Электрификация

Справочник домашнего мастера

Диммер 1 квт

Описание регулятора оборотов электродвигателя без потери мощности

Каждый из нас дома имеет какой-то электроприбор, который работает в доме не один год. Но со временем мощность техники слабеет и не выполняет своих прямых предназначений. Именно тогда стоит обратить внимание на внутренности оборудования. В основном проблемы возникают с электродвигателем, который отвечает за функциональность техники. Тогда стоит обратить свое внимание на прибор, который регулирует обороты мощности двигателя без снижения их мощности.

Оглавление:

  • Виды двигателей
  • Регулятор оборотов мощности
  • Принципы работы
  • Вращение вала

Виды двигателей

Регулятор оборотов с поддержанием мощности — изобретение, которое вдохнет новую жизнь в электроприбор, и он будет работать как только что приобретенный товар. Но стоит помнить о том, что двигатели бывают разных форматов и у каждого своя предельная работа.

Двигатели разные по характеристикам. Это значит то, что та или иная техника работает на разных частотах оборота вала, запускающего механизм. Мотор может быть:

  1. однофазным,
  2. двухфазным,
  3. трехфазным.

В основном трехфазные электромоторы встречаются на заводах или крупных фабриках. В домашних условиях используются однофазные и двухфазные. Данного электричества хватает на работу бытовой техники.

Предлагаем Вашему вниманию познавательную статью о параллельном и последовательном соединении резисторов.

Регулятор оборотов мощности

Принципы работы

Регулятор оборотов электродвигателя 220 В без потери мощности используется для поддержки первоначальной заданной частоты оборотов вала. Это один из основных принципов данного прибора, который называется частотным регулятором.

С помощью него электроприбор работает в установленной частоте оборотов двигателя и не снижает ее. Также регулятор скорости двигателя влияет на охлаждение и вентиляцию мотора. C помощью мощности устанавливается скорость, которую можно как поднять, так и снизить.

Вопросом о том, как уменьшить обороты электродвигателя 220 В, задавались многие люди. Но данная процедура довольно проста. Стоит только изменить частоту питающего напряжения, что существенно снизит производительность вала мотора. Также можно изменить питание двигателя, задействуя при этом его катушки. Управление электричеством тесно связано с магнитным полем и скольжением электродвигателя. Для таких действий используют в основном автотрансформатор, бытовые регуляторы, которые уменьшают обороты данного механизма. Но стоит также помнить о том, что будет уменьшаться мощность двигателя.

Вращение вала

Двигатели делят на:

  1. асинхронные,
  2. коллекторные.

Регулятор скорости вращения асинхронного электродвигателя зависит от подключения тока к механизму. Суть работы асинхронного мотора зависит от магнитных катушек, через которые проходит рамка. Она поворачивается на скользящих контактах. И когда при повороте она развернется на 180 градусов, то по данным контактам связь потечет в обратном направлении. Таким образом, вращение останется неизменным. Но при этом действии нужный эффект не будет получен. Он войдет в силу после внесения в механизм пары десятков рамок данного типа.

Коллекторный двигатель используется очень часто. Его работа проста, так как пропускаемый ток проходит напрямую — из-за этого не теряется мощность оборотов электродвигателя, и механизм потребляет меньше электричества.

Двигатель стиральной машины также нуждается в регулировке мощности. Для этого были сделаны специальные платы, которые справляются со своей работой: плата регулировки оборотов двигателя от стиральной машины несет многофункциональное употребление, так как при ее применении снижается напряжение, но не теряется мощность вращения.

Схема данной платы проверена. Стоит только поставить мосты из диодов, подобрав оптрон для светодиода. При этом еще нужно поставить симистор на радиатор. В основном регулировка двигателя начинается от 1000 оборотов.

Если не устраивает регулятор мощности и не хватает его функциональности, можно сделать или усовершенствовать механизм. Для этого нужно учитывать силу тока, которая не должна превышать 70 А, и теплоотдачу при использовании. Поэтому можно установить амперметр для регулировки схемы. Частота будет небольшой и будет определена конденсатором С2.

Далее стоит настроить регулятор и его частоту. При выходе данный импульс будет выходить через двухтактный усилитель на транзисторах. Также можно сделать 2 резистора, которые будут служить выходом для охладительной системы компьютера. Чтобы схема не сгорела, требуется специальный блокиратор, который будет служить удвоенным значением тока. Так данный механизм будет работать долго и в нужном объеме. Регулирующие приборы мощности обеспечат вашим электроприборам долгие годы службы без особых затрат.

Диммер своими руками

Приветствую тебя мой дорогой читатель. Сегодня мы будем собирать диммер своими руками. По-другому он называется регулятор мощности переменного тока. Куда мы его можем «запихать» или где его можем применить? Везде и хоть куда!

