 — 9,5 В)

КС156А – полученное напряжение стабилизации 5,48 В (по паспортным данным 5,04 – 6,16 В)

КС147А – напряжение стабилизации 4,77 В (по паспортным данным 4,23 – 5,17 В)

Как видим, вопрос о том, как проверить напряжение стабилитрона решается всего за пару минут и не требует сложных схем, особых навыков и специального оборудования.

Предлагаемая схема служит для простого определения номинала напряжения стабилизации стабилитрона с помощью вольтметра, а также для определения его исправности.
Сейчас промышленностью выпускается невероятное количество различных электронных компонентов и зачастую при сборке радиоэлектронного изделия возникает множество затруднений по определению номинала компонента. Особенно в этом плане «отличилась» отечественная промышленность — в частности стабилитроны в стеклянном корпусе имеют, порой, очень похожую маркировку, отличить которую не представляется возможным. Хороший пример это стабилитроны КС211 и КС175 — иногда встречаются варианты маркировки, в которых оба выглядят как маленький выводной стеклянный диод с чёрной полосой. Их также можно спутать, например, со стабилитроном Д814. Так или иначе, запоминать цветовую маркировку стабилитронов не самая лучшая идея, учитывая насколько просто их можно проверить.
Для определения напряжения стабилизации понадобится простая схема:

Обычно диапазон рабочего тока маломощных стабилитронов лежит в пределах 1-10 мА, поэтому сопротивление резистора выбрано 2.2 кОм. Это оптимально для проверки маломощных стабилитронов. Для проверки мощных стабилитронов сопротивление возможно придётся уменьшить — для этого в схеме предусмотрена перемычка. Для проверки маломощных стабилитронов перемычку нужно ставить в верхнее положение, для проверки мощных — в нижнее.

Оптимальное напряжение питания — 25В.
Если стабилитрон подсоединён правильно — анодом к X1, катодом к X2, то вольтметр покажет его напряжение стабилизации, а если неправильно — какое-то очень малое напряжение около нуля. Если при одном подключении мультиметр показывает минимум напряжения, а при другом — максимальное, равное напряжению источника питания, значит испытуемый радиоэлемент либо простой диод, либо стабилитрон с напряжением стабилизации выше напряжения источника питания. Если вы уверены что это стабилитрон — нужно увеличить напряжение источника до предполагаемой величины и проверить ещё раз.
Если вольтметр показывает минимальное напряжение, либо напряжение питания при любом подключении — значит данный стабилитрон или диод неисправен.
Если напряжение стабилизации показывается при любом подключении — значит это двусторонний стабилитрон.
Аналогичным способом можно проверять исправность диодов и светодиодов, только полярность будет противоположная. Способ хорош тем, что позволяет узнать падение напряжения, что бывает очень важно. Проверяя светодиоды необходимо помнить, что некоторые светодиоды очень чувствительны к завышенному обратному напряжению, поэтому напряжение источника при их проверке желательно выставлять не выше 9В.

Как проверить стабилитрон на работоспособность

Так как диоды имеют такие же технические характеристики, как и стабилитроны, кроме участков с пробоем, механизм проверки их состояния работоспособности одинаков. Соответственно, чтобы проверить любой стабилитрон, необходимо знать метод проверки обычного диода или любой из его разновидностей. Для проверки потребуется цифровой мультиметр, который должен быть переведен в режим прозвонки или сопротивления.

Это манипуляция осуществляется переключением в диапазон Ом. К выводам, затем присоединяются радиодетали, которые проверяются на работоспособность. Существует определенный порядок действий, который не займет много времени. Проверить состояние можно всего за несколько минут. Чтобы узнать состояние стабилитрона, мультиметр должен быть переведен в режим сопротивления, измеряемое в кОм. В статье содержится подробная инструкция, а также по этой теме содержится два видеоролика и одна статья.

Проверка на работоспособность.

Проверяем выпрямительный диод и стабилитрон

Защитный диод, а также выпрямительный (включая силовой)или шоттки можно проверить при помощи мультиметра (или воспользоваться омметром), для этого переводим прибор в режим прозвонки так, как это показано на фотографии. Щупы измерительного прибора присоединяем к выводам радиоэлемента. При присоединении красного провода («+») к аноду, а черного («-«) к катоду дисплей мультиметра (или омметра) отобразит значение порогового напряжения тестируемого диода. После того, как меняем полярность, прибор должен показать бесконечно большое сопротивление. В этом случае можно констатировать исправность элемента.

Если при обратном подключении мультиметр регистрирует утечку, значит, радиоэлемент «сгорел» и нуждается в замене. Заметим, данную методику проверки можно использовать для тестирования диодов на генераторе автомобиля. Тестирование стабилитрона осуществляется по сходному принципу, правда, такая проверка не позволяет определить, осуществляется ли стабилизация напряжения на заданном уровне. Поэтому нам потребуется собрать простую схему. Обозначения:

  • БП – регулируемый блок питания (отображающий ток нагрузки и напряжение);
  • R – токоограничительное сопротивление;
  • VT – тестируемый стабилитрон или лавинный диод.

Принцип проверки следующий:

  • производим сборку схемы;
  • устанавливаем режим мультиметра, позволяющий измерить постоянное напряжение до 200 В;
  • включаем блок питания и начинаем постепенно увеличивать величину напряжения, пока амперметр на блоке питания не покажет, что через цепь протекает ток;
  • подключаем мультиметр, как указано на рисунке и измеряем величину напряжения стабилизации.

Стабилитрон.

В отличие от обычных диодов, у варикапов p-n переход обладает непостоянной емкостью, величина которой пропорциональна обратному напряжению. Проверка на обрыв или замыкание для этих элементов осуществляется также, как у обычных диодов. Для проверки емкости потребуется мультиметр, у которого есть подобная функция. Для тестирования потребуется установить соответствующий режим мультиметра, как показано на фото (А) и вставить деталь в разъем для конденсаторов. Как правильно заметил один из комментаторов данной статьи, действительно, определить емкость варикапа, не оперируя номинальным напряжением невозможно.

Поэтому, если возникла проблема с идентификацией по внешнему виду, потребуется собрать простую приставку для мультиметра (повторюсь для критиков, именно цифрового мультиметра с функцией измерения емкости верки конденсаторов, например UT151B). Устройство требует настройки. Она довольно проста, собранное устройство, подключается к измерительному прибору (мультиметр с функцией измерения емкости). Питание должно подаваться со стабилизированного источника питания (важно) с напряжением 9 вольт (например, батарея Крона). Меняя емкость подстрочного конденсатора (С2) добиваемся показания на индикаторе 100 пФ. Это значение мы будем вычитать от показания прибора.

Интересный материал для ознакомления: что нужно знать об устройстве силового трансформатора.

Данный вариант неидеален, необходимость его практического применения вызывает сомнения, но схема наглядно демонстрирует зависимости емкости варикапа от номинального напряжения.

Стабилитрон на плате.

Защитный диод, он же ограничительный стабилитрон, супрессор и TVS-диод. Данные элементы бывают двух типов: симметричные и несимметричные. Первые используются в цепях переменного тока, вторые – постоянного. Если кратко объяснить принцип действия такого диода, то он следующий:

Увеличение входного напряжения вызывает уменьшение внутреннего сопротивления. В результате увеличивается сила тока в цепи, что вызывает срабатывание предохранителя. Преимущество устройства заключается в быстроте реакции, что позволяет принять на себя переизбыток напряжения и защитить устройство. Скорость срабатывания – главное достоинство защитного (TVS) диода.

Теперь о проверке. Она ничем не отличается от обычного диода. Правда есть исключение – диоды Зенера, которые также можно отнести к TVS семейству, но по сути это быстрый стабилитрон, работающий по «механизму» лавинного пробоя (эффект Зинера). Но, проверка работоспособности скатывается к обычной прозвонке. Создание условий срабатывания приводит к выходу элемента из строя. Другими словами, способа проверки защитных функций TVS-диода нет, это как проверить спичку (годная она или нет) пытаясь поджечь.

Проверить высоковольтный диод СВЧ печи тем же способом, что и обычный, не получится, в виду его особенностей. Для тестирования этого элемента, понадобится собрать схему (показанную на рисунке ниже), подключенную к блоку питания 40-45 вольт.

Напряжения 40-45 вольт будет достаточно для поверки большинства элементов данного типа, методика тестирования – как у обычных диодов. Величина сопротивления R должна быть в пределах от 2кОм до 3,6кОм.

Учитывая, что ток, протекающий через диод, зависит от напряжения, приложенного к нему, тестирование заключается в анализе этой зависимости. Для этого потребуется собрать схему, например, такую, как показана на рисунке.

Перечень элементов:

  • VD – тестируемый диод туннельного типа;
  • Uп – любой гальванический источник питания, у которого ток разряда около 50 мА;
  • Сопротивления: R1 – 12Ω, R2 – 22Ω, R3 – 600Ω.

Диапазон измерений, выставленный на мультиметре,не должен быть меньше тока максимума диода, этот параметр указан в даташит (datasheet) радиоэлемента.

Алгоритм тестирования:

  • устанавливается максимальное значение на переменном резисторе R3;
  • подключается тестируемый элемент, с соблюдением указанной на схеме полярности;
  • уменьшая величину R3, наблюдаем за показаниями измерительного прибора.

Если элемент исправен, в процессе измерения прибор покажет увеличение тока до I max диода, после чего последует резкое уменьшение этой величины. При дальнейшем повышении напряжения ток уменьшится до I min , после чего снова начнет расти.

Тестирование без выпайки

Как показывает практика, протестировать диод не выпаивая, когда он находится на плате, как и другие радиодетали (например, транзистор, конденсатор, тиристор и т.д.), не всегда удается. Это связано с тем, что элементы в цепи могут давать погрешность. Поэтому перед тем, как проверить диод, его необходимо выпаять. Стабилитрон относится к электронным приборам с нелинейной вольт-амперной характеристикой. Его свойства характерны обычному диоду. Но есть и существенное различие между ним и диодом. Для проверки исправности стабилитрона можно использовать много различных лабораторных приборов и стендов. На практике, для ремонта электронной начинки, радиолюбители используют мультиметры или тестеры со стрелочной шкалой индикации. Чтобы выявить неисправность стабилитрона своими руками нужно хорошо знать его характеристики и уметь пользоваться мультиметром.

Как проверить стабилитрон этим прибором, не прибегая к сложным и длительным лабораторным экспериментам, можно рассмотреть на примере. Его работа основана на нелинейной вольт-амперной характеристике p-n перехода. Отличие от диодов и светодиодов заключается в наличии на вольт-амперной характеристике зоны пробоя. Она показывает, что при возрастании тока в нагрузке напряжение остается практически неизменным. Это свойство называют стабилизационным, а электронный элемент получил название стабилитрон. Устройства, где они применяются, называются стабилизаторы. Стабилитроны изготавливаются, в основном, в стеклянном или металлическом корпусе. Они бывают низковольтными и высоковольтными. Чтобы убедиться в исправности элемента его проверяют мультиметром.

Проверка стабилитрона на тестере.

Порядок проверки

Чтобы проверить деталь на исправность, мультиметр используют в режиме измерения сопротивления или в режиме проверки диодов. Тестером или мультиметром стабилитроны прозваниваются точно также как и диоды. К выводам стабилитрона прикладывают щупы и считывают показания со шкалы индикации. Измерения должны проводиться в прямом и обратном направлении, то есть сначала прикладываем плюс мультиметра к катоду, а затем к аноду стабилитрона. Прибор должен показать в первом случае бесконечное сопротивление, а во втором случае покажет единицы или десятки Ом.

Такие показатели говорят об исправности стабилитрона. Если измерение сопротивления показывают в обоих направлениях бесконечность, то это говорит об обрыве p-n перехода и неисправности. Бывает так, что при прозвонке стабилитрона мультиметр показывает в обоих направлениях десятки или сотни Ом. В этом случае создается впечатление, что стабилитрон пробит. Именно такой вывод можно было бы сделать, если бы это был обычный диод. Но в случае стабилитрона такой вывод неверен, он, скорее всего, исправен. Объясняется это наличием напряжения пробоя. В таблице ниже представлен полный перечень стабилитронов по напряжению стабилизации:

Таблица стабилитронов по напряжению стабилизации. При прикладывании щупов мультиметра к выводам стабилитрона прикладывается напряжение внутреннего источника питания мультиметра. Если напряжение источника питания выше значения напряжения пробоя, то шкала индикации покажет сопротивление десятков или сотен Ом. Если мультиметр имеет источник питания напряжением, например, 9 Вольт, то все проверяемые стабилитроны с напряжением стабилизации меньше 9 Вольт при измерении будут показывать пробой.

Поэлементное описание проверки имеет вид:

  • на приборе выбирается режим измерения сопротивления;
  • щупы тестера подключаются к выводам детали;
  • оцениваются показания прибора, высвечиваемые на дисплее.

Когда собственный источник питания мультиметра подключен плюсовым щупом к аноду, то на дисплее можно зафиксировать показания сопротивления от нескольких долей Ома до его единиц. После замены местами измерительных щупов при исправном элементе получают бесконечно большое сопротивление. Помня о том, что стабилитрон ведёт себя, как простой диод, устанавливают интервал измерений в кОм. В этом случае сопротивление исправной радиодетали доходит до сотен кОм.

Информация. Показания, выданные на дисплей тестером, часто вводят в заблуждение проводящего измерения. Одинаково высокое сопротивление при различных подключениях щупов не всегда означает пробой элемента. Поданное для измерений напряжение внутреннего источника может превысить номинальное напряжения пробоя, тогда полученные результаты будут ложными.

Различные типы диодов.

Проверка светодиодов практически ничем не отличается от тестирования выпрямительных диодов. Как это делать, было описано выше. Светодиодную ленту (точнее ее smd элементы), инфракрасный светодиод, а также лазерный, проверяем по той же методике. К сожалению, мощный радиоэлемент данной группы, у которого повышенное рабочее напряжение, проверить указанным способом не получится. В этом случае дополнительно понадобится стабилизированный источник питания. Алгоритм тестирования следующий:

  • собираем схему, как показано на рисунке. На блоки питания выставляется рабочее напряжение светодиода (указано в даташит). Диапазон измерения на мультиметре должен быть до 10 А. Заметим, что можно использовать зарядное устройство в качестве БП, но тогда необходимо добавить токоограничивающие сопротивление;

Измерение номинального тока на светодиоде:

  • измеряем номинальный ток и выключаем блок питания;
  • устанавливаем режим мультиметра, позволяющий измерить постоянное напряжение до 20 В, и подключаем прибор параллельно тестируемому элементу;
  • включаем блок питания и снимаем параметры рабочего напряжения;
  • сравниваем полученные данные с указанными в даташит, и на основании этого анализа определяем работоспособность светодиода.

Супресор заменяет стабилитрон.

Как проверить стабилитрон мультиметром на плате

При ремонте платы, где расположен стабилитрон необходимо предусмотреть меры защиты от поражения электрическим током. Порядок действий при проверке электронного устройства такой же, как и при проверке выпаянного стабилитрона. Но нужно учесть, что остальные радиоэлементы, расположенные в схеме на плате, могут сильно изменить показания. Если остаются сомнения в правильности интерпретации результатов проверки, то стабилитрон демонтируют из платы и проверяют его без влияния остальных компонентов схемы. Нужно отметить, что исправность элемента нельзя гарантировать со стопроцентной уверенностью при проверке его мультиметром. Ее можно гарантировать в том случае, если поместить его в схему и включить электронное устройство с этой схемой. Если устройство будет работать, то это означает, что элемент исправен.

