Электрификация

Справочник домашнего мастера

DC DC с гальванической развязкой схема

Easyelectronics.ru

Здравствуйте!
Хочу поделиться опытом, может кому пригодится.
Сам я с Украины. В одном устройстве, которое я делаю на продажу есть некоторые детали, которые до революции гидности (достоинства) стоили гривен 40-70 (5-9 долларов) и я их туда ставил и не заморачивался. А теперь они стали стоить гривен 150-200 (те же 5-9 долларов, но покупательная способность населения осталась на том же уровне в гривне, что и была) и я задумался об импортозамещении. Расскажу об замещении DC-DC преобразователя типа P10AU0512. Это двухваттный преобразователь с пяти на 12В. Есть микроконтроллер, есть датчики и хорошо бы, чтобы они были гальванически развязаны дабы контроллер не вис от всяких помех, которые есть в цеху, где этот девайс работает. Теперь к сути.
Строить DC-DC я решил по схеме обратноходового преобразовалеля (flyback). Самая головняковая часть импульсного преобразователя на мой взгляд — это трансформатор.Его надо рассчитывать, мотать, сердечники опять же денег стоят. Поэтому я решил применить трансформаторы от зарядок для мобильников. Их в любой мастерской или магазине аксессуаров куча сгоревших, бракованных, с переломанными шнурами, поврежденными разъемами которые можно выкупить за копейки. У нас самые распространенные — это фирмы Avalanche или китайские подделки под эту китайскую фирму. Они рассчитаны на ток 700мА, т.е. как раз потянут требуемые 2 Вт.
С помощью девайса, описанного здесь же на easyelectronics в статье «Простенький измерятор RLC» (кстати рекомендую!) было измерено, что обмотки вторичная и обратной связи имеют одинаковую индуктивность и, стало быть, число витков. Поэтому они у нас будут первичкой и вторичкой.
Схема девайса:

Вложение:
flyback_.JPG
Также проблема возникла с ШИМ-контроллером. Самый напрашивающийся TL494 питается минимум от 7-8 вольт, а надо от 5-ти. Поэтому в качестве ШИМ-контроллера используем таймер NE555. Правда там не совсем ШИМ получается: частота плавает. Но эта проблема решается просто: поднимаем руку, потом ее резко опускаем и говорим при этом:»Ну и хрен с ней, с частотой!».
Дальше нам нужен силовой ключ. Причем управляться должен пятью вольтами. Где такие есть? Правильно: в материнских платах. Их сейчас устаревших и никому не нужных полно. Мне попались транзисторы PHD78NQ. Всем хороши, но напряжение сток-исток максимальное у них заявлено 25В. Поэтому с номиналами цепочки, убирающей «иголку» (R34, C6) пришлось повозиться. Выкладываю осциллограммы, где видно, что у меня вроде как получилось.
Крупным планом:
Вложение:
20150516_184753_1.jpg
Мелким планом (это все на нагрузке порядка 170мА):
Вложение:
20150516_184815__.jpg
Видно, что «иголка» не выше 25В, как и положено по даташиту. Скажу по секрету, пока эту цепь подбирал, выброс был и до 33В в течение 1мкс и ничего, транзистор живой.
В общем лимит вложений исчерпал, попробую добавить в следующем сообщении. А пока: потребляемый ток при нагрузке 160мА около 400мА (почти 100-процентный КПД объясняется тем, что ток мерял милиамперметром на китайском блоке питания 🙂 )

Когда в разрыв цепи питания трансформатора впаял резистор 0.39 Ом то выяснил, что ток в первичке пилообразный (странно, да?! 🙂 ), нарастает максимум до 2.5 А.
Транзистор теплый, не горячий.
В общем, вроде получилось надежно.
Кому пригодится — пользуйтесь!
В следующем сообщении попробую выложить еще файлы: печатную плату, фото девайса.