Дело в том, что диммер может найти широкое применение, как в хозяйстве, так и в вашей мастерской. Регулировать мощность с помощью него можно на электронагревателе водяного бака или самогонного аппарата, а также в самодельном инкубаторе или вулканизаторе для заклеивания проколотых автомобильных камер.

Отдельное слово хочу сказать про применение данной конструкции в мастерской. Диммером можно плавно регулировать температуру нагрева паяльника, скорость вращения дрели или болгарки, а также просто для регулирования яркости ламп накаливания.

Теперь можно сделать вывод, что диммер является бесценным устройством в хозяйственной деятельности и мастерской.

Схема диммера (регулятора мощности)

Основным регулирующим элементом является симистор он же триак BTA06-600. Его можно заменить на практически любой аналог из серии BTA, например BTA12-60, BTA24-600 или другой. Пересчет номиналов элементов при этом производить не нужно.

Первые цифры маркировки означают максимальный ток в открытом состоянии. Максимальное обратное напряжение определяется второй группой цифр. Таким образом, BTA06-600 это триак с током 6А и напряжением 600В, которого хватит для регулировки нагрузки мощностью 800Вт. При выборе симистора рекомендую брать запас по току. Обычно я беру двукратный запас. На цене это отражается незначительно, а надежность конструкции повышается заметно, да и душа спокойна.

Резистор R1 должен быть мощностью 0.25Вт, даже при использовании диммера на 3кВт резистор будет холодным. Также нет особых требований для переменного резистора, берем любой. Конденсатор C1 пленочный, напряжением 400В. Предохранитель выбирается в зависимости от тока нагрузки.

Светодиод можно не устанавливать, тогда вместо диода VD1 необходимо установить перемычку.

Предохранитель F1 можно установить на отдельной колодке или на проводе, выведя колпачок его корпуса на заднюю панель диммера.

Работа схемы

При подключении нагрузки симистор VD4 закрыт. В это время начинает протекать ток через предохранитель F1, нагрузку и резисторы R1, R2, заряжая конденсатор C1. Как только на конденсаторе C1 напряжение поднимется выше 32В, откроется динистор VD3 и через него потечет ток, открывая VD4. Последний начинает пропускать через себя ток нагрузки и закрывается он только в тот момент, когда синусоида проходит нулевой потенциал. Далее все повторяется по циклу.

Переменным резистором R2 регулируется скорость зарядки конденсатора C1. Чем дольше он будет заряжаться до порога открытия VD3, тем дольше будет закрыт VD4, а когда он закрыт, происходит отрезание синусоиды на нагрузке.

Несколько слов об охлаждении

К фланцу регулирующего элемента необходимо прикрепить радиатор охлаждения. Не забываем между ними положить слой теплопроводной пасты. Площадь поверхности радиатора нужно подобрать опытным путем.

Из своего опыта скажу, что для регулировки паяльника или лампы накаливания мощностью 80Вт можно обойтись без радиатора. При работе на нагрузку 1кВт (BTA12-600) с площадью радиатора 200см2 температура последнего достигает 900C при длительности работы 5ч. При пятичасовой работе (BTA24-600) на нагрузку 3кВт я достиг комнатной температуры радиатора, для этого я установил небольшой кулер от процессора ПК, обеспечив его питание от миниатюрного выпрямителя.

Для исключения нагрева силовых дорог печатной платы, при работе на большую мощность (более 1кВт), следует дорожки покрыть толстым слоем олова или пропаять медным проводом.

Сетевые провода и провода нагрузки рекомендуется впаять в плату, чтобы исключить плохой контакт и нагрев клемм.

Меры техники безопасности

Диммер работает при высоком напряжении (220В), поэтому при его работе лучше не трогать инструментом или руками конструкцию. Если кому интересно, то скажу вам, что от фланца симистора током не «бьет», и соответственно от радиатора тоже (проверено).

Проверять работоспособность диммера лучше всего на лампе накаливания мощностью 60-80Вт. Не стоит пробовать подключать светодиодные, энергосберегающие и другие лампы, включающие в себя пусковые устройства и импульсные преобразователи.

Печатная плата диммера

6 лучших диммеров

Обновлено: 19.09.2019 11:10:37 Эксперт: Борис Мендель

*Обзор лучших по мнению редакции expertology.ru. О критериях отбора. Данный материал носит субъективный характер, не является рекламой и не служит руководством к покупке. Перед покупкой необходима консультация со специалистом.