Как и большинство измерительных приборов, мультиметры (тестеры) делятся на аналоговые и цифровые. Основное их отличие состоит в том, что информация о результатах измерений первой разновидности передаются с помощью определенной шкалы и стрелок на ней, во втором же случае эти данные отображаются в цифровом виде, на жидкокристаллическом экране. Аналоговые устройства появились ранее, их главным достоинством является невысокая цена, а недостатком – неточности измерений. Следовательно, если отметка должна быть максимально верна, рекомендуется приобрести цифровой мультиметр.

Все варианты тестеров обладают как минимум двумя выводами – красным и черным .

  1. Первый используется непосредственно для измерений, также иногда называется потенциальным,
  2. Второй является общим. В современных моделях обычно также есть переключатель, благодаря которому возможно установить максимальные предельные значения.

Стабилотронометр.

Как проверять диод мультиметром

Диод является элементом, проводящим электричество в одном направлении. Если же развернуть это направление, диод будет закрыт. Т олько в случае выполнения этого условия элемент считается работоспособным. В большинстве моделей тестеров уже есть такая функция, как проверить диод тестером. Перед началом проверки рекомендуется соединить между собой два щупа мультиметра, чтобы убедиться в его работоспособности, а затем выбрать “режим проверки диодов”. Если тестер аналоговый, данная операция производится с помощью режима омметра.

Проверка диодов мультиметром не требует дополнительных навыков. Чтобы убедиться в функционировании элемента, необходимо произвести прямое включение, следовательно, подключить анод к плюсовому значению (красный щуп), а катод – к минусовому (черный). На экране или шкале прибора должно появиться значение пробивного напряжения диода, эта цифра в среднем составляет от 100 до 800 мВ . Если же произвести обратное включение (поменять местами электроды), значение будет не больше единицы. Из этого можно сделать вывод, что сопротивление прибора огромно и электричество он не проводит. Если все происходит именно так, как описано выше, электронный элемент исправен и дееспособен.

Бывают ситуации, когда при подключении щупов диод пропускает ток в обоих направлениях, либо же не пропускает вообще (значения при прямом и обратном включениях равны единице). В первом случае это означает, что диод пробит, а во втором – он перегорел либо же находится в обрыве. Такие электронные элементы являются неисправными и это легко проверить тестером.

Как проверять светодиод

Если речь идет о светодиоде, алгоритм проверок аналогичен, но дополнительно облегчит задачу тот факт, что при прямом включении этот вид диода будет светиться . Разумеется, это позволит окончательно убедиться в том, что он в порядке. Но случается такое, что необходима проверка стабилитронов. Стабилитрон является одной из разновидностей диодов, его главное предназначение – сохранение стабильного выходного напряжения вне зависимости от изменений уровня тока. К сожалению, выделенной функции для проверки данного вида электронных элементов пока не внедрили в мультиметры.

Тем не менее часто прозвонить их можно с помощью такого же принципа, как с диодами. Но многие опытные радиолюбители заявляют, что произвести проверку стабилитрона с помощью цифрового тестера весьма проблематично. Причиной этого является тот факт, что напряжение стабилитрона должно быть ниже, чем напряжение на выходах мультиметра. Это связано с тем, что из-за низкого напряжения возможно посчитать рабочей неисправную модель, точность показаний падает.

Материал в тему: все о тепловом реле.

Если при проверке диода необходимо обратить внимание на значение пробивного напряжения, в случае со стабилитронами показательным станет сопротивление. Эта цифра должна составлять от 300 до 500 Ом . И аналогично алгоритму действий с диодами:

  • Если ток пропускается в обе стороны это называется пробивом,
  • Если сопротивление слишком велико это обрыв.

Также немаловажно помнить, что цифровое значение при прозвоне стабилитрона будет выше значения обычных диодов. Если нужно отличить один элемент от другого, такая проверка окажет помощь.

Стабилитроны, проверка которых не принесла желаемых результатов, изобретатели часто тестируют с помощью дополнительных приборов, иногда конструируя их самостоятельно . Одним из наиболее простых способов является использование для проверки блока питания с возможностью переключения напряжения. Необходимо сначала подсоединить к аноду резистор, имеющий значение сопротивления, оптимальное для стабилитрона, а затем подключить блок питания . Затем замеряется напряжение на диоде, параллельно поднимается на блоке. По достижении уровня напряжения стабилизации, эта цифра должна перестать расти. В этом случае стабилитрон в норме, при любых отличиях от вышеприведенной схемы он неисправен.

Стабилитрон в блоке питания.

И не ищите мультиметр со стабилитронометром. Но понятно, что проверять надо. Более того, надо тестировать даже исправный компонент на предмет параметра фактического напряжения стабилизации. Истина прописная. Вот только как, чтобы не собирать отдельного прибора и не использовать одну из существующих методик, занимающих, пусть и не очень, но относительно продолжительное время, причём не только по времени проведения проверки, но и по подготовки к ней. Но прав оказался один известный юморист, утверждающий, что на всём постсоветском пространстве проблем с «соображалкой» у народа нет.

В данной статье представлены все возможности и порядок действий при проверки различных диодов и стабилитрона. Более подробно об этом устройстве можно узнать, прочитав статью Инструкция по проверке стабилитронов. В нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессиональных электронщиков. Чтобы подписаться на группу, вам необходимо будет перейти по следующей ссылке: https://vk.com/electroinfonet. В завершение статьи хочу выразить благодарность источникам, откуда мы черпали информацию:

Диод. Светодиод. Стабилитрон

Не влезай. Убьет! (с)
Постараюсь объяснить работу с диодами, светодиодами, а также стабилитронами на пальцах. Опытные электронщики могут пропустить статью, поскольку ничего нового для себя не обнаружат. Не буду вдаваться в теорию электронно-дырочной проводимости pn-перехода. Я считаю, что такой подход обучения только запутает начинающих. Это голая теория, почти не имеющая отношения к практике. Впрочем, интересующимся теорией предлагаю эту статью. Всем желающим добро пожаловать под кат.
Это вторая статья из цикла электроники. Рекомендую к прочтению также первую, которая повествует о том, что такое электрический ток и напряжение.
Диод – полупроводниковый прибор, имеющий 2 вывода для подключения. Изготавливается, упрощенно говоря, путем соединения 2х полупроводников с разным типом примеси, их называют донорной и акцепторной, n и p соответственно, поэтому диод содержит внутри pn-переход. Выводы, обычно состоящие из луженой меди, называют анод (А) и катод (К). Эти термины пошли еще со времен электронных ламп и используются в письменном виде, для обозначения направленности диода. Гораздо проще графическое обозначение. Названия выводов диода запомнятся сами собой при применении на практике.
Как я уже писал, мы не будем использовать теорию электронно-дырочной проводимости диода. Просто инкапсулируем эту теорию до черного ящика с двумя зажимами для подключения. Примерно так же программисты инкапсулируют работу со сторонними библиотеками, не вдаваясь в е… подробности их работы. Или, например, когда, пользуясь пылесосом, мы не вдаёмся в подробности, как он устроен внутри, он просто работает и нам важно одно из свойств пылесоса – сосать пыль.
Рассмотрим свойства диода, самые очевидные:

  • От анода к катоду, такое направление называется прямым, диод пропускает ток.
  • От катода к аноду, в обратном направлении, диод ток не пропускает. (Вообще-то нет. Но об этом позже.)
  • При протекании тока, в прямом направлении, на диоде падает некоторое напряжение.

Возможно эти свойства вам и так хорошо известны. Но есть некоторые дополнения. Что же считать прямым, а что обратным направлением? Прямым называют такое включение, когда на аноде напряжение больше, чем на катоде. Обратное, наоборот. Прямое и обратное включение – это условность. В реальных схемах напряжение на одном и том же диоде может меняться с прямого на обратное и наоборот.
Кремниевый диод начинает пропускать хоть какой-либо значимый ток только тогда, когда на аноде напряжение будет больше примерно на 0,65 В, чем на катоде. Нет, не так. При протекании хоть какого-либо тока, на диоде образуется падение напряжения, примерно равное 0,65 В и выше.
Напряжение 0,65 В – называют прямым падением напряжения на pn-переходе. Это лишь примерная средняя величина, она зависит от тока, температуры кристалла и технологии изготовления диода. При изменении протекающего тока, она изменяется нелинейно. Чтобы как-то обозначить эту нелинейность графически, производители снимают вольтамперные характеристики диода. В мощных высоковольтных диодах падение напряжения может быть больше в 2, 3 и т.д. раза. Это означает, что внутри диода включено несколько pn-переходов последовательно.
Для определения падения напряжения можно использовать вольтамперную характеристику (ВАХ) диода в виде графика. Иногда эти графики приводятся в дата-листах (datasheets) на реальные модели диода, но чаще их нет. На первом мне попавшемся графике ниже приведены ВАХ КД243А, хотя это не важно, они все примерно похожи.
На графике Uпр – это прямое падение напряжения на диоде. Iпр – протекающий через диод ток. График показывает какое падение напряжения на диоде будет, при протекании n-го тока. Но чаще всего в даталистах не показываются реальные ВАХ, а приводится прямое падение напряжения, указанное при определенном токе. В английской литературе падение напряжения обозначается как forward voltage.

Как применять

Падение напряжения на диоде – для нас плохая характеристика, поскольку это напряжение не совершает полезной работы и рассеивается в виде тепла на корпусе диода. Чем меньше падение, тем лучше. Обычно падение напряжения на диоде определяют исходя из тока, протекающего через диод. Например, включим диод последовательно с нагрузкой. По сути это будет защита схемы от переплюсовки, на случай, если блок питания отсоединяемый. На рисунке ниже в качестве защищаемой схемы взят резистор 47 Ом, хотя в реальности это может быть все, что угодно, например, участок большой схемы. В качестве блока питания – батарея на 12 В.
Допустим, нагрузка без диода потребляет 255 мА. В данном случае это можно посчитать по закону Ома: I= U / R = 12 / 47 = 0,255 А или 255 мА. Хотя обычно потребление сферической схемы в вакууме уже известно, хотя бы по максимальным характеристикам блока питания. Найдем на графике ВАХ, указанный выше, падение напряжения для диода КД243А при 0,255 А протекающего тока, при 25 градусах. Оно равно примерно 0,75 В. Эти 0,75 В упадут на диоде, и для питания схемы останется 12 — 0,75 = 11,25 В — иногда может и не хватить. Как бонус, можно найти мощность, в виде тепла и потерь выделяющуюся на диоде по формуле P = I * U = 0,75 * 0,255 = 0,19 Вт, где I и U – ток через диод и падение напряжения на диоде.

Что же делать, когда график ВАХ недоступен? Например, для популярного диода 1n4007 указано только прямое напряжения forward voltage 1 В при токе 1 А. Нужно и использовать это значение, либо измерить реальное падение. А если для какого-либо диода это значение не указано, то сойдет среднее 0,65 В. В реальности проще это падение напряжения измерить вольтметром в схеме, чем выискивать в графиках. Думаю, не надо объяснять, что вольтметр должен быть включен на постоянное напряжение, если через диод течет постоянный ток, а щупы должны касаться анода и катода диода.

Немного про другие характеристики

В предыдущем примере, если перевернуть батарейку, я имею ввиду поменять полярность, см. нижний рисунок, ток не потечет и падение напряжения на диоде в худшем случае составит 12 В — напряжение батареи. Главное, чтобы это напряжение не превышало напряжение пробоя нашего диода, оно же обратное напряжение, оно же breakdown voltage. А также важно еще одно условие: ток в прямом направлении через диод не превышал номинальный ток диода, он же forward current. Это два основных параметра по которых выбирается диод: прямой ток и обратное напряжение.
Иногда в даталистах также указывается рассеиваемая мощность диодом или номинальная мощность (power dissipation). Если она указана, то ее нельзя превышать. Как ее посчитать, мы уже разобрались на предыдущем примере. Но если мощность не указана, тогда надо ориентироваться по току.
Говорят, что в обратном направлении ток через диод не течет, ну или почти не потечет. На самом деле через него протекает ток утечки, reverse current в английской литературе. Этот ток очень маленький, от нескольких наноампер у маломощных диодов до нескольких сот микроампер, у мощных. Также этот ток зависит от температуры и приложенного напряжения. В большинстве случаем ток утечки не играет никакой роли, например, в как в предыдущем примере, но, когда вы будете работать с наноамперами и поставите какой-либо защитный диод на входе операционного усилителя, тогда может случиться ой… Схема поведет себя совсем не так, как задумывалась.
У диодов так же есть некоторая маленькая паразитная емкость capacitance. Т.е., по сути, это конденсатор, параллельно включенный с диодом. Эту емкость надо учитывать при быстрых процессах при работе диода в схеме с десятками-сотнями мегагерц.
Также несколько слов по поводу термина «номинал». Обычно номинальные ток и напряжение обозначают, что при превышении этих параметров производитель не гарантирует работу изделия, если не сказано другое. И это для всех электронных компонентов, а не только для диода.

Что еще можно сделать

Применений диодов существует множество. Разработчики-радиоэлектронщики обычно выдумывают свои схемы из кусочков других схем, так называемых строительных кирпичиков. Вот несколько вариантов.
Например, схема защиты цифровых или аналоговых входов от перенапряжения:
Диоды в этой схеме при нормальной работе не пропускают ток. Только ток утечки. Но когда по входу возникает перенапряжение с положительной полуволной, т.е. напряжение входа становится больше чем Uпит плюс прямое падение напряжения на диоде, то верхний диод открывается и вход замыкается на шину питания. Если возникает отрицательная полуволна напряжения, то открывается нижний диод и вход замыкается на землю. В этой схеме, кстати, чем меньше утечки и емкость у диодов, тем лучше. Такие схемы защиты уже, как правило, стоят во всех современных цифровых микросхемах внутри кристалла. А внешними мощными сборками TVS-диодов защищают, например, USB порты на материнских платах.
Также из диодов можно собрать выпрямитель. Это очень распространённый тип схем и вряд ли кто-то из читателей про них не слышал. Выпрямители бывают однополупериодные, двухполупериодные и мостовые. С однополупериодным выпрямителем мы уже познакомились в нашем самом первом многострадальном примере, когда рассматривали защиту от переплюсовки. Никакими особыми плюсами не обладает, кроме плюса на батарейке. Один из самых важных минусов, который ограничивает применение схемы однополупериодного выпрямителя на практике: схема работает только с положительной полуволной напряжения. Отрицательное напряжение напрочь отсекает и ток при этом не течет. «Ну и что?», скажете вы, «Такой мощности мне будет достаточно!». Но нет, если такой выпрямитель стоит после трансформатора, то ток будет протекать только в одну сторону через обмотки трансформатора и, таким образом, трансформаторное железо будет дополнительно подмагничиваться. Трансформатор может войти в насыщение и греться намного больше положенного.
Двухполупериодные выпрямители этого недостатка лишены, но им необходим средний вывод обмотки трансформатора. Здесь при положительной полярности переменного напряжения открыт верхний диод, а при отрицательной – нижний. КПД трансформатора используется не полностью.
Мостовые схемы лишены обоих недостатков. Но теперь на пути тока включены два диода в любой момент времени: прямой диод и обратный. Падение напряжения на диодах удваивается и составляет не 0,65-1В, а в среднем 1,3-2В. С учетом этого падения считается выпрямленное напряжение.
Например, нам надо получить 18 вольт выпрямленного напряжения, какой трансформатор для этого выбрать? 18 вольт плюс падение на диодах, возьмем среднее 1,4 В, равно 19,4 В. Мы знаем из предыдущей статьи, что амплитудное значение переменного напряжения в корень из 2 раз больше его действующего значения. Поэтому во вторичной цепи трансформатора переменное действующее напряжение равно 19,4 / 1,41 = 13,75В. С учетом того, что напряжение в сети может гулять на 10%, а также под нагрузкой напряжение немного просядет, выберем трансформатор 230/15 В.
Мощность требуемого нам трансформатора можно посчитать от тока нагрузки. Например, мы собираемся подключать к трансформатору нагрузку в один ампер. Это если с запасом. Всегда оставляйте небольшой запас, в 20-40%. Просто по формуле мощности можно найти P = U * I = 15 * 1 = 15 ВА, где U и I – напряжение и ток вторичной обмотки. Если вторичных обмоток несколько, то их мощности складываются. Плюс потери на трансформацию, плюс запас, поэтому выберем трансформатор 20-40 ВА. Хотя часто трансформаторы продаются с указанием тока вторичных обмоток, но проверить по габаритной мощности не помешает.
После выпрямительного моста необходим сглаживающий конденсатор, на рисунке не показан. Не забывайте про него! Есть умные формулы по расчету этого конденсатора в зависимости от количества пульсаций, но порекомендую такое правило: ставить конденсатор 10000мкФ на один ампер потребления тока. Вольтаж конденсатора не меньше, чем выпрямленное без нагрузки напряжение. В данном примере можно взять конденсатор с номиналом 25В.
Диоды в этой схеме выберем на ток >=1А и обратное напряжение, с запасом, больше 19,4 В, например, 50-1000 В. Можно применить диоды Шоттки. Это те же диоды, только с очень маленьким падением напряжения, которое часто составляет десятки милливольт. Но недостаток диодов Шоттки – их не выпускают на более-менее высокие напряжения, больше 100В. Точнее с недавнего времени выпускают, но их стоимость заоблачная, а плюсы уже не так очевидны.