OSKJ регулятор напряжения и тока DC-DC 32V в 0,8…28V, 9A

  • Ардуино, робототехника и конструирование
    • Адаптеры интерфейсов для ардуино
    • Адаптеры питания
    • Ардуино платформы
    • Датчики для ардуино и робототехники
    • Двигатели постоянного тока
    • Динамики, зуммеры, пьезозвуковые излучатели
    • Дисплеи, индикаторы, светодиодные матрицы
    • Драйверы двигателей
    • Корпуса
    • Макетные панели беспаечные
    • Микросхемы для модулей и ремонта ардуино
    • Модули расширения (shields)
    • Модули релейные
    • Наборы обучающие
    • Наборы обучающие для пайки
    • Насосы водяные
    • Программаторы
    • Прочие модули и устройства
    • Радиомодули, Wi-fi, bluetooth, GSM
    • Регуляторы, преобразователи напряжения, зарядки Li-ion АКБ
    • Робототехника и моделирование
    • Сервоприводы
    • Таймеры настраиваемые, программируемые
    • Устройства ввода (клавиатуры, кнопки и др.)
    • Шаговые двигатели
    • Шлейфы, кабели, провода, соединители
  • Аккумуляторы, батарейки и зарядные устройства
    • Аккумуляторы
    • Батарейки
    • Зарядные устройства
  • Электронные компоненты
    • Герконы
    • Варисторы
    • Диоды
    • Индуктивности
    • Ионисторы
    • Кварцевые резонаторы
    • Конденсаторы
    • Лампы подсветки монитора (CCFL лампы)
    • Микросхемы
    • Оптроны оптопары и IGBT драйверы
    • Панельки для микросхем
    • Предохранители
    • Разбор ТВ, мониторов и др. техники
    • Термопредохранители
    • Пьезоизлучатели, зуммеры
    • Резисторы
    • Реле
    • Светодиоды, светодиодные индикаторы и ленты
    • Терморезисторы (термисторы)
    • Тиристоры, симисторы
    • Транзисторы
    • Трансформаторы
    • Электровакуумные лампы
    • Энкодеры
  • Блоки питания, адаптеры
    • Адаптеры сетевые
    • Лабораторные блоки питания
    • Импульсные блоки питания
    • Источники питания для поверхностного монтажа
  • Корпусные и устан-е изделия
    • Вентиляторы
    • Динамики
    • Концевые выключатели
    • Кнопки, выключатели, переключатели, тумблеры и др.
    • Корпуса для РЭА, Ардуино проектов и др.
    • Корпуса для предохранителей
    • Клемники
    • Магниты неодимовые
    • Макетные платы
    • Метизы, крепления, винты, гайки
    • Радиаторы алюминиевые
    • Разъемы
    • Перемычки (джамперы)
    • Соединители проводов
    • Текстолит
  • Приборы и инструмент
    • Зажимы
    • Инструмент
    • Мультиметры
  • Паяльные материалы и оборудование
    • Паяльники и паяльные станции
    • Паяльные материалы
  • Промышленная и бытовая электроника
    • Датчики 24В DC
    • Измерители-регуляторы, индикаторы
    • Регуляторы переменного напряжения
  • Расходные материалы
    • Клей
    • Провод монтажный
    • Прокладки изолирующие теплопроводные
    • Текстолит
    • Кабельные вводы
  • Разное
    • Диагностика автомобиля
    • Лазерные указатели
  • Средства разработки
    • Аудио усилители
    • Измерители-регуляторы, индикаторы

Как работает DC-DC преобразователь напряжения

Преобразователи напряжения используются везде и всюду. Будь то огромные многотонные трансформаторы на электроподстанциях, обычные 50-герцовые трансформаторы в домашней аппаратуре или сложные импульсные схемы с умными микроконтроллерами. Любой электроприбор имеет собственные требования к питанию, да и отдельные узлы в этом приборе тоже привередливы к значениям напряжений. Вопрос — почему? Из статьи вы узнаете, зачем вообще нужны преобразователи и как работает DC-DC регулятор напряжения на материнской плате компьютера.

Никакого единства…

В розетке 220 вольт, у блока питания 12 вольт, у зарядки телефона 5 вольт… Может сложиться впечатление, что инженерам нравится играть с напряжением, сначала повышая его до миллионов вольт на линиях электропередач, а потом до единиц вольт для питания центрального процессора. Почему люди не придумали какое-то единое значение напряжения и не используют его везде?

Определенно, центральный процессор — да и вообще любой другой микрочип — питать высоким напряжением прямо из розетки нельзя. Двенадцать вольт после блока питания тоже не подойдут. Во-первых, на микроскопическом уровне даже лишние пара десятых вольта могут привести к утечкам тока и повлиять на стабильность схемы. Во-вторых, чем выше напряжение, тем большее энергии расходуется на работу процессора. Поэтому с уменьшением техпроцесса разработчики стараются снизить и рабочий вольтаж. Когда-то процессоры, например, древний Intel 8086 выпуска 70-х годов, питались от 5 вольт, а современные работают всего от 1-1,4 вольта.