С каждым годом растет популярность диммеров. Это приборы, которые позволяют не просто включать или выключать свет, но и регулировать интенсивность освещения. Благодаря светорегуляторам можно сделать помещение многофункциональным. Например, превратить уютную комнату для просмотра телевизора в яркий зал с праздничным столом. Кроме того, диммеры позволяют экономить электроэнергию и продлять срок службы лампочек. На отечественном рынке представлено множество светорегуляторов, которые отличаются ценой и функциональными возможностями. Подобрать оптимальную модель помогут рекомендации наших экспертов.

Как выбрать диммер

Разновидности. Для работы в системе освещения могут использоваться диммеры нескольких типов.

  1. Механические модели представляют собой классические потенциометры, для управления которыми используется простейшая схема. Они просты и долговечны в работе, отличаются доступной ценой. Но не всегда их внешний вид и способ управления устраивает современных потребителей.
  2. Электронные диммеры позволяют регулировать интенсивность освещения контактным или бесконтактным способом. Больше всего пользователи интересуются моделями с дистанционным управлением. Для этого применяются ультразвуковые или инфракрасные технологии. Самые передовые приборы могут управляться через интернет.

Мощность светорегулятора. При выборе диммера важно правильно рассчитать максимальную мощность всех осветительных приборов в одной цепи. Для этого нужно суммировать мощности лампочек, к полученному результату добавить еще 20%. Если планируется установить комбинацию из двух светорегуляторов, то добавляется 25%. Запас по мощности требуется для того, чтобы при полной нагрузке не появлялось неприятное жужжание диммера или лампы.

Тип регулятора. Все светорегуляторы, которые приводятся в действие контактным способом, можно разделить на три типа.

  1. Поворотные механизмы удобны и привычны в работе. Но для включения или выключения света необходимо полностью сделать оборот колесиком.
  2. Поворотно-нажимные модели позволяют включать и выключать свет простым нажатием на круглую рукоять. А интенсивность освещения регулируется привычным поворотом колесика.
  3. Кнопочные светорегуляторы не имеют круглых ручек. Они внешне не отличаются от обычных клавишных выключателей. Для изменения яркости свечения ламп требуется нажать клавишу и удерживать ее некоторое время. В отдельных моделях имеется вторая кнопка, она позволяет фиксировать несколько выставленных вариантов освещенности.

Мы отобрали в обзор 6 лучших диммеров. Все они реализуются в магазинах нашей страны. При распределении мест учитывалось мнение экспертного сообщества и отзывы потребителей.

Рейтинг лучших диммеров

Номинация место наименование товара цена
Рейтинг лучших диммеров 1 Schneider Electric SEDNA SDN2200521 1 278 ₽
2 Werkel WL01-DM600-LED/ Диммер с подсветкой (белый) 1 497 ₽
3 LEGRAND Valena Life 300Вт 2 960 ₽
4 Schneider Electric Blanca BLNSS040012 1 876 ₽
5 IKEA TRADFRI Wireless dimmer (003.478.31) 601 ₽
6 IEK КВАРТА EDK10-K01-03-DM, белый 241 ₽

Schneider Electric SEDNA SDN2200521

Оптимальное соотношение цены и качества эксперты увидели в диммере Schneider Electric SEDNA SDN2200521. Французская разработка производится в разных странах мира (Венгрия, Китай, Испания), благодаря чему удается предлагать потребителям привлекательную стоимость. Светорегулятор поворотно-нажимного типа предназначен для использования в бытовой электросети (220 В, 60-500 Вт). Включение и выключение осветительных приборов происходит нажатием на ручку. Диммер прост в установке, он может заменить обычный выключатель, благодаря быстрозажимным клеммам провод легко крепится к регулятору, оголенные концы изолируются друг от друга специальным разделителем. Эксперты отдали диммеру первое место в нашем рейтинге.

У пользователей нет замечаний к цене, качеству и функциональным возможностям выключателя.

Достоинства

  • качественная сборка;
  • доступная цена;
  • двухканальная конструкция;
  • быстрозажимные клеммы.

Недостатки

  • не обнаружено.

Werkel WL01-DM600-LED/ Диммер с подсветкой (белый)

Практичностью и стильным дизайном привлек внимание экспертов диммер Werkel WL01-DM600-LED. Шведско-китайский прибор предназначен для регулировки освещенности ламп накаливания и галогенок. Режим работы устройства легко контролировать по интенсивности свечения контурной LED-подсветки. Производитель использовал для создания корпуса прочный поликарбонат, который устойчив к механическому воздействию. Современный внешний вид диммера делает его универсальным, он гармонично впишется в любой интерьер. За элегантность и экономичность SMD светодиодов модель становится серебряным призером нашего рейтинга.

Отечественные пользователи хвалят диммер за практичность, эффектную подсветку и демократичную цену.