Светодиод

Внутри устроен совсем по другому, чем диод, но имеет те же самые свойства. Только еще и светится при протекании тока в прямом направлении.
Все отличие от диода в некоторых характеристиках. Самое важное – прямое падение напряжения. Оно гораздо больше, чем 0,65 В у обычного диода и зависит в основном от цвета светодиода. Начиная от красного, падение напряжения которого составляет в среднем 1,8 В, и заканчивая белым или синим светодиодом, падение у которых около 3,5 В. Впрочем, у невидимого спектра эти значения шире.
По сути падение напряжения здесь – минимальное напряжение зажигания диода. При меньшем напряжении, у источника питания, тока не будет и диод просто не загорится. У мощных осветительных светодиодов падение напряжения может составлять десятки вольт, но это значит лишь, что внутри кристалла много последовательно-параллельных сборок диодов.
Но сейчас поговорим об индикаторных светодиодах, как наиболее простых. Их выпускают в различных корпусах, наиболее часто в полуокруглых, диаметром 3, 5, 10 мм.
Любой диод светится в зависимости от протекающего тока. По сути это токовый прибор. Падение напряжения получается автоматически. Ток мы задаем сами. Современные индикаторные диоды более-менее начинают светиться при токе 1 мА, а при 10 мА уже выжигают глаза. Для мощных осветительных диодов надо смотреть документацию.

Применение светодиода

Имея лишь соответствующий резистор можно задать нужный ток через диод. Конечно, понадобится еще и блок питания постоянного напряжения, например, батарейка 4,5 В или любой другой БП.
Например, зададим ток 1мА через красный светодиод с падением напряжения 1,8 В.
На схеме показаны узловые потенциалы, т.е. напряжения относительно нуля. В каком направлении включать светодиод нам подскажет лучше всего мультиметр в режиме прозвонки, поскольку иногда попадаются напрочь китайские светодиоды с перепутанными ногами. При касании щупов мультиметра, в правильном направлении, светодиод должен слабо светиться.
Поскольку применен красный светодиод, то на резисторе упадет 4,5 — 1,8 = 2,7В. Это известно по второму закону Кирхгофа: сумма падений напряжения на последовательных участках схемы равно ЭДС батарейки, т.е. 2,7 + 1,8 = 4,5В. Чтобы ограничить ток в 1мА, резистор по закону Ома должен обладать сопротивлением R = U / I = 2,7 / 0,001 = 2700 Ом, где U и I – напряжение на резисторе и необходимый нам ток. Не забываем переводить величины в единицы СИ, в амперы и вольты. Поскольку выпускаемые номиналы сопротивлений стандартизованы выберем ближайший стандартный номинал 3,3кОм. Конечно, при этом ток изменится и его можно пересчитать по закону Ома I = U / R. Но зачастую это не принципиально.
В этом примере ток, отдаваемый батарейкой, мал, так что внутренним сопротивлением батареи можно пренебречь.
С осветительными светодиодами все тоже самое, только токи и напряжения выше. Но иногда им уже не требуется резистор, надо смотреть документацию.

Что-то еще про светодиод

По сути, светить – это основное назначение светодиода. Но есть и другое применение. Например, светодиод может выступать в качестве источника опорного напряжения. Они необходимы, например, для получения источников тока. В качестве источников опорного напряжения, как менее шумные, применяют красные светодиоды. Их включают в схему так же, как и в предыдущем примере. Поскольку напряжение батарейки относительно постоянное, ток через резистор и светодиод тоже постоянный, поэтому падение напряжения остается постоянным. От анода светодиода, где 1,8В, делается отвод и используется это опорное напряжение в других участках схемы.
Для более надежной стабилизации тока на светодиоде, при пульсирующем напряжении источника питания, вместо резистора в схему ставят источник тока. Но источники тока и источники опорного напряжения – это тема еще одной статьи. Возможно, когда-нибудь я ее напишу.

Стабилитрон

В английской литературе стабилитрон называется Zener diode. Все тоже самое, что и диод, в прямом включении. Но сейчас поговорим только про обратное включение. В обратном включении под действием определенного напряжения на стабилитроне возникает обратимый пробой, т.е. начинает течь ток. Этот пробой полностью штатный и рабочий режим стабилитрона, в отличие от диода, где при достижении номинального обратного напряжения диод просто выходил из строя. При этом, ток через стабилитрон в режиме пробоя может меняться, а падение напряжение на стабилитроне остается практически неизменным.
Что нам это дает? По сути это маломощный стабилизатор напряжения. Стабилитрон имеет все те же характеристики, что и диод, плюс добавляется так же напряжение стабилизации Uст или nominal zener voltage. Оно указывается при определенном токе стабилизации Iст или test current. Также в документации на стабилитроны указываются минимальный и максимальный ток стабилизации. При изменении тока от минимального до максимального, напряжение стабилизации несколько плавает, но незначительно. См. вольт-амперные характеристики.
Рабочая зона стабилитрона обозначена зеленым цветом. На рисунке видно, что напряжение на рабочей зоне практически неизменно, при широком диапазоне изменения тока через стабилитрон.
Чтобы выйти на рабочую зону, нам надо установить ток стабилитрона между с помощью резистора точно так же, как это делалось в примере со светодиодом (кстати, можно также с помощью источника тока). Только, в отличие от светодиода, стабилитрон включен в обратном направлении.
При меньшем токе, чем Iст. min стабилитрон не откроется, а при большем, чем Iст. max – возникнет необратимый тепловой пробой, т.е. стабилитрон просто сгорит.

Расчёт стабилитрона

Рассмотрим на примере нашего рассчитанного трансформаторного БП. У нас есть блок питания, выдающий минимум 18 В (по сути там больше, из-за трансформатора 230/15 В, лучше мерить в реальной схеме, но суть сейчас не в этом), способный отдавать ток 1 А. Нужно запитать нагрузку с максимальным потреблением 50 мА стабилизированным напряжением 15 В (например, пусть это будет какой-нибудь абстрактный операционный усилитель – ОУ, у них примерно такое потребление).
Такая слабая нагрузка выбрана неспроста. Стабилитроны довольно маломощные стабилизаторы. Они должны проектироваться так, чтобы через них мог проходить без перегрева весь ток нагрузки плюс минимальный ток стабилизации Iст. min. Это необходимо, потому что ток после резистора R1 делится между стабилитроном и нагрузкой. В нагрузке ток может быть непостоянным, либо нагрузка может выключаться из схемы совсем. По сути это параллельный стабилизатор, т.е. весь ток, который не уйдет в нагрузку, примет на себя стабилитрон. Это как первый закон Кирхгофа I = I1 + I2, только здесь I = Iнагр + Iст. min.
Итак, выберем стабилитрон с напряжением стабилизации 15 В. Для установки тока через стабилитрон всегда необходим резистор (или источник тока). На резисторе R1 упадет 18 – 15 = 3 В. Через резистор R1 будет протекать ток Iнагр. + Iст. min. Примем Iст. min = 5 мА, это примерно достаточный ток для всех стабилитронов с напряжением стабилизации до 100 В. Выше 100 В можно принимать 1мА и меньше. Можно взять Iст. min и больше, но это только будет бесполезно греть стабилитрон.
Итак, через R1 течет Ir1 = Iнагр. + Iст. min = 50 + 5 = 55 мА. По закону Ома находим сопротивление R1 = U / I = 3 / 0,055 = 54,5 Ом, где U и I – напряжение на резисторе и ток через резистор. Выберем из ближайшего стандартного ряда сопротивление 47 Ом, будет чуть больше ток через стабилитрон, но ничего страшного. Его даже можно посчитать, общий ток: Ir1 = U / R = 3 / 47 = 0,063А, далее минимальный ток стабилитрона: 63 — 50 = 13 мА. Мощность резистора R1: P = U * I = 3 * 0,063 = 0,189 Вт. Выберем стандартный резистор на 0,5 Вт. Советую, кстати, не превышать мощность резисторов примерно Pmax/2, дольше проживут.
На стабилитроне тоже рассеивается мощность в виде тепла, при этом в самом худшем случае она будет равна P = Uст * (Iнагр + Iст.) = 15 * (0,050 + 0,013) = 0,945 Вт. Стабилитроны выпускают на разную мощность, ближайшая 1Вт, но тогда температура корпуса при потреблении около 1Вт будет где-то 125 градусов С, лучше взять с запасом, на 3 Вт. Стабилитроны выпускают на 0,25, 0,5, 1, 3, 5 Вт и т.д.
Первый же запрос в гугле «стабилитрон 3Вт 15В» выдал 1N5929BG. Далее ищем «datasheet 1N5929BG». По даташиту у него минимальный ток стабилизации 0,25 мА, что меньше 13 мА, а максимальный ток 100 мА, что больше 63 мА, т.е. укладывается в его рабочий режим, поэтому он нам подходит.
В общем-то, это весь расчёт. Да, стабилизатор это неидеальный, внутреннее сопротивление у него не нулевое, но он простой и дешевый и работает гарантировано в указанном диапазоне токов. А также поскольку это параллельный стабилизатор, то ток блока питания будет постоянным. Более мощные стабилизаторы можно получить, умощнив стабилитрон транзистором, но это уже тема следующей статьи, про транзисторы.
Проверить стабилитрон на пробой обычным мультиметром, как правило, нельзя. При более-менее высоковольтном стабилитроне просто не хватит напряжения на щупах. Единственное, что удастся сделать, это прозвонить его на наличие обычной диодной проводимости в прямом направлении. Но это косвенно гарантирует работоспособность прибора.

Еще стабилитроны можно использовать как источники опорного напряжения, но они шумные. Для этих целей выпускают специальные малошумящие стабилитроны, но их цена в моем понимании зашкаливает за кусочек кремния, лучше немного добавить и купить интегральный источник с лучшими параметрами.
Также существует много полупроводниковых приборов, похожих на диод: тиристор (управляемый диод), симистор (симметричный тиристор), динистор (открываемый импульсно только по достижении определенного напряжения), варикап (с изменяемой емкостью), что-то еще. Первые вам понадобятся в силовой электронике при постройки управляемых выпрямителей или регуляторов активной нагрузки. А с последними я уже лет 10 не сталкивался, поэтому оставляю эту тему для самостоятельного чтения в вики, хотя бы про тиристор.

Стабилитрон (диод Зенера)

В данной статье мы подробно поговорим про диод Зенера или стабилитрон. Рассмотрим принцип работы и его характеристики, диодный стабилитрон, напряжение стабилитрона, и схему последовательно соединенных стабилитронов.

Принцип работы

Полупроводниковый диод блокирует ток в обратном направлении, но будет страдать от преждевременного пробоя или повреждения, если обратное напряжение, приложенное к нему, станет слишком высоким.

Тем не менее, стабилитрон или «пробойный диод», как их иногда называют, в основном совпадают со стандартным PN-переходным диодом, но они специально разработаны для того, чтобы иметь низкое и заданное обратное напряжение пробоя, которое использует любое подаваемое обратное напряжение к этому.

Стабилитрон ведет себя так же, как обычный общего назначения диод, состоящий из кремния PN — перехода, и, когда смещены в прямом направлении, то есть анод положительный по отношению к его катоду, он ведет себя так же , как обычный диод сигнал, проводящий номинальный ток.

Однако, в отличие от обычного диода, который блокирует любой поток тока через себя при обратном смещении, то есть катод становится более положительным, чем анод, как только обратное напряжение достигает заранее определенного значения, стабилитрон начинает проводить в обратное направление.

Это связано с тем, что когда обратное напряжение, подаваемое на стабилитрон, превышает номинальное напряжение устройства, в полупроводниковом обедненном слое происходит процесс, называемый лавинным пробоем, и через диод начинает течь ток, чтобы ограничить это увеличение напряжения.

Ток, текущий в настоящее время через стабилитрон, резко возрастает до максимального значения схемы (которое обычно ограничивается последовательным резистором), и после достижения этого ток обратного насыщения остается довольно постоянным в широком диапазоне обратных напряжений. Точка напряжения, в которой напряжение на стабилитроне становится стабильным, называется «напряжением стабилитрона» ( Vz ), а для стабилитронов это напряжение может составлять от менее одного вольт до нескольких сотен вольт.

Точка, в которой напряжение стабилитрона запускает ток, протекающий через диод, может очень точно контролироваться (с допустимым отклонением менее 1%) на стадии легирования полупроводниковой конструкции диодов, давая диоду определенное напряжение пробоя стабилитрона Vz например, 4,3 В или 7,5 В. Это напряжение пробоя стабилитрона на кривой IV представляет собой почти вертикальную прямую линию.

Характеристики стабилитрона I-V

Стабилитрон используется в его «обратном смещении» или обратном режиме пробоя, т.е. анод диода подключается к отрицательному питанию. Из приведенной выше кривой характеристик I-V видно, что стабилитрон имеет область обратного смещения почти постоянного отрицательного напряжения независимо от величины тока, протекающего через диод, и остается почти постоянной даже при больших изменениях тока, пока ток стабилитронов остается между током пробоя I Z (мин) и максимальным номинальным током I Z (макс.) .

Эта способность к самоконтролю может быть в значительной степени использована для регулирования или стабилизации источника напряжения от изменений напряжения или нагрузки. Тот факт, что напряжение на диоде в области пробоя практически постоянное, оказывается важной характеристикой стабилитрона, так как его можно использовать в простейших типах устройств с регулятором напряжения.

Функция регулятора состоит в том, чтобы обеспечивать постоянное выходное напряжение для нагрузки, подключенной параллельно с ним, несмотря на пульсацию в напряжении питания или изменение тока нагрузки, стабилитрон продолжит регулировать напряжение до тех пор, пока ток диода не будет падать ниже минимального значения I Z (min) в области обратного пробоя.

Диодный стабилитрон

Стабилитроны могут использоваться для получения стабилизированного выходного напряжения с низкой пульсацией в условиях переменного тока нагрузки. Пропуская небольшой ток через диод от источника напряжения через подходящий резистор ограничения тока R S, стабилитрон будет проводить ток, достаточный для поддержания падения напряжения V out .

Мы помним из предыдущих уроков, что выходное напряжение постоянного тока от полу- или двухполупериодных выпрямителей содержит пульсации, наложенные на напряжение постоянного тока, и что при изменении значения нагрузки изменяется и среднее выходное напряжение. Подключив простую схему стабилитрона, как показано ниже, к выходу выпрямителя, можно получить более стабильное выходное напряжение.