Блоки питания с напряжением 1 вольт на выходе — тоже не вариант, так как сила тока будет чрезмерно высокой — от нескольких десятков до сотен ампер. Ведь, снижая напряжение, растет сила тока при той же мощности. Вычислить силу тока можно, поделив мощность на напряжение.

Большая сила тока вставляет палки в колеса при подборе проводников из-за их сопротивления. Сопротивление — эффект, когда структура проводника мешает беспрепятственному протеканию тока по нему. Заряженные частицы врезаются на полной скорости в атомы проводника, чем и вызывают сопутствующий нагрев, а сами частицы теряют энергию. Это как бег с препятствиями. Вы тоже потеряете энергию, если во время бега по густому лесу будете влетать в деревья.

Сопротивление любого провода не нулевое, причем оно увеличивается с ростом его длины. Толщина провода также влияет на сопротивление. Поэтому, чтобы передать большую мощность при низком значении напряжения и высокой силе тока, придется использовать довольно толстые провода.

К примеру, напряжение на ЛЭП специально увеличивают до сотен тысяч вольт после электростанции, чтобы передавать мегаватты электрической мощности на значительные расстояния с помощью относительно тонких проводов.

И последнее. У любой электроники свое значение рабочего напряжения, а у процессора оно еще и регулируется в зависимости от нагрузки и условий работы. Так что договориться и сделать единую энергосистему с одинаковым значением напряжения попросту нереально.

Нет, без преобразователей ну никак не обойтись.

Устройство DC-DC преобразователя

Для питания микроэлектроники от постоянного напряжения используются DC-DC преобразователи, основанные на принципах широтно-импульсной модуляции — ШИМ. Их еще называют регуляторами напряжения — VRM.

Как это работает? Возьмите обычный вентилятор. Что будет, если вы его включите? Правильно, он будет дуть с одинаковой силой.

Что произойдет, если с равной периодичностью дергать рубильник — включать вентилятор всего на полсекунды, а на следующие полсекунды выключать? Двигатель вентилятора не может мгновенно набрать максимальную скорость вращения, поэтому за такой небольшой промежуток времени он как следует не разгонится. Но и остановиться за то же время он не успеет, так как продолжит крутиться по инерции. Так что вентилятор продолжит дуть, но с гораздо меньшей мощностью. Попробуйте поэкспериментировать со своим домашним вентилятором.

Выходит, если включать и выключать питание вентилятора, то вместо постоянного напряжения мы получим прерывистые импульсы той же амплитуды.

Так и работает простейший ШИМ-регулятор. Но вместо человека с выключателем используется транзистор — он то открывается на некоторое время (ВКЛ), то закрывается (ВЫКЛ). Только делает это с частотой не два раза в секунду (2 Гц), а десятки тысяч раз (10 кГц). Вы так точно не сможете. Такой транзистор называется «ключевым».

Кто-то может возмутиться: «Но, погодите, нам нужно получить напряжение в 1 вольт, а тут хоть и прерывистые, но те же 12 вольт, что и на входе! Кажется, нас обманывают!»

Действительно, таким образом питать процессор по-прежнему нельзя. Так что к ключевому транзистору (VT1) понадобятся еще несколько элементов: катушка индуктивности (L), конденсатор (C) и синхронный транзистор (VT2). Катушка и конденсатор образуют LC-фильтр.

Технически можно разделить цикл преобразования на две стадии: накачка энергии в катушку с конденсатором и стадию разряда.

Первая стадия — накачиваем энергию

Когда транзистор VT1 открыт, его собрат — синхронный транзистор VT2 — закрыт. В катушке L накапливается энергия, плавно нарастает ток и заряжается конденсатор C.

Вторая стадия — стадия разряда

Транзистор VT1 закрывается, открывается синхронный VT2 — он нужен, чтобы соединить вход катушки с отрицательным выводом нагрузки, создавая замкнутую цепь питания. Пусть мы и разорвали на этот краткий миг связь с источником питания, но катушка никуда не делась. Накопленная в катушке энергия теперь играет роль источника питания и поддерживает силу и направление тока, а конденсатор разряжается и питает нагрузку.