  • прочный корпус;
  • красивый внешний вид;
  • демократичная цена;
  • простая эксплуатация.
  • не обнаружено.

LEGRAND Valena Life 300Вт

Самый широкий спектр осветительных приборов может работать с диммером LEGRAND Valena Life. Это не только лампы накаливания и галогенки, но люминесцентные и светодиодные устройства. Диапазон мощности составляет от 5 до 300 Вт, что несколько ниже, чем у лидеров рейтинга. Проигрывает светорегулятор и в плане цены, модель самая дорогая в нашем обзоре. Диммер запоминает последнюю настройку, при включении ламп в течение 2 секунды происходит плавная установка уровня освещения. Устанавливается прибор в стандартную нишу выключателя, для регулировки интенсивности света используется поворотный механизм.

Пользователей устраивает универсальность применения диммера, качество его изготовления и надежность. Из минусов отмечается высокая цена и ограничение по мощности.

  • качественная сборка;
  • широкий спектр диммируемых ламп;
  • простота подключения;
  • долговечность.
  • высокая цена;
  • низкий предел мощности.

Schneider Electric Blanca BLNSS040012

С низковольтными лампами может работать светорегулятор Schneider Electric Blanca BLNSS040012. Суммарная мощность осветительных приборов ограничена 400 Вт, это могут быть галогенки, лампы накаливания и светодиодные приборы. Прибор имеет поворотно-нажимную конструкцию, устанавливается моноблок только в однопостовые монтажные коробки. Для подключения не требуется дополнительной проводки, производитель предусмотрел электронную защиту диммера в случае перегрузки. За рельефный поворотный регулятор эксперты включили прибор в наш рейтинг.

Универсальность диммера многие пользователи считают преимуществом французского устройства. Но вот российская сборка не всегда бывает европейского качества.

  • надежная конструкция;
  • простой монтаж;
  • рельефный регулятор;
  • электронная защита от перегрузки.
  • ограничение по мощности;
  • не всегда качественная сборка.

IKEA TRADFRI Wireless dimmer (003.478.31)

Компания IKEA разработала целую серию приборов для организации освещения в соответствии с концепцией «умный дом». Беспроводной диммер IKEA TRADFRI работает в связке с «умными» лампами этой же серии. Одновременно прибор способен контролировать работу 10 ламп. Благодаря магнитной подошве крепить беспроводной светорегулятор можно на стальных поверхностях. Питается устройство от энергии батарейки, дальность действия составляет 10 м. Эксперты включили разработку нидерландского производителя в наш рейтинг за инновационный подход.

Пользователи пока присматриваются к беспроводному диммеру. Чтобы получать весь набор преимуществ от современного устройства, требуются серьезные вложения для перехода к концепции «умный дом».

  • удобство управления;
  • магнитное крепление;
  • длительная работа на одной батарейке (2 года);
  • можно настроить связь через интернет.
  • требуются «умные» лампочки.

IEK КВАРТА EDK10-K01-03-DM, белый

Ощутить все преимущества светорегуляторов можно с помощью самой доступной модели IEK КВАРТА EDK10-K01-03-DM. Китайский производитель предпочел классическую поворотную конструкцию диммера. Устройство предназначено для управления системой освещения мощностью до 400 Вт. Бюджетный светорегулятор имеет некоторые ограничения, он не подходит для использования с люминесцентными и светодиодными лампами. Скромно выглядит и внутреннее устройство, провода фиксируются с помощью зажимных винтов. Площадь сечения алюминиевой или медной жилы должна быть не более 2,5 кв. мм. Эксперты включили диммер в наш рейтинг за ценовую доступность и простоту эксплуатации.

Пользователи в отзывах сообщают о ненадежности прибора, больше всего нареканий поступает в адрес фиксирующих зажимов.

  • низкая цена;
  • простая конструкция;
  • удобное управление;
  • прочный корпус.
  • узкая сфера применения;
  • ненадежные зажимы.

Внимание! Данный рейтинг носит субъективный характер, не является рекламой и не служит руководством к покупке. Перед покупкой необходима консультация со специалистом.

Для регулировки интенсивности освещения можно использовать специальные выключатели – диммеры. Они позволяют менять силу светового потока от максимуму до полного выключения. Тем не менее, заводские диммеры обладают рядом недостатков, среди которых и довольно высокая стоимость. Чтобы решить проблему, вы можете изготовить диммер своими руками на 12 и 220 Вольт, в зависимости от типа цепей, для которых вы собираетесь его использовать.

Что понадобится для работы?

Диммер представляет собой регулятор яркости, который позволяет поворотом ручки или нажатием клавиши изменить интенсивность света в комнате.