Резистор R S соединен последовательно с стабилитроном для ограничения тока, протекающего через диод с источником напряжения, при этом V S подключается через комбинацию. Стабилизированное выходное напряжение V out берется через стабилитрон. Стабилитрон соединен с его катодной клеммой, подключенной к положительной шине источника постоянного тока, поэтому он имеет обратное смещение и будет работать в своем состоянии пробоя. Резистор R S выбран таким образом, чтобы ограничить максимальный ток, протекающий в цепи.

При отсутствии нагрузки, подключенной к цепи, ток нагрузки будет равен нулю I L = 0 , и весь ток цепи проходит через стабилитрон, который, в свою очередь, рассеивает свою максимальную мощность. Также небольшое значение последовательного резистора RS приведет к большему току диода, когда сопротивление нагрузки R L подключено, и будет большим, так как это увеличит требования к рассеиваемой мощности диода, поэтому следует соблюдать осторожность при выборе подходящего значения серии сопротивление, чтобы максимальная номинальная мощность стабилитрона не превышалась в условиях отсутствия нагрузки или высокого импеданса.

Нагрузка подключается параллельно с стабилитроном, поэтому напряжение на R L всегда совпадает с напряжением на стабилитроне V R = V Z. Существует минимальный ток стабилитрона, для которого эффективна стабилизация напряжения, и ток стабилитрона должен всегда оставаться выше этого значения, работающего под нагрузкой в ​​пределах его области пробоя. Верхний предел тока, конечно, зависит от номинальной мощности устройства. Напряжение питания V S должно быть больше, чем V Z .

Одна небольшая проблема с цепями стабилизатора стабилитрона состоит в том, что диод может иногда генерировать электрический шум в верхней части источника постоянного тока, когда он пытается стабилизировать напряжение. Обычно это не является проблемой для большинства устройств, но может потребоваться добавление развязывающего конденсатора большого значения на выходе стабилитрона, чтобы обеспечить дополнительное сглаживание.

Подведем небольшой итог. Стабилитрон всегда работает в обратном смещенном состоянии. Схема регулятора напряжения может быть разработана с использованием стабилитрона для поддержания постоянного выходного напряжения постоянного тока на нагрузке, несмотря на изменения входного напряжения или изменения тока нагрузки. Стабилизатор напряжения Зенера состоит из токоограничивающего резистора R S, соединенного последовательно с входным напряжением V S, с стабилитроном, подключенным параллельно с нагрузкой R L в этом состоянии с обратным смещением. Стабилизированное выходное напряжение всегда выбирается равным напряжению пробоя V Z диода.

Напряжение стабилитрона

Помимо создания единого стабилизированного выходного напряжения, стабилитроны могут также быть соединены друг с другом последовательно, наряду с обычными диодами сигнала кремния для получения множества различных выходных значений опорного напряжения, как показано ниже.

Стабилитроны, соединенные последовательно

Значения отдельных стабилитронов могут быть выбраны в соответствии с применением, в то время как кремниевый диод всегда будет падать примерно на 0,6 — 0,7 вольт в режиме прямого смещения. Напряжение питания V > IN следует, конечно, выше , чем наибольший выход опорного напряжения , а в нашем примере выше, это 19v.

Типичный стабилитрон для общих электронных схем — 500 мВт серии BZX55 или более крупный 1,3 Вт серии BZX85, в которой напряжение стабилитрона задается, например, как C7V5 для диода 7,5 В, что дает эталонный номер диода BZX55C7V5 .

Стабилитроны серии 500 МВт доступны в диапазоне от 2,4 до 100 Вольт и обычно имеют ту же последовательность значений, что и для серии резисторов 5% (E24), а индивидуальные номинальные напряжения для этих небольших, но очень полезных диодов приведены в таблица ниже.

Стандартные напряжения стабилитрона

Мощность стабилитрона BZX55 500 мВт

2.4V 2.7V 3.0V 3.3V 3.6V 3.9V 4.3V 4.7V
5.1V 5.6V 6.2V 6,8 В 7.5V 8.2V 9.1V 10V
11V 12V 13V 15V 16V 18V 20V 22V
24V 27В 30V 33V 36V 39V 43V 47V

Мощность стабилитрона BZX85 1,3 Вт

3.3V 3.6V 3.9V 4.3V 4.7V 5.1V 5,6 6.2V
6,8 В 7.5V 8.2V 9.1V 10V 11V 12V 13V
15V 16V 18V 20V 22V 24V 27В 30V
33V 36V 39V 43V 47V 51V 56V 62V

Схемы стабилитрона

До сих пор мы рассматривали, как стабилитрон можно использовать для регулирования источника постоянного тока, но что если бы входной сигнал был не постоянный ток, а переменный сигнал переменного тока, как бы стабилитрон реагировал на постоянно меняющийся сигнал?

Цепи диодного ограничения и зажима — это схемы, которые используются для формирования или изменения формы входного сигнала переменного тока (или любой синусоиды), создавая выходной сигнал различной формы в зависимости от схемы расположения. Цепи диодного ограничителя также называют ограничителями, поскольку они ограничивают или отсекают положительную (или отрицательную) часть входного сигнала переменного тока. Поскольку схемы ограничителя Зенера ограничивают или обрезают часть формы волны через них, они в основном используются для защиты схемы или в схемах формирования формы волны.

Например, если бы мы хотели обрезать выходной сигнал при + 7,5 В, мы бы использовали стабилитрон 7,5 В. Если выходной сигнал пытается превысить предел 7,5 В, стабилитрон «обрезает» избыточное напряжение на входе, создавая сигнал с плоским верхом, сохраняя при этом выходную постоянную на уровне + 7,5 В. Обратите внимание, что в состоянии прямого смещения стабилитрон все еще является диодом, и когда выходной сигнал переменного тока становится отрицательным ниже -0,7 В, стабилитрон включается, как и любой нормальный кремниевый диод, и обрезает выход при -0,7 В, как показано ниже.

Прямоугольная волна

Подключенные друг к другу стабилитроны могут быть использованы в качестве регулятора переменного тока, производящего то, что в шутку называют «генератор прямоугольной волны бедняка». Используя эту схему, мы можем обрезать осциллограмму между положительным значением + 8,2 В и отрицательным значением -8,2 В для стабилитрона 7,5 В.

Так, например, если бы мы хотели обрезать выходной сигнал между двумя различными минимальными и максимальными значениями, скажем, + 8 В и -6 В, мы просто использовали бы два стабилитрона с разными номиналами. Обратите внимание, что выход фактически обрезает сигнал переменного тока между + 8,7 В и -6,7 В из-за добавления напряжения прямого диода смещения.

Другими словами, пиковое напряжение составляет 15,4 вольт вместо ожидаемых 14 вольт, поскольку прямое падение напряжения смещения на диоде добавляет еще 0,7 вольт в каждом направлении.

Этот тип конфигурации ограничителя довольно распространен для защиты электронной схемы от перенапряжения. Два стабилитрона, как правило, размещаются на входных клеммах источника питания, и во время нормальной работы один из стабилитронов имеет значение «ВЫКЛ», и эти диоды практически не влияют. Однако, если форма сигнала входного напряжения превышает его предел, тогда стабилитрон включается и включает вход для защиты схемы.

В следующем уроке о диодах мы рассмотрим использование смещенного прямого PN-перехода диода для получения света. Из предыдущих уроков мы знаем, что когда носители заряда движутся через соединение, электроны объединяются с дырками, и энергия теряется в виде тепла, но также часть этой энергии рассеивается в виде фотонов, но мы не можем их видеть.

Помогите проекту. Поделитесь с друзьями.

Стабилитрон относится к одному из применяемых радиоэлектронных элементов. Каждый более-менее качественный блок питания содержит узел стабилизации напряжения, которое может изменяться при изменении сопротивления нагрузки либо при отклонении входного напряжения от номинального значения.

Стабилизация напряжения выполняется главным образом с целью обеспечения нормального режима работы остальных радиоэлементов устройства, например микросхем, транзисторов, микроконтроллеров и т.п.

Стабилитроны широко используются в маломощных блоках питания либо в отдельных его узлах, мощность которых редко превышает десятки ватт.

Главное преимущество стабилитронов – их малая стоимость и габариты, поэтому они до сих пор не могут вытисниться интегральными стабилизаторами напряжения типа LM7805 или 78L05 и т.п.

Стабилитрон очень похож на диод, поскольку его полупроводниковый кристалл помещен в аналогичный корпус.

Условное графическое обозначение стабилитрона на чертежах электрических схем также похоже на обозначение диода, только со стороны катода добавлена короткая горизонтальная черточка, направленная в сторону анода.

Принцип работы стабилитрона

Рассмотрим принцип работы стабилитрона на примере схемы его включения и вольт-амперной характеристике. Для выполнения своей основной функции стабилитрон VD соединяется последовательно с резистором Rб и вместе они подключаются к источнику входного нестабилизированного напряжения Uвх. Уже стабилизированное выходное напряжение Uвых снимается только с выводов 2, 3 VD. Поэтому нагрузка Rн подключается к соответствующим точкам 2 и 3. Как видно из схемы, VD и Rб образуют делитель напряжения. Только сопротивление стабилитрон имеет не постоянно значение и называется динамическим, поскольку зависит от величины электрического тока, протекающего через полупроводниковый прибор.

Величина напряжения Uвх, подаваемого на стабилитрон с резисторов должна быть выше на минимум на пару вольт выходного напряжения Uвых, в противном случае полупроводниковый прибор VD не откроется и не сможет выполнять свою основную функцию.

Допустим, в какой-то произвольный момент времени на выходах 1 и 3 значение Uвх начало возрастать. В схеме начнут протекать следующие процессы. С ростом напряжения согласно закону Ома начнет возрастать ток, назовем его входным током Iвх. С увеличением ток возрастет падение напряжения на резисторе Rб, а на VD она останется неизменным (это будет пояснено далее на характеристике), поэтому и Uвых останется на прежнем уровне. Следовательно, прирост входного напряжения упадет или погасится на резисторе Rб. Поэтому Rб называют гасящим или балластным.

Теперь, допустим, изменилась нагрузка, например, снизилось сопротивление Rн, соответственно возрастет и ток Iн. В этом случае снизится ток, протекающий стабилитрон Iст, а Iвх останется практически без изменений.

Вольт-амперная характеристика стабилитрона

Вольт-амперная характеристика (ВАХ) стабилитрона аналогично ВАХ диода и имеет две ветви: прямую и обратную. Прямая ветвь является рабочей для диода, а обратная ветвь характеризует работу стабилитрона, поэтому он включается в электрическую цепь в обратном направлении (катодом к плюсу, а анодом к минусу) по сравнению с диодом. Поэтому стабилитрон называю опорным диодом, а источник питания с данным полупроводниковым элементом называют опорным источником напряжения. Такой терминологий будем пользоваться и мы.

На обратной ветви вольт-амперной характеристик опорного диода выделим две характерные точки 1 и 3. Точка 1 отвечает минимальному значению тока стабилизации, который находится в пределах единиц миллиампер. Если ток, протекающий через стабилитрон, будет ниже точки 1, то он не сможет выполнять свои функции (не откроется). В случае превышения тока выше точки 3 опорный диод перегреется и выйдет из строя. Поэтому оптимальной точкой в большинстве случае будет точка посредине обратной ветви ВАХ, то есть точка 2. Тогда при изменении тока в широких пределах (смотрите ось Y) точка 2 будет изменять свое положение, перемещаясь вверх или вниз по обратной ветви, а напряжение будет изменяться незначительно (смотрите ось X).

Встречное, параллельное, последовательное соединение стабилитронов

Для повышения напряжения стабилизации можно последовательно соединять два и более стабилитрона. Например на нагрузке нужно получить 17 В, тогда, в случае отсутствия нужного номинала, применяют опорные диоды на 5,1 В и на 12 В.

Параллельное соединение применяется с целью повышения тока и мощности.

Также стабилитроны находят применение для стабилизации переменного напряжения. В этом случае они соединяются последовательно и встречно.

В один полупериод переменного напряжения работает один стабилитрон, а второй работает как обычный диод. Во второй полупериод полупроводниковые элементы выполняют противоположные функции. Однако в таком случае форма выходного напряжения будет отличается от входного и выглядит как трапеция. За счет того, что опорный диод будет отсекать напряжение, превышающее уровень стабилизации, верхушки синусоиды будут срезаться.

Маркировка стабилитронов

Маркировка наносится на корпус стабилитрона в виде цифр и букв (или буквы). Различают принципиально два разных типа маркировки. Стабилитрон в стеклянном корпусе имеет привычную для нас маркировку, непосредственно обозначающую номинальное напряжение стабилизации. Цифры могут быть разделены буквой V, выполняющую роль десятичной точки. Например, 5V1 означает 5,1 В.

Менее понятный способ маркировки состоит из четырех цифр и буквы в конце. Если вы не опытный радиолюбитель, то без даташита никак не обойтись. Для примера расшифруем параметры опорного диода серии 1N5349B. Больше всего нас интересует первый столбец, в котором приведено номинальное напряжение 12 В. Второй столбец – номинальное значения ток – 100 мА.

Катод стабилитрона любого типа обозначается кольцом черного или синего цвета, которое наносится на корпус со стороны соответствующего вывода.

Маркировка SMD стабилитронов

Наибольшее распространение получили опорные диоды в стеклянном корпусе и в пластмассовом корпусе с тремя выводами. Маркировка SMD стабилитрона в стеклянном корпусе состоит из цветного кольца, цвет которого обозначает параметры данного полупроводникового прибора.

Если вам встретился SMD стабилитрон с тремя выводами, то следует знать, что один вывод – это «пустышка», то есть он не задействован и применяется лишь для надежной фиксации элемента на печатной плате после пайки. Анод и катод такого экземпляра проще всего определить с помощью мультиметра.

Мощность рассеивания стабилитрона

Мощность рассеивания стабилитрона Pст характеризует его способность не перегреваться выше определенной температуры на протяжении длительного времени. Чем выше значение Pст, тем больше тепла способен рассеять полупроводниковый прибор. Мощность рассеивания рассчитывается для самых неблагоприятных условий работы прибора, поэтому в ниже приведенную формулу подставляют максимально возможное в работе Uвх и наименьшие значения Rб и Iн:

Существует ряд стандартных номиналом по данному параметру: 0,3 Вт, 0,5 Вт, 1,3 Вт, 5 Вт и т.п. Чем больше Pст, тем больше габариты полупроводникового прибора.

Как проверить стабилитрон

Проверить стабилитрон на предмет исправности довольно просто и быстро можно с помощью простейшего мультиметра. Для этого мультиметр следует перевести в режим «прозвонка», как правило, обозначенный знаком диода. Затем, если положительным щупом мультиметра прикоснуться анода, а отрицательным – катода, то на дисплее измерительного прибора мы увидим некоторое значение падения напряжения на pn-переходе. Поскольку к полупроводниковому прибору приложено прямое напряжение (смотрите прямую ветвь вольт-амперной характеристики), то опорный диод откроется.

Теперь, если щупы мультиметра поменять местами, тем самым приложить к выводам полупроводникового прибора обратное напряжение (смотрите обратную ветвь ВАХ), то он окажется заперт и не будет проводить ток. На дисплее измерительного прибора отобразится единица, обозначающая бесконечно высокое сопротивление.

Если в обеих случаях мультиметр покажет единицу или будет звенеть, то стабилитрон непригоден.

Помогите проекту. Поделитесь с друзьями.

Методы проверки стабилитрона мультиметром и тестером

Внешне стабилитрон похож на диод, выпускается в стеклянном и металлическом корпусе. Его главное свойство заключается в сохранении постоянного напряжения на своих выводах при достижении определенного потенциала. Это наблюдается у него при достижении напряжения туннельного пробоя.