По типу регулировки мощности свечения они бывают:

  • резистивные;
  • трансформаторные;
  • полупроводниковые.

Первый вариант наиболее простой, но экономным его назвать нельзя, поскольку снижение яркости свечения не изменяет мощность нагрузки. Другие два куда более эффективны, но имеют и более сложную конструкцию. В зависимости от принципа действия и будет зависеть то, какие детали включает в себя диммер. Чтобы не отвлекаться от работы всем необходимым лучше запастись заранее.

Для рассматриваемых далее примеров вам пригодятся такие электронные элементы:

  • Симистор – представляет собой ключ в схеме, используется для открытия или запирания участка цепи от протекания электротока. Применяется в цепях с питающим напряжением в 220В, имеет три вывода – два силовых и один управляющий.
  • Тиристор – также устанавливается в качестве ключа и переводится в устойчивое состояние, необходимое для работы схемы.
  • Микросхема – более сложный элемент электронной схемы со своей логикой и особенностью управления.
  • Динистор – также является полупроводниковым элементом, пропускающим электрический ток в двух направлениях.
  • Диод – однонаправленный полупроводник, который открывается от прямого протекания электротока и запирается от обратного.
  • Конденсатор – емкостной элемент, основная задача которого накопление нужной величины заряда на пластинах. Для изготовления самодельных диммеров лучше использовать неполярную модель.
  • Резисторы – представляют собой активное сопротивление, для диммеров используются в делителях напряжения и токозадающих цепях. В схемах пригодятся как постоянные, так и переменные резисторы.
  • Светодиоды – пригодятся для обеспечения световой индикации в диммере.

В зависимости от конкретной схемы и устройства диммера, будет зависеть и набор необходимых деталей, все из вышеперечисленного приобретать не нужно. Заметьте, что некоторые из них можно выпаять их старых телевизоров радиоприемников и прочих бытовых приборов, которые вами больше не используются. Далее рассмотрим примеры конкретных схем.

На симисторе

Такой диммер будет работать от напряжения сети 220В напрямую, схема отличается относительной простотой, поэтому собрать ее под силу даже начинающему радиолюбителю. Принцип регулирования напряжения в этом диммере заключается в отсекании определенного полупериода синусоиды, благодаря чему снижение электрического параметра приводит к реальной экономии электроэнергии.

Посмотрите на схему подключения, симистор – это электронный ключ, который управляется сигналами с динистора, включенного во времязадающую R — C цепочку.

Схема диммера на симисторе

Работа схемы заключается в следующем: после подключения фазы 220В к диммеру, на времязадающую цепочку C1 – R1 – R2 будет подано напряжение, так как динистор VS1 закрыт, ток протекает только через конденсатор и резисторы.

В зависимости от установленного поворотным резистором омического сопротивления будет зависеть и величина тока. От величины тока зависит и скорость заряда конденсатора C1, при достижении нужной величины потенциала на котором произойдет открытие динистора.

Через цепь открывшегося динистора на симистор VS2 подается сигнал открытия, срабатывает ключ, пропускающий определенную часть полупериода к нагрузке. Ток удержания в симисторе не возникает, поэтому с разрядом конденсатора вся цепь переходит в исходное состояние вплоть до следующего полупериода, который откроет ключ и подаст на нагрузку потенциал.

Изменение синусоиды

Как видите, такая схема диммера осуществляет регулировку яркости «обрезая» форму синусоиды до определенного импульса, уменьшая и величину напряжения, и его действующее значение. В виду нестабильного колебания кривой такую модель светорегулятора однозначно можно подключать к лампам накаливания, поскольку они не восприимчивы к форме напряжения. Что касается светодиодных и люминесцентных моделей, их нужно тестировать на уже готовом диммере.

Чтобы изготовить такой диммер для практического использования, лучше взять печатную плату. Так как при стационарной установке при регулировании напряжения вам понадобится жесткое крепление к конструкции. Ее можно как заказать, так и изготовить самостоятельно.

Процесс сборки состоит из следующих этапов:

  • Перенесите эскиз на фольгированную плату, в местах монтажа соответствующих деталей сделайте разметку. Дорожки наведите нитрокраской и протравите плату диммера в хлорном железе.

Протравите плату

  • В процессе травки плату нужно переворачивать, а после окончания, достаньте и полудите ее, промойте спиртом и просверлите отверстия для ножек.

Сделайте отверстия

  • Поместите ножки радиодеталей в просверленные отверстия под них.

Поместите ножки радиодеталей в отверстия

Если вы разметили монтажные площадки, придерживайтесь данной разметки.

  • Разогрейте паяльник и нанесите слой олова с обратной стороны платы диммера.