Обычные диоды при таких значениях быстро доходят до теплового пробоя и перегорают. Стабилитроны, их еще называют диодами Зенера, в режиме туннельного или лавинного пробоя могут находиться постоянно, без вреда для себя, не доходя до теплового пробоя.

Прибор изготавливается из монокристаллического кремния, в электронной аппаратуре выступает как стабилизатор или опорное напряжение.

Высоковольтные защищают от перенапряжений, интегральные стабилитроны со скрытой структурой используются в качестве эталонного напряжения в аналого-цифровых преобразователях.

Проверка тестером

Так как стабилитрон и диод имеют почти одинаковые вольтамперные характеристики за исключением участка пробоя, то мультиметром стабилитрон проверяется, как и диод.

Проверка осуществляется любым мультиметром в режиме прозвона диода или определения сопротивления. Выполняются такие действия:

  • переключателем устанавливают диапазон измерения Омов;
  • к выводам радиодетали подсоединяются измерительные щупы;
  • мультиметр должен показать единицы или доли Ом, если его внутренний источник питания подключится плюсом к аноду;
  • поменяв щупы местами, меняем полярность напряжения на выводах полупроводника и получаем сопротивление близкое к бесконечности, если он исправен.

Чтобы убедиться в исправности стабилитрона переключаем мультиметр на диапазон измерения сопротивления в килоомах и проводим измерение.

При исправном приборе, показания должны лежать в пределах десятков и сотен тысяч Ом. То есть он пропускает ток, как обычный диод.

Частные случаи

Иногда, мультиметр при проверке исправного полупроводника в режиме измерения сопротивления при обратной полярности показывает значение сильно отличающееся от ожидаемого.

Вместо сотен килоом – сотни ом. Создается впечатление, что он пробит, и прозванивается в обе стороны.

Это возможно в случае использования в мультиметре внутреннего источника питания, превышающего напряжение стабилизации стабилитрона.

Полупроводник уменьшает свое внутреннее сопротивление до тех пор, пока не достигнет напряжения стабилизации. Поэтому при измерениях необходимо это учитывать.

Иногда, при прозвонке мультиметр показывает большое сопротивление при прямом и обратном потенциале. Скорее всего, это двуханодный стабилитрон, поэтому для него полярность значения не имеет.

Для проверки исправности потребуется приложить напряжение чуть больше стабилизирующего, при этом менять полярность. Измеряя токи, проходящие через него и сравнивая вольтамперные характеристики прибора можно выяснить состояние устройства.

Проверка диода Зенера на печатной плате затруднена влиянием других элементов. Для надежного контроля работоспособности необходимо выпаять один вывод, производить измерения вышеописанным способом.

Тестер для стабилитронов

Проверка стабилитронов мультиметром не дает 100% гарантии их исправности. Это связано с тем, что он не может проверить его основные параметры. Поэтому многие радиолюбители изготавливают тестер стабилитронов своими руками.

Схема самого простого варианта состоит из набора аккумуляторов, постоянного резистора номиналом 200 Ом, переменного сопротивления на 2 кОм и мультиметра.

Аккумуляторы соединяются последовательно для получения потенциала необходимого для измерения параметров стабилитронов. Напряжения стабилизации в основном лежат в пределах 1,8-16 В.

Поэтому собирается батарея на 18 В. Затем к ее выводам параллельно подсоединяем последовательную цепочку из переменного резистора на 2 кОм мощностью 5 Вт и постоянного на 200 Ом.

Второй будет играть роль ограничивающего сопротивления. Выводы переменного резистора присоединяются к трехконтактной клеммной колодке.

К первому контакту присоединяется вывод, подключенный к плюсу батареи, ко второму другой крайний вывод, а к третьему средний подвижный контакт резистора.

В других вариантах тестеров можно применять импульсные источники питания с регулируемым напряжением выходного каскада, но суть не меняется, измерителем остается мультиметр.

Определение характеристик

Для проверки исправности стабилитрона и соответствия паспортным данным необходимо проверить его работу на разных напряжениях. Сначала надо прозвонить в режиме измерения сопротивления.

Убедившись в отсутствии пробоя, на первом и третьем контакте колодки выставляется разность потенциалов 0,1 вольта. Это достигается регулировкой резистора.

Проверка происходит в режиме измерения постоянного напряжения. Анод проверяемого стабилитрона подсоединяется к третьему контакту колодки, а катод подключается к первому. Щупы тестера подсоединяются к ним же.

Регулировкой переменного резистора увеличиваем обратное напряжение на полупроводнике до тех пор, пока оно не перестанет изменяться. Если это произошло, значит, стабилитрон достиг напряжения стабилизации и работает нормально.

Иногда требуется определить его вольтамперную характеристику. Тогда к предыдущей схеме добавляется тестер, работающий в режиме амперметра, соединенный последовательно со стабилитроном.

При изменении вольтажа с определенным шагом, снимаются значения напряжения и тока, строится график, получается вольтамперная характеристика.

Стабилитрон внешне очень сильно похож на диод, но применение его в радиотехнике совсем иное. В большинстве случаев стабилитроны используют для стабилизации напряжения (в слаботочных схемах). Подключаются они параллельно потребителю. В процессе работы, в случае завышенного напряжения, стабилитрон начинает пропускать ток через себя, таким образом, стабилитрон сбрасывает напряжение на схеме. Стабилитроны в своем большинстве не рассчитаны на большие токи, а при сильных токах они очень быстро нагреваются, и в дальнейшем у них возникает тепловой пробой.

Как проверить стабилитрон мультиметром?

Проверка стабилитрона мультиметром производится по аналогии с проверкой диода. Проверяют стабилитрон фактически любым тестером в режиме проверки диода или в режиме омметра.


Исправный стабилитрон всегда должен проводить ток только в одном направлении, собственно как и диод. Для примера выбраны стабилитроны два стабилитрона: Д814А и КС191У, один из них заведомо с дефектом.

Проверка Д814А. В данном случае стабилитрон, как и диод, пропускает ток, лишь в одном направлении.

Проверка КС191У. Этот стабилитрон явно имеет дефект, т.к. он вообще не способен пропускать через себя ток.

О том, как проверить напряжение стабилитрона, подробно читаем .

Как проверить стабилитрон мультиметром на плате?

Проверяя стабилитрон на плате необходимо понимать, что другие радиокомпоненты могут сильно влиять на показания мультиметра или другого прибора. Если есть сомнения в проверяемом экземпляре, тогда лучше всего его демонтировать с платы и проверять отдельно.

Как проверить диод мультиметром?

Диод – одна из самых распространенных радиодеталей в современной электротехнике. Без нее невозможно собрать ни один электрический прибор. Он используется в производстве и электрических чайников и сложнейших аппаратов МРТ. Встает вопрос, как проверить диод? Это можно сделать самым обычным цифровым мультиметром, которые есть у любого радиолюбителя. Проверка для разных типов диодов отличается друг от друга и имеет некоторые характерные особенности, которые зависят от строения, назначения, типа, параметров работы и других свойств конкретного диода.

Для этого был разработан специальный режим, на котором осуществляется проверка диода. Именно таким образом проверяется его работоспособность, состояние, соответствие техническим характеристикам. При появлении на экране измерительного прибора появится напряжение в промежутке между 0,6-0,7 В, значит радиодеталь исправна. В статье подробно описан весь процесс проверки диода, порядок действия, все особенности и разных типов. В данном материале содержатся несколько видеороликов и подробный практический материал в заключении.

Проверка диода.

Тестирование обычного диода, используя аналоговый мультиметр.

Чтобы проверить обычный Кремниевый диод, используя аналоговый мультиметр, поместите селектор мультиметра в позицию низкого сопротивления (1K). Соедините положительный вывод мультиметра к аноду диода и отрицательный вывод мультиметра к катоду диода. Если мультиметр показывает чтение низкого сопротивления, мы можем предположить, что диод исправен. Этот — тест для того, чтобы проверить прямосмещенный режим диода.

Теперь поместите селектор мультиметра в позицию высокого сопротивления (100K). Соедините положительный вывод мультиметра к катоду диода и отрицательный вывод к аноду диода. Если мультиметр показывает бесконечное чтение, мы можем предположить, что диод исправен. Этот — тест для того, чтобы проверить обратный режим блокирования диода. Мультиметр показывает бесконечное или очень высокое сопротивление, потому что у обратно-смещенного диода есть очень высокое сопротивление (обычно в диапазоне сотен Омов K).

Диод и светодиод.

Тестирование Диода Зенера

Прямые характеристики Диода Зенера подобны обычному диоду. Так методы, используемые для того, чтобы протестировать вперед проводящий режим любого обычного диода, также применимо к Диоду Зенера . Но в обратном режиме, у напряжения обратного пробоя есть большое значение, и это должно быть в частности протестировано. Например, 5.3-вольтовый Диод Зенера должен начать проводить только, когда примененное обратное напряжение просто превышает 5.3V. Режим обратного смещения Диода Зенера может быть легко протестирован при помощи схемы, данной ниже. Сопротивление R1 может обычно быть 100 Омов.

Мультиметр должен быть в режиме напряжения. Теперь медленно увеличивайте производство переменного источника питания и одновременно наблюдайте напряжение, показанное в мультиметре. Дисплей мультиметра увеличивается вместе с увеличением напряжения источника питания до напряжения пробоя. Кроме того показания мультиметра остается неизменным несмотря на напряжение источника питания. Это вызвано тем, что Диод Зенера находится теперь в области пробоя, и напряжение через него останется постоянным независимо от увеличения напряжения питания, и это постоянное напряжение будет равно напряжению пробоя.

Если показание мультиметра равно напряжению пробоя, определенному производителем, мы можем предположить, что Диод Зенера исправен. При выполнении этого теста не забудьте не превышать входное напряжение возбуждения к точке, которая вынуждает Диод Зенера рассеять больше питания. Обычно оно не должно превышать больше, чем 10mA

Особенности диодов

Стандартный диод представляет собой компонент электросети и выступает в роли полупроводника с p-n переходом. Его строение позволяет пропускать ток по цепи только в одном направлении — от анода к катоду (разные концы детали). Для этого нужно подать на анод «+», а на катод – «-«. Из-за такой особенности изделия, при подозрении на предмет поломки, его можно проверить тестером или мультиметром.

Различные виды диодов.

На сегодняшний день в радиоэлектронике существует несколько видов диодов: Виды диодов:

  • светодиод. При прохождении электрического тока через такой элемент он начинает светиться в результате трансформации энергии в видимое свечение;
  • защитный или обычный диод. Такие элементы в электросети выполняют роль супрессора или ограничителя напряжения. Одной из разновидностей данного элемента является диод Шоттки. Его еще называют как диод с барьером Шоттки. Такой элемент при прямом включении дает малое падение напряжения. В Шоттки вместо p-n перехода применяется переход металл-полупроводник.

Вот небольшая подборка, составленная из конкретных диодов и соответствующих им величин Vf, которые были получены при их тестировании мультиметром. Все диоды были предварительно проверены на исправность.

Таблица замеров характеристик диодов с помощью мультимера.

Если обычные детали и светодиоды используются в превалирующем большинстве электроприборов, то Шоттки – преимущественно в качественных блоках питания (например, для таких приборов, как компьютеры). Стоит отметить, что проверка обычного диода и Шоттки практически ни чем особым не отличается, так как проводится по одному и тому же принципу. Поэтому не стоит беспокоиться по данному вопросу, ведь принцип работы и Шоттки, и обычных диодов идентичен.

Обратите внимание! Здесь только стоит отметить, что Шоттки в большинстве случаев встречаются сдвоенными, размещаясь в общем корпусе. При этом они имеют общий катод. В такой ситуации можно эти детали не выпаивать, а проверить «на месте».

Диод Шоттки

Являясь компонентом электронной схемы, такие полупроводниковые элементы довольно часто выходят из строя. Самыми распространенными причинами выхода их из строя бывают:

  • превышение максимально допустимого уровня прямого тока;
  • превышение обратного напряжения;
  • некачественная деталь;
  • нарушение правил эксплуатации прибора, установленных производителем.

При этом вне зависимости от причины потери работоспособности выход из строя может быть непосредственно обусловлен либо «пробоем», либо коротким замыканием. В любом случае, если имеется предположение о выходе электросети из строя в зоне полупроводника, необходимо провести его диагностику с помощью специального прибора – мультиметра. Только для проведения таких манипуляций необходимо знать, как проверить диод с его помощью правильно.

Интересное по теме: Как используются фотореле для уличного освещения.

Что такое мультиметр

Мультиметр является универсальным прибором, который выполняет ряд функций:

  • измеряет напряжение;
  • определяет сопротивление;
  • проверяет провода на предмет наличия обрывов.

С помощью этого прибора даже можно определить пригодность батарейки.

Проверка светодиодов в лампе.

Как проверить диод

После того, как мы разобрались с полупроводниками электрической схемы и предназначением прибора, можно ответить на вопрос «как проверить диод на исправность?».
Вся суть проверки диодов мультиметром заключается в их односторонней пропускной способности электрического тока. При соблюдении этого правила элемент электрической схемы считается функционирующим правильно и без сбоев. Обычные диоды и Шоттки можно спокойно проверить с помощью данного прибора. Чтобы проверить этот полупроводниковый элемент мультиметром, необходимо проделать следующие манипуляции:

  • необходимо удостовериться, что на вашем мультиметре имеется функция проверки диодов;
  • при наличии такой функции подключаем щупы прибора к той стороне полупроводника, с которой будет осуществляться «прозвон». Если данная функция отсутствует, тогда переводим прибор с помощью переключателя на значение 1кОМ. Также следует выбрать режим для измерения сопротивления;
  • красный провод измерительного устройства необходимо подключить к анодному концу, а черный – к катодному;
  • после этого нужно наблюдать за изменениями прямого сопротивления полупроводника;
  • делаем выводы о имеющемся или отсутствующем напряжении

После этого прибор можно переключить, чтобы проверить на предмет утечки или высокого замыкания. Для этого необходимо поменять места вывода диода. В таком состоянии также необходимо провести оценку полученных значений прибора.

Материал в тему: устройство подстроечного резистора.

Как проверить диодный мост

Иногда имеется ситуация, когда нужно проверить на работоспособность диодный мост. Он имеет вид сборки, состоящей из четырех полупроводников. Они соединяются таким образом, чтобы переменное напряжение, подаваемое к двум из четырех спаянных элементов, переходило в постоянное. Последнее снимается с двух других выводов. В результате происходит выпрямление переменного напряжения и перевод его в постоянное.

По сути, принцип проверки в этой ситуации остается таким же, как было описано выше. Единственной особенностью тут является определение, к какому выводу будет подключен измерительный прибор. Здесь имеется четыре варианта подключения, которые следует «прозвонить»:

  • выводы 1 – 2;
  • выводы 2 – 3;
  • выводы 1 – 4;
  • выводы 4 – 3;

При проверке диодов (обычного и Шоттки) с помощью мультиметра, вы получите определенный результат. Теперь нужно понять, что он может означать. К признакам, которые свидетельствуют в пользу исправности полупроводника, относятся следующие моменты:

  1. При подключении детали электросхемы к прибору последний будет выдавать величину имеющегося прямого напряжения в этом элементе;
  2. Разные типы диодов обладают различным уровнем напряжения, по которому они и отличаются. Например, для германиевых изделий этот параметр составит 0,3-0,7 вольт
  3. При подключении обратным способом (щуп прибора к аноду изделия) будет регистрироваться ноль.

Проверив каждый выход, вы получите четыре результата. Полученные показатели следует оценивать по тому же принципу, что и для отдельного полупроводника.

Материал в тему: Что такое кондесатор

Обратная проверка

Если эти два показателя соблюдаются, то полупроводник работает адекватно и причина поломки не в нем. А вот если хотя бы одни из параметров не соответствует, то элемент признается негодным и подлежит замене. Кроме этого следует учитывать, что возможна не поломка, а «утечка». Этот неприятный дефект может проявиться при длительной эксплуатации прибора или некачественной сборке.

При наличии короткого замыкания или утечки, полученное сопротивление будет довольно низким. Причем вывод необходимо делать, основываясь на виде полупроводника. Для германиевых элементов этот показатель в данной ситуации будет иметь диапазон от 100 килоом до 1 мегаом, для кремниевых — тысячи мегаом. Для выпрямительных полупроводников данный показатель будет в разы больше.

Как видим, своими силами не так уж и сложно провести оценку работоспособности полупроводников в любом электроприборе. Вышеописанный принцип подходит для проверки диодных элементов различных типов и видов. Главное в этой ситуации правильно подключить измерительный прибор к полупроводнику и проанализировать полученные результаты.

Два диода Шоттки.

Проверка работоспособности диода, светодиода, стабилитрона.

  • Устанавливаем прибор в режим прозвонки, если такого режима нет, то в режим измерения сопротивления 1кОм;
  • Убеждаемся, что щупы прибора подключены в нужные нам гнезда мультиметра;
  • Провод красного цвета подсоединяется к аноду, а провод черного цвета — к катоду;
  • Производим измерение. В режиме прозвонки, при подключении диода прибор показывает падение напряжения от 200 до 400 мВ для германиевых диодов, от 500 до 700 мВ для кремниевых. При измерении сопротивления прибор будет показывать сопротивление диода. К примеру, для германиевых элементов сопротивление составляет от 100 килоом до 1 магаома, для элементов выполненных из кремния этот показатель равен 1000 мегаом. Если проверяется выпрямительный полупроводник, то значение еще более высокое. Это обязательно нужно учитывать, чтобы не допустить ошибку при определении результатов;
  • Меняем местами красный и черный щуп прибора;
  • Производим измерение. Если диод подключить в обратном направлении, то прибор будет показывать единицу «1», то есть величина сопротивления или напряжения утечки бесконечно большая;
  • Нужно помнить, что может быть вовсе не поломка, а утечка. Этот вариант возможен в двух случаях, если прибор долго находился в эксплуатации или же сборка его была выполнена не качественно. Если имеется короткое замыкание или утечка, то прибор покажет низкое сопротивление. Причем при определении результата нужно учитывать вид полупроводника.
  • Делаем выводы о работоспособности элемента.

Если все показатели соблюдены, то можно смело сказать, что он работает правильно и исправен. А вот если хотя бы один параметр не верный, то это свидетельствует о том, что элемент нужно заменить.

Проверка диода.

В данной статье описаны главные этапы проверки диода мультиметром. Более подробную информацию можно узнать из статьи Как проверять мультиметром радиодетали. В нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессиональных электронщиков. Чтобы подписаться на группу, вам необходимо будет перейти по следующей ссылке: https://vk.com/electroinfonet. В завершение статьи хочу выразить благодарность источникам, откуда мы черпали информацию:

В процессе ремонта бытовой техники или других электронных устройств: монитора, принтера, микроволновки, блока питания компьютера или автомобильного генератора (например, Valeo, БОШ или БПВ) и т.д. возникает необходимость проверить целостность элементов. Расскажем подробно про тестирование диодов.

Учитывая разнообразие этих радиоэлементов, единой методики проверки их работоспособности не существует. Соответственно, для каждого класса есть свой способ тестирования. Рассмотрим, как проверить диод шоттки, фотодиод, высокочастотный, двунаправленный и т.д.

Что касается приборов для тестирования, мы не станем рассматривать экзотические способы проверки (например, батарейку и лампочку), а будем пользоваться мультиметром (подойдет даже такая простая модель, как DT-830b) или тестером. Эти приборы практически всегда есть дома у радиолюбителя. В некоторых случаях потребуется собрать несложную схему для тестирования. Начнем с классификации.

Классификация

Диоды относятся к простым полупроводниковым радиоэлементам на основе p-n перехода. На рисунке представлено графическое обозначение наиболее распространенных типов этих устройств. Анод отмечен «+», катод – «-» (приведено для наглядности, в схемах для определения полярности достаточно графического обозначения).

Принятые обозначения

Типы диодов, указанные на рисунке:

  • А – выпрямительный;
  • B – стабилитрон;
  • С – варикап;
  • D – СВЧ-диод (высоковольтный);
  • E – обращенный диод;
  • F – туннельный;
  • G – светодиод;
  • H – фотодиод.

Теперь рассмотрим способы проверки для каждого из перечисленных видов.

Защитный диод, а также выпрямительный (включая силовой)или шоттки можно проверить при помощи мультиметра (или воспользоваться омметром), для этого переводим прибор в режим прозвонки так, как это показано на фотографии.

Режим мультиметра, при котором тестируются полупроводниковые выпрямительные диоды

Щупы измерительного прибора присоединяем к выводам радиоэлемента. При присоединении красного провода («+») к аноду, а черного («-«) к катоду дисплей мультиметра (или омметра) отобразит значение порогового напряжения тестируемого диода. После того, как меняем полярность, прибор должен показать бесконечно большое сопротивление. В этом случае можно констатировать исправность элемента.

Если при обратном подключении мультиметр регистрирует утечку, значит, радиоэлемент «сгорел» и нуждается в замене.

Заметим, данную методику проверки можно использовать для тестирования диодов на генераторе автомобиля.

Тестирование стабилитрона осуществляется по сходному принципу, правда, такая проверка не позволяет определить, осуществляется ли стабилизация напряжения на заданном уровне. Поэтому нам потребуется собрать простую схему.

Тестирование с использованием регулируемого источника питания

Обозначения:

  • БП – регулируемый блок питания (отображающий ток нагрузки и напряжение);
  • R – токоограничительное сопротивление;
  • VT – тестируемый стабилитрон или лавинный диод.

Принцип проверки следующий:

  • производим сборку схемы;
  • устанавливаем режим мультиметра, позволяющий измерить постоянное напряжение до 200 В;

Выбор необходимого режима для тестирования

  • включаем блок питания и начинаем постепенно увеличивать величину напряжения, пока амперметр на блоке питания не покажет, что через цепь протекает ток;
  • подключаем мультиметр, как указано на рисунке и измеряем величину напряжения стабилизации.

Тестирование варикапов

В отличие от обычных диодов, у варикапов p-n переход обладает непостоянной емкостью, величина которой пропорциональна обратному напряжению. Проверка на обрыв или замыкание для этих элементов осуществляется также, как у обычных диодов. Для проверки емкости потребуется мультиметр, у которого есть подобная функция.

Демонстрация проверки варикапа

Для тестирования потребуется установить соответствующий режим мультиметра, как показано на фото (А) и вставить деталь в разъем для конденсаторов.

Как правильно заметил один из комментаторов данной статьи, действительно, определить емкость варикапа, не оперируя номинальным напряжением невозможно. Поэтому, если возникла проблема с идентификацией по внешнему виду, потребуется собрать простую приставку для мультиметра (повторюсь для критиков, именно цифрового мульти метра с функцией измерения емкости верки конденсаторов, например UT151B).

Приставка к мультиметру для измерения емкости варикапа

Обозначения:

Устройство требует настройки. Она довольно проста, собранное устройство, подключается к измерительному прибору (мультиметр с функцией измерения емкости). Питание должно подаваться со стабилизированного источника питания (важно) с напряжением 9 вольт (например, батарея Крона). Меняя емкость подстрочного конденсатора (С2) добиваемся показания на индикаторе 100 пФ. Это значение мы будем вычитать от показания прибора.

Данный вариант неидеален, необходимость его практического применения вызывает сомнения, но схема наглядно демонстрирует зависимости емкости варикапа от номинального напряжения .

Проверка супрессора (TVS-диода)

Защитный диод, он же ограничительный стабилитрон, супрессор и TVS-диод. Данные элементы бывают двух типов: симметричные и несимметричные. Первые используются в цепях переменного тока, вторые – постоянного. Если кратко объяснить принцип действия такого диода, то он следующий:

Увеличение входного напряжения вызывает уменьшение внутреннего сопротивления. В результате увеличивается сила тока в цепи, что вызывает срабатывание предохранителя. Преимущество устройства заключается в быстроте реакции, что позволяет принять на себя переизбыток напряжения и защитить устройство. Скорость срабатывания – главное достоинство защитного (TVS) диода.

Теперь о проверке. Она ничем не отличается от обычного диода. Правда есть исключение – диоды Зенера, которые также можно отнести к TVS семейству, но по сути это быстрый стабилитрон, работающий по «механизму» лавинного пробоя (эффект Зинера). Но, проверка работоспособности скатывается к обычной прозвонке. Создание условий срабатывания приводит к выходу элемента из строя. Другими словами, способа проверки защитных функций TVS-диода нет, это как проверить спичку (годная она или нет) пытаясь поджечь.

Тестирование высоковольтных диодов

Проверить высоковольтный диод СВЧ печи тем же способом, что и обычный, не получится, в виду его особенностей. Для тестирования этого элемента, понадобится собрать схему (показанную на рисунке ниже), подключенную к блоку питания 40-45 вольт.

Схема для проверки используемого в микроволновке диода

Напряжения 40-45 вольт будет достаточно для поверки большинства элементов данного типа, методика тестирования — как у обычных диодов. Величина сопротивления R должна быть в пределах от 2кОм до 3,6кОм.

Диоды туннельного и обращенного типа

Учитывая, что ток, протекающий через диод, зависит от напряжения, приложенного к нему, тестирование заключается в анализе этой зависимости. Для этого потребуется собрать схему, например, такую, как показана на рисунке.

Тестирование диодов туннельного типа

Перечень элементов:

  • VD – тестируемый диод туннельного типа;
  • Uп – любой гальванический источник питания, у которого ток разряда около 50 мА;
  • Сопротивления: R1 – 12Ω, R2 – 22Ω, R3 – 600Ω.

Диапазон измерений, выставленный на мультиметре ,не должен быть меньше тока максимума диода, этот параметр указан в даташит (datasheet) радиоэлемента.

Видео: Пример проверки диода мультиметром

Алгоритм тестирования:

  • устанавливается максимальное значение на переменном резисторе R3;
  • подключается тестируемый элемент, с соблюдением указанной на схеме полярности;
  • уменьшая величину R3, наблюдаем за показаниями измерительного прибора.

Если элемент исправен, в процессе измерения прибор покажет увеличение тока до Imax диода, после чего последует резкое уменьшение этой величины. При дальнейшем повышении напряжения ток уменьшится до Imin, после чего снова начнет расти.

Тестирование светодиодов

Проверка светодиодов практически ничем не отличается от тестирования выпрямительных диодов. Как это делать, было описано выше. Светодиодную ленту (точнее ее smd элементы), инфракрасный светодиод, а также лазерный, проверяем по той же методике.

К сожалению, мощный радиоэлемент данной группы, у которого повышенное рабочее напряжение, проверить указанным способом не получится. В этом случае дополнительно понадобится стабилизированный источник питания. Алгоритм тестирования следующий:

  • собираем схему, как показано на рисунке. На блоки питания выставляется рабочее напряжение светодиода (указано в даташит). Диапазон измерения на мультиметре должен быть до 10 А. Заметим, что можно использовать зарядное устройство в качестве БП, но тогда необходимо добавить токоограничивающие сопротивление;

Измерение номинального тока на светодиоде

  • измеряем номинальный ток и выключаем блок питания;
  • устанавливаем режим мультиметра, позволяющий измерить постоянное напряжение до 20 В, и подключаем прибор параллельно тестируемому элементу;
  • включаем блок питания и снимаем параметры рабочего напряжения;
  • сравниваем полученные данные с указанными в даташит, и на основании этого анализа определяем работоспособность светодиода.

Проверяем фотодиод

При простой проверке измеряется обратное и прямое сопротивление помещенного под источник света радиоэлемента, после чего его затемняют и повторяют процедуру. Для более точного тестирования потребуется снять вольтамперную характеристику, сделать это можно при помощи несложной схемы.

Пример схемы для снятия вольтамперных характеристик

Для засветки фотодиода в процессе тестирования можно использовать в качестве источника освещения лампу накаливания мощностью от 60Вт или поднести радиодеталь к люстре.

У фотодиодов иногда встречается характерный дефект, который проявляется в виде хаотического изменения тока. Для обнаружения такой неисправности необходимо подключить тестируемый элемент так, как это показано на рисунке, и измерять величину обратного тока в течение пары минут.

Проверка на «ползучесть»

Если в процессе тестирования уровень тока будет оставаться неизменным, значит, фотодиод можно считать рабочим.

Тестирование без выпайки.

Как показывает практика, протестировать диод не выпаивая, когда он находится на плате, как и другие радиодетали (например, транзистор, конденсатор, тиристор и т.д.), не всегда удается. Это связано с тем, что элементы в цепи могут давать погрешность. Поэтому перед тем, как проверить диод, его необходимо выпаять.

И для любителей, и для профессионалов электроники очень важным умением является способность определить полярность (где катод, а где анод) и работоспособность диода. Так как мы знаем, что диод, по сути, является не более, чем односторонним клапаном для электричества, то вероятно, мы можем проверить его однонаправленный характер с помощью омметра, измеряющего сопротивление по постоянному току (питающегося от батареи), как показано на рисунке ниже. При подключении диода одним способом мультиметр должен показать очень низкое сопротивление на рисунке (a). При подключении диода другим способом мультиметр должен показать очень большое сопротивление на рисунке (b) (некоторые модели цифровых мультиметров в этом случае показывают «OL»).

Определение полярности диода: (a) Низкое сопротивление указывает на прямое смещение, черный щуп подключен к катоду, а красный – к аноду. (b) Перемена щупов местами показывает высокое сопротивление, указывающее на обратное смещение.

Конечно, чтобы определить, какое вывод диода является катодом, а какой – анодом, вы должны точно знать, какой вывод мультиметра является положительным (+), а какой – отрицательным (-), когда на нем выбран режим «сопротивление» или «Ω». В большинстве цифровых мультиметров, которые я видел, красный вывод используется, как положительный, а черный, как отрицательный, в соответствии с соглашением о цветовой маркировке электроники.

Одна из проблем использования омметра для проверки диода заключается в том, что мы имеем только качественное значение, а не количественное. Другими словами, омметр говорит вам, только в каком направлении диод проводит ток; полученное при измерении низкое значение сопротивления бесполезно. Если омметр показывает значение «1,73 ома» при прямом смещении диода, то число 1,7 Ом не представляет для нас, как для техников или разработчиков схем, никакой реально полезной количественной оценки. Оно не представляет собой ни прямое падение напряжения, ни величину сопротивления материала полупроводника самого диода; это число скорее зависит от обеих величин и будет изменяться в зависимости от конкретного омметра, используемого для измерения.

По этой причини, некоторые производители цифровых мультиметров оснащают свои измерительные приборы специальной функцией «проверка диода», которая показывает реальное прямое падение напряжения на диоде в вольтах, а не значение «сопротивления» в омах. Эти измерительные приборы работают, пропуская через диод небольшой ток и измеряя падение напряжения между двумя измерительными щупами (рисунок ниже).

Мультиметр с функцией «Проверка диода», вместо низкого сопротивления, показывает прямое падение напряжения 0,548 вольт.

Показание прямого напряжения, полученное таким образом с помощью мультиметра обычно меньше, чем «нормальное» падение в 0,7 вольта для кремниевых диодов и 0,3 вольта для германиевых диодов, так как ток, обеспечиваемый измерительным прибором, довольно мал. Если у вас нет мультиметра с функцией проверки диодов, или вы хотели бы измерить прямое падение напряжения на диоде при другом токе, то можно собрать схему из батареи, резистора и вольтметра.