Припаяйте ножки радиодеталей

  • Протестируйте собранную конструкцию на лампе накаливания, если она работает как надо, можете собирать диммер в корпус.

Опробуйте работоспособность на лампе накаливания

На тиристорах

Такая модель диммера на тиристорах по принципу действия идентична предыдущему варианту, но вместо симистора в роли ключа выступают тиристоры. Из-за особенностей работы тиристора целесообразнее устанавливать такое электронное устройство для каждой полуволны синусоиды напряжения.

Пример схемы такого диммера приведен на рисунке ниже:

Схема регулятора на тиристорах

Начнем разбор работы схемы с положительного полупериода кривой напряжения – конденсатор C1 заряжается по цепи из токоограничивающих резисторов R3 — R4 — R5. Когда величина заряда достигнет порогового значения для динистора V3, он открывается и подает управляющий импульс на тиристор V1. В режиме ключа V1 начинает пропускать напряжение к нагрузке, выдавая определенный участок кривой напряжения.

При отрицательном полупериоде синусоиды V1 запирается, ток через него протекать не будет, а на конденсатор C2 через токозадающую цепь R1 – R2 — R5 будет поступать заряд, который со временем откроет динистор V4. Через него будет протекать ток на управляющий электрод тиристора V2, после открытия транзистора на нагрузку пойдет такая же часть полупериода синусоиды, но с противоположным знаком.

Такой регулятор мощности светового потока может использоваться не только для изменения яркости освещения ламп, но и для управления температурой нагрева паяльника и других устройств.

С использованием конденсаторов

Такой диммер работает только в качестве переключателя, который изменяет путь протекания тока, питающего нагрузку. Но и схема кнопочного диммера довольно проста и не потребует никаких специфических элементов.

Схема диммера на конденсаторе

Принцип его работы заключается в переведении переключателя SA1 в одно из трех возможных положений:

  • выключено – цепь полностью разорвана, лампа не горит или проходной выключатель выдает логический ноль в цепи;
  • закорочено на лампу – в цепи подключения диммера отсутствуют какие-либо элементы кроме электрической лампы (прибор освещения горит на полную мощность);
  • подключено через R – C цепь – выдает только определенный процент яркости освещения.

В зависимости от параметров резистора и емкостного элемента будут зависеть напряжение и яркость свечения. Этот диммер используется для регулировки освещения путем рассеивания части мощности в R – C цепи, поэтому никакой экономии от снижения вы не получите.

На микросхеме

В диммере, собранном на микросхеме, изменение величины напряжения происходит для потребителей на 12В – светодиодных лент, люминесцентных лам и прочего оборудования. Один из вариантов схемы приведен на рисунке ниже.

Схема диммера на микросхеме

Как видите, управление может осуществляться и за счет датчика, подключенного к выводу 2, и посредством регулируемого резистора VR1.

Микросхема с вывода 3 выдает управляющий сигнал через сопротивление R2 на базу транзистора VT1. Изменяя величину напряжения переменным резистором VR1, на выходе 3 микросхемы изменяется уровень потенциала, который увеличивает или уменьшает пропускную способность транзистора. При этом меняется и яркость светодиодов, если управление происходит светодиодными светильниками.

Схемы регуляторов мощности (диммеров) на симисторах.

Принцип работы симисторных регуляторов мощности (напряжения) в цепях
переменного тока.

Что такое симистор, принцип его работы, а также справочные характеристики некоторых популярных приборов мы с Вами внимательно рассмотрели на странице &nbsp.
Там же мы отметили, что симистор пришёл на смену рабочей лошадке-тиристору и практически полностью вытеснил его из электроцепей переменного тока.
Вспомним пройденный материал.
Отличительной чертой симистора является то, что при подаче на его управляющий электрод тока (напряжения), прибор переходит в проводящее состояние, замыкая нагрузку, причём проводит ток, независимо от полярности, приложенного к нагрузке напряжения.

Полярность открывающего напряжения должна быть либо отрицательной для обеих полярностей напряжения на условном аноде, либо совпадать с полярностью «анодного» напряжения (т.е. быть плюсовой в момент прохождения положительной полуволны и минусовой — в момент прохождения отрицательной).
Итак. Важным плюсом симисторных схем в электроцепях переменного тока является отсутствие выпрямительных устройств, и двухполюсность напряжения в нагрузке, что даёт возможность подключать их, помимо всего прочего, как трансформаторам, так и электродвигателям переменного тока.
Познакомимся с расхожими схемами симисторных регуляторов.
Для начала давайте рассмотрим простейшую, но вполне себе работоспособную схему симисторного регулятора мощности с фазово-импульсным управлением, позволяющего работать с нагрузками вплоть до 1200 Вт.