Измерение прямого напряжения диода с помощью мультиметра без функции «проверка диода»: (a) Принципиальная схема. (b) Схема соединений

Подключение диода в этой тестовой схеме в обратном направлении просто приведет к тому, что вольтметр покажет полное напряжение батареи.

Если эта схема была разработана для обеспечения протекания через диод тока постоянной (или почти) величины, несмотря на изменения прямого падения напряжения, то она может быть использована в качестве основы для инструмента, измеряющего температуру: измеренное на диоде напряжение будет обратно пропорционально температуре перехода диода. Конечно, ток через диод должен быть минимален, чтобы самонагревания (значительного количества рассеиваемой диодом мощности), которое могло бы помешать измерению температуры.

Помните, что некоторые цифровые мультиметры, оснащенные функцией «проверка диода», при работе в обычном режиме «сопротивление» (Ω) могут выдавать очень низкое тестовое напряжение (менее 0,3 вольт), слишком низкое для полного схлопывания (сжатия) обедненной области PN перехода. Суть в том, что тестирования полупроводниковых приборов здесь должна использоваться функция «проверка диода», а функция «сопротивления» – для всего остального. Использование очень низкого тестового напряжения для измерения сопротивления облегчает процесс измерения сопротивления неполупроводниковых компонентов, подключенных к полупроводниковым компонентам, так как переходы полупроводникового компонента не будут смещены такими низкими напряжениями в прямом направлении.

Рассмотрим пример резистора и диода, соединенных параллельно и припаянных к печатной плате. Как правило, перед измерением сопротивления резистора необходимо было бы выпаять его из схемы (отсоединить резистор от остальных компонентов), в противном случае любые параллельно подключенные компоненты будут влиять на полученные показания. При использовании мультиметра, который выдает на щупы очень низкое тестовое напряжение в режиме «сопротивление», на PN переход диода не будет подано напряжение, достаточное для того, чтобы он был смещен в прямом направлении, и, следовательно, диод будет пропускать незначительный ток. Следовательно, измерительный прибор «видит» диод, как разрыв, и показывает сопротивление только резистора (рисунок ниже).

Омметр, оснащенный очень низким тестовым напряжением (< 0,7 В), не видит диодов, что позволяет ему измерять параллельно подключенные к диоду резисторы.

Если использовать такой омметр для проверки диода, он покажет очень высокое сопротивление (много мегаом), даже если подключить диод в «правильном» (для прямого смещения) направлении (рисунок ниже).

Омметр, оснащенный очень низким тестовым напряжением, слишком низким для прямого смещения диодов, не видит диодов.

Величина обратного напряжения диода измеряется не так легко, так как превышение обратного напряжения на обычном диоде приводит к его разрушению. Хотя существуют специальные типы диодов, разработанные для «пробоя» в режиме обратного смещения без повреждения диода (так называемые стабилитроны), которые тестируются в той же схеме источник/резистор/вольтметр при условии, что источник напряжения обеспечивает величину напряжения, достаточную для перехода диода в область пробоя. Более подробную информацию об этом читайте в одной из следующих статей этой главы.

Подведем итоги

  • Омметр может быть использован для качественной оценки работоспособности диода. При подключении диода в одном направлении должно получено низкое сопротивление, а подключении в другом направлении – очень высокое сопротивление. При использовании для этой цели омметра, убедитесь, что знаете, какой из тестовых щупов положительный, а какой отрицательный!
  • Некоторые мультиметры имеют функцию «проверка диода», которая отображает фактическое прямое напряжение диода, когда он проводит ток. Такие измерительные приборы обычно показывают слегка заниженное значение прямого напряжения, по сравнению с «номинальным» значением, из-за очень маленькой величины тока, используемой для проверки.

Теги

ДиодМультиметрОбучениеЭлектроника Сохранить или поделиться

Диод

Сегодня без электроники никуда. Она является составной частью любого современного прибора или гаджета. При этом все приборы, как это ни печально, не могут работать вечно и периодически ломаются. Одной из довольно распространенных причин поломки целого ряди электроприборов, является выход из строя такого элемента электросети, как диод.

Провести проверку исправности этого компонента можно своими руками в домашних условиях. Эта статья расскажет вам, как проверить диод мультиметром, а также о том, что собой представляют данные элементы и каков сам измерительный прибор.

Диод диоду рознь

Стандартный диод представляет собой компонент электросети и выступает в роли полупроводника с p-n переходом. Его строение позволяет пропускать ток по цепи только в одном направлении — от анода к катоду (разные концы детали). Для этого нужно подать на анод «+», а на катод – «-«.

Обратите внимание! Течь в обратном направлении, от катода к аноду, электрический ток в диодах не может.

Из-за такой особенности изделия, при подозрении на предмет поломки, его можно проверить тестером или мультметром.
На сегодняшний день в радиоэлектронике существует несколько видов диодов:

Виды диодов

  • светодиод. При прохождении электрического тока через такой элемент он начинает светиться в результате трансформации энергии в видимое свечение;
  • защитный или обычный диод. Такие элементы в электросети выполняют роль супрессора или ограничителя напряжения. Одной из разновидностей данного элемента является диод Шоттки. Его еще называют как диод с барьером Шоттки. Такой элемент при прямом включении дает малое падение напряжения. В Шоттки вместо p-n перехода применяется переход металл-полупроводник.

Если обычные детали и светодиоды используются в превалирующем большинстве электроприборов, то Шоттки – преимущественно в качественных блоках питания (например, для таких приборов, как компьютеры).
Стоит отметить, что проверка обычного диода и Шоттки практически ни чем особым не отличается, так как проводится по одному и тому же принципу. Поэтому не стоит беспокоиться по данному вопросу, ведь принцип работы и Шоттки, и обычных диодов идентичен.
Обратите внимание! Здесь только стоит отметить, что Шоттки в большинстве случаев встречаются сдвоенными, размещаясь в общем корпусе. При этом они имеют общий катод. В такой ситуации можно эти детали не выпаивать, а проверить «на месте».

Диод Шоттки

Являясь компонентом электронной схемы, такие полупроводниковые элементы довольно часто выходят из строя. Самыми распространенными причинами выхода их из строя бывают:

  • превышение максимально допустимого уровня прямого тока;
  • превышение обратного напряжения;
  • некачественная деталь;
  • нарушение правил эксплуатации прибора, установленных производителем.

При этом вне зависимости от причины потери работоспособности выход из строя может быть непосредственно обусловлен либо «пробоем», либо коротким замыканием.
В любом случае, если имеется предположение о выходе электросети из строя в зоне полупроводника, необходимо провести его диагностику с помощью специального прибора – мультиметра. Только для проведения таких манипуляций необходимо знать, как проверить диод с его помощью правильно.

Мультиметр

Мультиметр является универсальным прибором, который выполняет ряд функций:

  • измеряет напряжение;
  • определяет сопротивление;
  • проверяет провода на предмет наличия обрывов.

Мультиметр

С помощью этого прибора даже можно определить пригодность батарейки.

Как проводится проверка

После того, как мы разобрались с полупроводниками электрической схемы и предназначением прибора, можно ответить на вопрос «как проверить диод на исправность?».
Вся суть проверки диодов мультиметром заключается в их односторонней пропускной способности электрического тока. При соблюдении этого правила элемент электрической схемы считается функционирующим правильно и без сбоев.
Обычные диоды и Шоттки можно спокойно проверить с помощью данного прибора. Чтобы проверить этот полупроводниковый элемент мультиметром, необходимо проделать следующие манипуляции:

Проверка

  • необходимо удостовериться, что на вашем мультиметре имеется функция проверки диодов;
  • при наличии такой функции подключаем щупы прибора к той стороне полупроводника, с которой будет осуществляться «прозвон». Если данная функция отсутствует, тогда переводим прибор с помощью переключателя на значение 1кОМ. Также следует выбрать режим для измерения сопротивления;
  • красный провод измерительного устройства необходимо подключить к анодному концу, а черный – к катодному;
  • после этого нужно наблюдать за изменениями прямого сопротивления полупроводника;
  • делаем выводы о имеющемся или отсутствующем напряжении

После этого прибор можно переключить, чтобы проверить на предмет утечки или высокого замыкания. Для этого необходимо поменять места вывода диода. В таком состоянии также необходимо провести оценку полученных значений прибора.

Проверка диодного моста

Диодный мост

Иногда имеется ситуация, когда нужно проверить на работоспособность диодный мост. Он имеет вид сборки, состоящей из четырех полупроводников. Они соединяются таким образом, чтобы переменное напряжение, подаваемое к двум из четырех спаянных элементов, переходило в постоянное. Последнее снимается с двух других выводов. В результате происходит выпрямление переменного напряжения и перевод его в постоянное.

По сути, принцип проверки в этой ситуации остается таким же, как было описано выше. Единственной особенностью тут является определение, к какому выводу будет подключен измерительный прибор. Здесь имеется четыре варианта подключения, которые следует «прозвонить»:

  • выводы 1 – 2;
  • выводы 2 – 3;
  • выводы 1 – 4;
  • выводы 4 – 3;

Проверив каждый выход, вы получите четыре результата. Полученные показатели следует оценивать по тому же принципу, что и для отдельного полупроводника.

Полупроводниковые аналоги стабилитронов

Стабилитроны (диоды Зенера, Z-диоды) предназначены для стабилизации напряжения, режимов работы различных узлов радиоэлектронной аппаратуры. Принцип работы стабилитрона основан на явлении зенеровского пробоя п-р перехода. Этот вид электрического пробоя происходит в обратносмещенных полупроводниковых переходах при увеличении напряжения выше некоторой критической отметки. Помимо зенеровского пробоя известен и используется для стабилизации напряжения лавинный пробой. Типовые зависимости тока через полупроводниковый прибор (стабилитрон) от величины приложенного прямого или обратного напряжений (вольт-амперные характеристики, ВАХ) приведены на рис. 1.1.

Рис. 1.1.

Прямые ветви ВАХ различных стабилитронов практически совпадают (рис. 1.1), а обратная ветвь имеет индивидуальные особенности для каждого типа стабилитронов. Эти параметры: напряжение стабилизации; минимальный и максимальный ток стабилизации; угол наклона ВАХ, характеризующий величину динамического сопротивления стабилитрона (его «качество»);

максимальная мощность рассеяния; температурный коэффициент напряжения стабилизации (ТКН) — используют для расчетов схем.

Типовая схема включения стабилитрона показана на рис. 1.2. Значение гасящего сопротивления R1 (в кОм) вычисляют по формуле:

Рис. 1.2

Рис. 1.3

Для стабилизации напряжения переменного тока либо симметричного ограничения его амплитуды на уровне UCT используют симметричные стабилитроны (рис. 1.3), например типа КС 175. Такие стабилитроны можно использовать для стабилизации напряжения постоянного тока, включая их без соблюдения полярности. Получить «симметричный» стабилитрон можно из двух «несимметричных», включив их встречно по схеме, приведенной на рис. 1.4.

Выпускаемые промышленно полупроводниковые стабилитроны позволяют стабилизировать напряжение в широких пределах: от 3,3 до 180 В. Так, существуют стабилитроны, позволяющие стабилизировать низкие напряжения: 3,3; 3,9; 4,7; 5,6 В — это КС133, КС139, КС147, КС156 и т.д. При необходимости получить нестандартное напряжение стабилизации, например, 6,6 В, можно включить последовательно два стабилитрона КС133. Для трех таких стабилитронов напряжение стабилизации составит 9,9 В. Для напряжения стабилизации 8,0 В можно использовать сочетание стабилитронов КС133 и КС147 (т.е. 3,3+4,7 В) либо стабилитрон КС175 и кремниевый диод (КД503) — в прямом направлении (т.е. 7,5+0,5 В).

Рис. 1.4

Рис. 1.5

В ситуациях, когда требуется получить стабильное напряжение величиной менее 2…3 В, используют стабисторы — полупроводниковые диоды, работающие на прямой ветви ВАХ (рис. 1.1).

Особенно интересно применение в целях стабилизации напряжения светоизлучающих диодов (рис. 1.6) .

Светодиоды могут выполнять одновременно две функции: своим свечением индицировать наличие напряжения и стабилизировать его величину на уровне 1,5…2,2 В. Напряжение стабилизации светодиодов UCT можно определить по приближенной формуле: L/Cr=1236/Л. (В), где X — длина волны излучения светодиода в нм .

Рис. 1.6

Рис. 1.7

Рис. 1.8

Для стабилизации напряжения может быть использована обратная ветвь ВАХ полупроводниковых приборов (диодов и транзисторов), специально для этих целей не предназначенных (рис. 1.7, 1.8, а также рис. 20.7). Это напряжение (напряжение лавинного пробоя) обычно превышает 7 б и не отличается высокой повторяемостью даже для полупроводниковых приборов одного типа. Для избежания теплового повреждения полупроводниковых приборов при столь необычном режиме их эксплуатации ток через них не должен превышать долей миллиампера. Так, для диодов Д219, Д220 напряжение пробоя (напряжение стабилизации) может находиться в пределах от 120 до 180 В .

Для стабилизации малых напряжений используют схемы, представленные на рис. 1.9 — 1.12. В схеме (рис. 1.9) использовано «диодное» параллельное включение двух кремниевых транзисторов. Напряжение стабилизации этой схемы равно 0,65…0,7 В для кремниевых транзисторов и около 0,3 В — для германиевых. Внутреннее сопротивление такого аналога стабистора не превышает 5… 10 Ом при коэффициенте стабилизации до 1000…5000. Однако при изменении температуры окружающей среды нестабильность выходного напряжения схемы составляет около 2 мВ на каждый градус.

Рис. 1.9

Рис. 1.10

Рис. 1.11

В схеме на рис. 1.10 использовано последовательное включение германиевого и кремниевого транзисторов. Ток нагрузки этого аналога стабилитрона может составить 0,02… 10 мА. Устройства, показанные на рис. 1.11 и 1.12 , используют встречное включение транзисторов структуры р-п-р и п-р-п и различаются лишь тем, что для повышения выходного напряжения в одной из схем между базами транзисторов включен кремниевый диод (один или несколько). Ток стабилизации аналогов стабилитронов (рис. 1.11, 1.12) может быть в пределах 0,1…100 мА, дифференциальное сопротивление на рабочем участке ВАХ не превышает 15 Ом.

Рис. 1.12

Рис. 1.13

Рис. 1.14

Стабилизировать малые напряжения можно и с помощью полевых транзисторов (рис. 1.13, 1.14). Коэффициент стабилизации таких схем очень высок: для однотранзисторной схемы (рис. 1.13) достигает 300 при напряжении питания 5… 15 В, для двухтранзисторной (рис. 1.14) в тех же условиях превышает 1000 . Внутреннее сопротивление этих аналогов стабилитронов составляет, соответственно, 30 Ом и 5 Ом.

Стабилизатор напряжения можно получить с использовани ем в качестве стабилитрона аналога динистора (рис. 1.15, см также главу 2) .

Рис. 1.15

Рис. 1.16

Рис. 1.17

Для стабилизации напряжений при больших токах в нагрузке используют более сложные схемы, представленные на рис. 1.16 — 1.18 . Для увеличения тока нагрузки необходимо использовать мощные транзисторы, установленные на теплоотводах.

Рис. 1.18

Рис. 1.19

Стабилизатор напряжения, работающий в широком диапазоне изменения питающего напряжения (от 4,5 до 18 6), и имеющий значение выходного напряжения, немногим отличающееся от нижней границы напряжения питания, показан на рис. 1.19 .

Рассмотренные ранее виды стабилитронов и их аналогов не позволяют плавно регулировать напряжение стабилизации. Для решения этой задачи используются схемы регулируемых параллельных стабилизаторов, аналогичных стабилитронам (рис. 1.20, 1.21).