Рис.1
При замене симистора на другой, с большей величиной допустимого тока, мощность нагрузки можно увеличивать практически неограниченно.
А теперь — как это всё работает?
В начале действия положительного полупериода симистор закрыт. По мере увеличения сетевого напряжения конденсатор С1 заряжается через последовательно соединённые резисторы R1 и R2. Причём увеличение напряжения на конденсаторе С1 отстаёт (сдвигается по фазе) от сетевого на величину, зависящую от суммарного сопротивления резисторов и номинала ёмкости С1. Чем выше значения резисторов и конденсатора — тем больше сдвиг по фазе.
Заряд конденсатора продолжается до тех пор, пока напряжение на нём не достигнет порога пробоя динистора (около 35 В). Как только динистор откроется (следовательно, откроется и симистор), через нагрузку потечёт ток, определяемый суммарным сопротивлением открытого симистора и нагрузки.
При этом симистор остаётся открытым до конца полупериода, т.е. момента, когда полуволна сетевого напряжения приблизится к нулевому уровню.
Переменным резистором R2 устанавливают момент открывания динистора и симистора, производя тем самым регулировку мощности, подводимой к нагрузке.
При действии отрицательной полуволны принцип работы устройства аналогичен.
Диаграммы напряжения на нагрузке при различных значениях переменного резистора приведены на Рис.1 справа.
Для предотвращения ложных срабатываний триаков, вызванных переходными процессами в индуктивных нагрузках (например, в электродвигателях и обмотках трансформаторов), симисторы должны иметь дополнительные компоненты защиты. Это, как правило, демпферная RC-цепочка (снабберная цепь) между силовыми электродами триака, которая используется для ограничения скорости изменения напряжения (на схеме Рис.1 показана синим цветом).
В некоторых случаях, когда нагрузка имеет ярко выраженный ёмкостной характер, между силовыми электродами необходима индуктивность для ограничения скорости изменения тока при коммутации.
Существуют и различные модификации приведённой выше простейшей схемы диммера.
Рис.2
Дополнительная цепочка R3 C2 (Рис.2 слева) призвана увеличить максимально достижимый фазовый сдвиг между сетевым напряжением и напряжением, поступающим на левый вывод динистора, что в свою очередь позволяет производить более глубокую регулировку мощности, подводимой к нагрузке.

На схеме, приведённой на Рис.2 справа, цепь, образованная диодами D1, D2 и резистором R1, обеспечивает плавность регулировки при минимальной выходной мощности. Без неё характеристика управления регулятором имеет гистерезис, что проявляется в скачкообразном повышении регулируемой мощности от нуля до 3…5% от максимальной.
Диодно-резисторная цепочка разряжает конденсатор при переходе сетевого напряжения от отрицательной к положительной полуволне и, тем самым, устраняет эффект скачкообразного начального увеличения мощности в нагрузке.
Изредка можно встретить устройства, в которых регулировка мощности производится посредством отдельной схемы, которая формирует импульсы с регулируемой длительностью для управления симистором.
Такие диммеры обладают значительно лучшими характеристиками, чем представленные выше, однако обратной стороной медали является повышенная сложность устройств и необходимость наличия отдельного источника питания схемы. Исключения составляют устройства, выполненные на специализированных ИМС. Примером такой микросхемы является фазовый регулятор КР1182ПМ1.
Рис.3
Применение КР1182ПМ1 в регуляторах мощности (Рис.3) позволяет добиваться как хорошей повторяемости, так и широкого диапазона перестройки и высокой температурной стабильности.
А если уж мы решили заморачиваться созданием отдельной схемы формирования управляющих импульсов, то имеет смысл отказаться от фазово-импульсного метода управления, и обратиться в сторону регуляторов мощности, работающих по принципу пропускания через нагрузку определённого целого числа периодов сетевого напряжения в единицу времени.
При таком способе регулирования появляется возможность включения симистора вблизи точки пересечения сетевым переменным напряжением нулевого потенциала, вследствие чего радикально снижается уровень помех, вносимых в электросеть.
Освещение таким диммером не запитаешь ввиду заметного мерцания, а вот для беспомехового регулирования мощности электронагревательных приборов — самое то.
Рис.4
Данная схема (Рис.4) перекочевала со страницы https://www.radiokot.ru/circuit/power/converter/50/ и представляет собой модификацию регулятора мощности, описанного в журнале Радио, 2009, № 9, с. 40–41 «В.Молчанов Симисторный регулятор мощности». Вот, что пишет автор.
«Устройство предназначено для беспомехового регулирования мощности электронагревательных приборов, работающих от сети переменного тока 220 В.
Кроме снижения уровня коммутационных помех, в регуляторе реализован принцип пропускания в нагрузку целого числа периодов сетевого напряжения. При таком способе регулирования с высокой точностью обеспечивается отсутствие постоянной составляющей напряжения на нагрузке, вследствие чего дополнительно снижается уровень искажений, вносимых в электросеть. Это особенно важно в случае мощной нагрузки.
Максимальная мощность нагрузки, подключаемой к регулятору, составляет 1 кВт. Потребляемый регулятором ток от сети не превышает 4 мА (действующее значение), типовое потребление – 3,5 мА.
На микросхеме DD1 и элементах R1, C1, VD1, VD2 выполнен синхронизированный с сетью генератор прямоугольных импульсов. Период импульсов, вырабатываемых генератором, составляет около 1,3 с. Резистор R1 регулирует скважность импульсов. Элементы DD1.1, DD1.2 и DD1.3, DD1.4 включены как два RS‑триггера, на входы которых (выводы 1 и 9 микросхемы) через делитель R7R6 поступает часть сетевого напряжения. Транзисторы VT1 и VT2 выполняют функцию мощного инвертора логических сигналов для управления симистором. Питание устройства осуществляется через параметрический стабилизатор, в котором задействованы балластный резистор R7, стабилитрон VD3 и сглаживающий конденсатор C3. Когда напряжение на верхнем по схеме сетевом выводе относительно нижнего отрицательное, стабилитрон VD3 пропускает ток в прямом направлении, когда положительное – ограничивает напряжение на выводах 1 и 9 микросхемы DD1 на уровне 10 В. Ток, проходящий через эти выводы и внутренние защитные диоды микросхемы, заряжает конденсатор C3 до напряжения около 9,2 В, которое служит для питания низковольтной части устройства. Использование защитных диодов микросхемы не приводит к её защёлкиванию, поскольку амплитудное значение тока через резистор R7 ограничено и составляет около 5 мА.
Во время проверки регулятора мощности удобно в качестве нагрузки подключить лампу накаливания (желательно на 100 Вт или более). Устройство обычно не нуждается в налаживании, но если оказалось, что симистор VS1 открывается ненадёжно (лампа в нагрузке не включается или мерцает), можно попробовать уменьшить сопротивление резистора R4 или подобрать экземпляр симистора с меньшим током открывания. Резистор R4 позволяет выставить мгновенное напряжение сети, при котором происходит открывание симистора. Это напряжение может быть рассчитано по формуле Uпор ≈ Uпит∙R7/(2∙R4), где Uпит ≈ 9,2 В – напряжение на конденсаторе C3, сопротивления резисторов R6 и R7 должны быть равны. Уменьшение сопротивления резистора R4 обеспечивает более надёжное открывание симистора, но увеличивает уровень создаваемых помех, поэтому делать его сопротивление менее 30 кОм нежелательно».
И конечно, было бы совсем неправильно не упомянуть о таком важном представителе симисторного семейства, как — оптосимистор.
Оптосимистор включается посредством освещения полупроводникового слоя и представляет собой комбинацию оптоизлучателя и симистора в одном корпусе. Преимущество — простая однополярная схема управления и гальваническая изоляция цепей управления от фаз сетевого напряжения.
Оптосимисторы могут коммутировать нагрузку как сами (Рис.5),
Рис.5
так и управлять более мощными симисторами (Рис.6).
Рис.6
За счёт полной гальванической развязки управляющих цепей оптосимистора, основное его предназначение — это управление мощностью нагрузки при помощи логических устройств или микроконтроллеров с собственными цепями питания.
Рис.7
В качестве примера на Рис.7 приведена схема регулятора мощности паяльника.
Вот, как работу этой схемы описывает уважаемый Falconist на странице сайта http://forum.cxem.net .
«Оптосимистор серии МОС204х/306х/308х содержит внутри себя схему пересечения питающим напряжением нуля, т.е. открывается только в точке нулевого значения синусоидального сетевого напряжения, независимо от момента поступления управляющего напряжения на его светодиод. Тем самым обеспечивается ключевой режим подключения нагрузки, с практически полным отсутствием ВЧ помех, проникающих в сеть 220 В. Поэтому его замена на оптосимисторы МОС302х/305х, не имеющих такой схемы, крайне нежелательна, т.к. порочит сам принцип беспомехового регулирования.
Конденсатор С1 является балластным реактивным сопротивлением. Ток, который он пропускает совместно с подключенным параллельно ему резистором R1,приближенно составляет 16 мА. Данный ток используется для питания таймера DA1 и инфракрасного светодиода оптрона DA2″.
Работа таймера, формирующего управляющий сигнал для оптотиристора, аналогична работе DD1 на Рис.4 и сводится к формированию импульсов с изменяемой скважностью.

admin

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Наверх