Аналог стабилитрона (рис. 1.20) позволяет плавно изменять выходное напряжение в пределах от 2,1 до 20 В . Динамическое сопротивление такого «стабилитрона» при токе нагрузки до 5 мА составляет 20…50 Ом. Температурная стабильность низкая (-3×10″3 1/°С).

Низковольтный аналог стабилитрона (рис. 1.21) позволяет установить любое выходное напряжение в пределах от 1,3 до 5 В . Напряжение стабилизации определяется соотношением резисторов R1 и R2. Выходное сопротивление такого параллельного стабилизатора при напряжении 3,8 В близко к 1 Ом. Выходной ток определяется параметрами выходного транзистора и для КТ315 может достигать 50… 100 мА.

Рис. 1.20

Рис. 1.21

Оригинальные схемы получения стабильного выходного напряжения приведены на рис. 1.22 и 1.23. Устройство (рис. 1.22) представляет собой аналог симметричного стабилитрона . Для низковольтного стабилизатора (рис. 1.23) коэффициент стабилизации напряжения равен 10, выходной ток не превышает 5 мА, а выходное сопротивление изменяется в пределах от 1 до 20 Ом .

Рис. 1.22

Рис. 1.23

Рис. 1.24

Аналог низковольтного стабилитрона дифференциального типа на рис. 1.24 обладает повышенной стабильностью . Его выходное напряжение мало зависит от температуры и определяется разностью напряжений стабилизации двух стабилитронов. Повышенная температурная стабильность объясняется тем, что при изменении температуры напряжение на обоих стабилитронах изменяется одновременно и в близкой пропорции.

Литература: Шустов М.А. Практическая схемотехника (Книга 1), 2003 год

Что такое Диод Зенера

Стабилитрон – это особый тип диодов, которые также называются зенеровскими. У этого типа есть главная особенность – при подаче напряжения, выше определенного номинала, увеличивается ток на выходе. Диод Зенера, который имеет и другое название – стабилитрон, имеет вид диода, который работает в режиме пробоя обратного смещения перехода. До этого, через него проходит небольшой ток, а утечка очень маленькая, что обуславливается большим сопротивлением.

При пробое, номинал тока моментально возрастает, так как его сопротивление в данный отрезок времени несколько долей Ом. В статье изложены принцип работы, где используются и какие функции они выполняют в современной радиоэлектронике. По теме диодов Зенера в статье представлены два интересных видеоролика и подробная научная статья бонусом для читателя.

Диоды Зенера или стабилитрона.

Стабилитрон называют диодом Зенера (от англ. Zener diode) в честь ученого, впервые открывшего явление туннельного пробоя, американского физика Кларенса Мэлвина Зенера (1905 — 1993). Открытый Зенером электрический пробой p-n перехода, связанный с туннельным эффектом, явлением просачивания электронов сквозь тонкий потенциальный барьер, называется теперь эффектом Зенера, который и служит сегодня в полупроводниковых стабилитронах. Физическая картина эффекта заключается в следующем. При обратном смещении p-n перехода энергетические зоны перекрываются, и электроны могут переходить из валентной зоны p-области в зону проводимости n-области, благодаря электрическому полю, это повышает количество свободных носителей заряда, и обратный ток резко возрастает.

Таким образом, главным назначением стабилитрона является стабилизация напряжения. Промышленностью выпускаются полупроводниковые стабилитроны с напряжениями стабилизации от 1,8 В до 400 В, большой, средней и малой мощности, которые отличаются максимально допустимым обратным током. На этой базе изготавливают простые стабилизаторы напряжения. На схемах стабилитроны обозначаются символом похожим на символ диода, с тем лишь отличием, что катод стабилитронов изображается в форме буквы «Г». Стабилитроны скрытой интегральной структуры, с напряжением стабилизации около 7 В — это самые точные и стабильные твердотельные источники опорного напряжения: лучшие их экземпляры характеристически близки к нормальному гальваническому элементу Вестона (эталонный ртутно-кадмиевый гальванический элемент).

Стабилитрон.

К стабилитронам особого типа относятся высоковольтные лавинные диоды («TVS-диоды» и «супрессоры»), которые широко применяются в цепях защиты от перенапряжений всевозможной аппаратуры. Как видим, стабилитрон, в отличие от обычного диода, работает на обратной ветви ВАХ. В обычном диоде, если к нему приложить обратное напряжение, может возникнуть пробой по одному из трех путей (или по всем сразу): туннельный пробой, пробой лавинный и пробой вследствие теплового разогрева токами утечки. Тепловой пробой кремниевым стабилитронам не важен, ибо они проектируются так, чтобы или туннельный, или лавинный пробой, либо оба типа пробоя одновременно наступали задолго до тенденции к тепловому пробою.

Серийные стабилитроны на данный момент изготавливаются преимущественно из кремния. Пробой при напряжении ниже 5 В — проявление эффекта Зенера, пробой выше 5 В — проявление лавинного пробоя. Промежуточное напряжение пробоя около 5 В, как правило, является результатом сочетания двух этих эффектов. Напряженность электрического поля в момент пробоя стабилитрона составляет около 30 МВ/м. Пробой стабилитрона происходит в умеренно легированных полупроводниках р-типа и сильно легированных полупроводниках n-типа. При повышении температуры на стыке уменьшается срыв стабилитрона и вклад лавинного пробоя увеличивается.

Стабилитрон на схеме.

Характеристики диода Зенера

Стабилитроны имеют следующие типичные характеристики. Vz – напряжение стабилизации. В документации указываются два значения для этого параметра: максимальное и минимальное значение напряжения стабилизации. Iz – минимальный ток стабилизации. Zz – сопротивление стабилитрона. Izk и Zzk– ток и динамическое сопротивление при постоянном токе. Ir и Vr — максимальный ток утечки и напряжение при заданной температуре. Tc — температурный коэффициент. Izrm — максимальный ток стабилизации стабилитрона.

Стабилитроны широко применяют в качестве самостоятельных стабилизирующих элементов, а также источников образцовых напряжений (опорных напряжений) в стабилизаторах на транзисторах. Для получения малых образцовых напряжений стабилитроны включают и в прямом направлении, как обычные диоды, тогда напряжение стабилизации одного стабилитрона будет равно 0,7 – 0,8 вольт.

Максимальная рассеиваемая корпусом стабилитрона мощность, обычно лежит в диапазоне от 0,125 до 1 ватта. Этого, как правило, достаточно для нормальной работы цепей защиты от импульсных помех и для построения маломощных стабилизаторов.

Материал в тему: устройство подстроечного резистора.

Немного теории

Стабильная зарплата, стабильная жизнь, стабильное государство. Последнее не про Россию, конечно :-). Если глянуть в толковый словарик, то можно толково разобрать, что же такое “стабильность”. На первых строчках Яндекс мне сразу выдал обозначение этого слова: стабильный – это значит постоянный, устойчивый, не изменяющийся. Но чаще всего этот термин используется именно в электронике и электротехнике. В электронике очень важны постоянные значения какого-либо параметра. Это может быть сила тока, напряжение, частота сигнала и другие его характеристики. Отклонение сигнала от какого-либо заданного параметра может привести к неправильной работе радиоэлектронной аппаратуры и даже к ее поломке. Поэтому, в электронике очень важно, чтобы все стабильно работало и не давало сбоев.

В электронике и электротехнике стабилизируют напряжение. От значения напряжения зависит работа радиоэлектронной аппаратуры. Если оно изменится в меньшую, или даже еще хуже, в большую сторону, то аппаратура в первом случае может неправильно работать, а во втором случае и вовсе колыхнуть ярким пламенем. Для того, чтобы не допустить взлетов и падения напряжения, были изобретены различные стабилизаторы напряжения. Как вы поняли из словосочетания, они используются чтобы стабилизировать “играющее” напряжение.

Устройство полупроводникового диода.

Стабилитрон или диод Зенера

Самым простым стабилизатором напряжения в электронике является радиоэлемент стабилитрон. Иногда его еще называют диодом Зенера. На схемах стабилитроны обозначаются примерно так: Вывод с “кепочкой” называется также как и у диода – катод, а другой вывод – анод. Стабилитроны выглядят также, как и диоды. На фото ниже, слева популярный вид современного стабилитрона, а справа один из образцов Советского Союза. Если присмотреться поближе к советскому стабилитрону, то можно увидеть это схематическое обозначение на нем самом, указывающее, где у него находится катод, а где анод.

Материал по теме: Что такое реле контроля.

Напряжение стабилизации

Самый главный параметр стабилитрона – это конечно же, напряжение стабилизации. Что это за параметр? Давайте возьмем стакан и будем наполнять его водой. Сколько бы воды мы не лили в стакан, ее излишки будут выливаться из стакана. Думаю, это понятно и дошкольнику. Теперь по аналогии с электроникой. Стакан – это стабилитрон. Уровень воды в полном до краев стакане – это и есть напряжение стабилизации стабилитрона. Представьте рядом со стаканом большой кувшин с водой. Водой из кувшина мы как раз и будем заливать наш стакан водой, но кувшин при этом трогать не смеем. Вариант только один – лить воду из кувшина, пробив отверстие в самом кувшине.

Если бы кувшин был меньше по высоте, чем стакан, то мы бы не смогли лить воду в стакан. Если объяснить языком электроники – кувшин обладает “напряжением” больше, чем “напряжение” стакана. Так вот, дорогие читатели, в стакане заложен весь принцип работы стабилитрона. Какую бы струю мы на него не лили (ну конечно в пределах разумного, а то стакан унесет и разорвет), стакан всегда будет полным. Но лить надо обязательно сверху. Это значит, напряжение, которое мы подаем на стабилитрон, должно быть выше, чем напряжение стабилизации стабилитрона.

Для того, чтобы узнать напряжение стабилизации советского стабилитрона, нам понадобится справочник. Например, на фото ниже советский стабилитрон Д814В: Ищем на него параметры в онлайн справочниках в интернете. Как вы видите, его напряжение стабилизации при комнатной температуре примерно 10 Вольт. Зарубежные стабилитроны маркируются проще. Если приглядеться, то можно увидеть незамысловатую надпись:

5V1 – это означает напряжение стабилизации данного стабилитрона составляет 5,1 Вольта. Намного проще, не так ли?

Катод у зарубежных стабилитронов помечается в основном черной полосой.

Как же проверить стабилитрон? Да также как и диод! А как проверить диод, можно посмотреть в этой статье. Давайте же проверим наш стабилитрон. Ставим мультиметр на прозвонку и цепляемся красным щупом к аноду, а черным к катоду. Мультиметр должен показать падение напряжения прямого PN-перехода. Меняем щупы местами и видим единичку. Это значит, что наш стабилитрон в полной боевой готовности. где Uвх – входное напряжение, Uвых.ст. – выходное стабилизированное напряжение. Если внимательно глянуть на схему, мы получили ни что иное, как Делитель напряжения. Здесь все элементарно и просто:

Обозначение стабилитрона.

Думаю, не помешало бы рассмотреть Вольт амперную характеристику (ВАХ) стабилитрона. Выглядит она примерно как-то так:

где:

  • Iпр– прямой ток, А
  • Uпр – прямое напряжение, В
  • Эти два параметра в стабилитроне не используются
  • Uобр– обратное напряжение, В
  • Uст– номинальное напряжение стабилизации, В
  • Iст – номинальный ток стабилизации, А
  • Номинальный – это значит нормальный параметр, при котором возможна долгосрочная работа радиоэлемента.
  • Imax– максимальный ток стабилитрона, А
  • Imin– минимальный ток стабилитрона, А
  • Iст, Imax, Imin– это сила тока, которая течет через стабилитрон при его работе.

Так как стабилитрон работает именно в обратной полярности, в отличие от диода (стабилитрон подключают катодом к плюсу, а диод катодом к минусу), то и рабочая область будет именно та, что отмечена красным прямоугольником. Как мы видим, при каком-то напряжении Uобр у нас график начинает падать вниз. В это время в стабилитроне происходит такая интересная штука, как пробой. Короче говоря, он не может больше наращивать на себе напряжение, и в это время начинается возрастать сила тока в стабилитроне. Самое главное – не переборщить силу тока, больше чем Imax, иначе стабилитрону придет кердык. Самым лучшим рабочим режимом стабилитрона считается режим, при котором сила тока через стабилитрон находится где-то в середине между максимальным и минимальным его значением. На графике это и будет рабочей точкой рабочего режима стабилитрона (пометил красным кружком).

Стабилитрон.

Заключение

В настоящее время трехвыводные (интегральные) стабилизаторы напряжения вытесняют стабилизаторы на стабилитронах, так как они в разы лучше стабилизируют напряжение и обладают хорошей мощностью рассеивания.

В статье разобраны все аспекты работы стабилитрона. Более детальную информацию можно узнать в статье Лабораторная работа по диодам Зенера. Более подробно об этом можно узнать, прочитав статью Что такое генератор Ганна.В нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессиональных электронщиков. Чтобы подписаться на группу, вам необходимо будет перейти по следующей ссылке: https://vk.com/electroinfonet.

В завершение статьи хочу выразить благодарность источникам, откуда мы черпали информацию:

Нештатное использование электронных компонентов

Я согласен со Спец-ом.
Я, конечно, не критерий истины, и многое не пробовал, к сожалению… или к счастью?..

Но из всех диодов и транзисторов получалось сделать «стабилитрон». Не получалось только тогда, когда напряжение моего генератора было меньше напряжения лавинного пробоя «подопытного» (200В-230В).

Главное, что бы процес был не как в атомной бомбе, а как в атомном реакторе — медленным. Для этого нужно всегда ограничивать ток через испытуемый полупроводник.

Например, транзистор КТ315 все знают… Все знают, что обратно смещённый переход база-эммитер является стабилитроном на ~7,5В.
А если в прямой полярности, да переход взять коллектор-эммитер?..

Я взял с буквой «А» (их у меня больше). Подробности уже забыл, так что могу ошибиться в деталях, но общая тенденция, думаю, будет понятна.
По справочнику — максимальное напряжение для КТ315А — 25В.
Так вот, замыкаем базу с эммитером, и подаём пульсирующее напряжение между коллектором и эммитером (напряжение генератора через диод в правильной для транзистора полярности). Такой способ более нагляден — вся динамика на осцилографе, не то, что при постоянном напряжении…

Получается компаратор тока с гистерезисом…
Если ток через переход коллектор-эммитер не превышает какого то значения, то напряжение на переходе большое и повторяет входное (тока нет). Затем, напряжение ограничивается переходом, как стабилитроном и ток растёт. Достигнув какого то значения, тока, переход меняет своё напряжение «стабилизации» на меньшее (с 50В до 30-40В). Причём, очень резко! на частоте синусоиды 50Гц, длительность перехода — микросекунды, не больше (не додумался точно проверить)… На осциллографе это место лучь не вычерчивает (на развёртке , когда на весь экран один полупериод).

Если между базой и эммитером поставить резистор, то от его величины зависит напряжение «стабилизации» — чем меньше сопротивление, тем больше напряжение стабилизации. Но сохраняется зависимость этого напряжения от тока. Просто, меняются цифры напряжений, например, при малом токе — 55В, а при большем значении тока — 40В. Вместо, скажем, 50В и 30В без резистора или при его большом значении.

Более детальных «исследований» я не проводил… По этому, точных графиков и зависимостей я привести не могу.

Придумайте как применить этот эффект — изменение напряжения стабилизации перехода коллектор-эммитер при некотором значении тока через него, и тогда можно будет провести более детальное «обследование» и появятся конкретные цифры…

Так что, kvn, берите деталь и пробуйте получить то, что Вам нужно. А появится результат — всегда можно спросить, стоит его использовать или нет.
Вдруг, что то новое найдёте…

admin

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Наверх