Затем транзистор VT1 снова открывается, а VT2 закрывается, и цикл начинается заново. Причем для наибольшей эффективности циклы повторяются с довольно высокой частотой — у современных компьютерных комплектующих миллионы раз в секунду (измеряется в мегагерцах, МГц).

Благодаря этому процессу мы получаем постоянное напряжение на нагрузке ниже, чем входное до ключевого транзистора. Импульсы как бы сглаживаются, образую близкую к прямой линию напряжения.

То, что линия напряжения не совсем прямая — это нормально. В реальных условиях идеальных LC-фильтров не бывает, и всегда присутствуют небольшие пульсации напряжения. И главное, подобрать параметры катушки и конденсатора таким образом, чтобы они не успевали разрядиться полностью к концу цикла. Тогда ток становится неразрывным.

К слову, ток на всей цепи примерно равен. А так как синхронный транзистор VT2 открыт несоизмеримо дольше — работать ему приходиться, что называется, за троих.

Как настраивается преобразователь

Уровень напряжения на нагрузке будет зависеть от длительности первой и второй стадий в рамках одного цикла. Ведь чем дольше открыт транзистор VT1, тем больше энергии успевает накопить катушка и тем выше будет по итогу напряжение после LC-фильтра.

Если мы поделим время первой стадии на длительность полного цикла, то получим коэффициент заполнения (D) от 0 до 100 %. Чтобы узнать выходное напряжение (U out), нужно коэффициент заполнения умножить на входное напряжение (U in).

А чтобы узнать коэффициент заполнения, делим U out на U in. Простой пример: чтобы получить типичное для центрального процессора напряжение в 1,2 вольта, то, поделив на входные 12 вольт (напряжение на выходе блока питания), получим D=0,1. Это значит, что первая стадия (накачки энергии) займет всего 10 % времени от общей длительности цикла, а оставшиеся 90 % времени уйдут на стадию разряда.

Когда одной фазы недостаточно

В мощных преобразователях часто используется не один канал с парой транзисторов, одной катушкой и одним конденсатором, а несколько параллельно подключенных каналов.

Как мы уже выяснили, любой проводник имеет ненулевое сопротивление и нагревается. Транзистор в ключевом режиме — тоже проводник, как обычный выключатель. И сопротивление (Rds) между его входом и выходом (сток-исток) не равно нулю. Значит, чем выше ток, тем сложнее будет электронам пробиться через него, что приведет к потерям энергии и нагреву. Чтобы минимизировать этот эффект и применяются несколько фаз — нагрузка распределяется между ними поровну.

Еще один интересный способ повысить эффективность: синхронный транзистор VT2 открыт примерно в семь-восемь раз дольше чем VT1, поэтому VT2 часто дублируют и стараются подобрать более продвинутую и дорогую модель с низким Rds.

Но это еще не все. Такие каналы не просто так называют «фазами». Процесс переключения транзисторов в разных каналах происходит не одновременно, а с небольшим сдвигом по фазе.

На выходе после LC-фильтров все фазы объединяются в одну, и амплитуда пульсаций становится значительно ниже, чем было бы у каждой фазы в отдельности.

Так что даже несколько десятков каналов в преобразователе на материнской плате неправильно называть «избытком». Ведь это не только меньшие потери, но и лучшее качество напряжения. Меньше пульсаций напряжения — меньше выбросов во внутренние узлы процессора — выше стабильность всей схемы, особенно при разгоне.

Те же принципы справедливы и для графического чипа видеокарты, процессора смартфона и любой другой «тонкой» электроники. Но в этом случае разработчики уже за нас рассчитали потребляемую мощность и количество необходимых узлов. А вот при выборе материнской платы пользователь должен сам определить, что ему нужно, учесть потребляемую мощность процессора. Тем более, если в планах серьезный разгон.

Миниатюрное решение для изолированного DC/DC-преобразователя

Однако, благодаря положительному температурному коэффициенту сопротивления канала МОП-транзистора, выходной транзистор SN6501 саморегулирует разбаланс «V ґ t». В случае большего времени ton протекающий ток постепенно нагревает транзистор, что ведет к увеличению RDSon. Большее сопротивление приводит к увеличению VDS. А так как напряжение первичной обмотки является разницей между постоянным входным напряжением VIN и падением напряжения на МОП-транзисторе, VP = VIN — VDS, напряжение VP,постепенно уменьшается, тем самым восстанавливая баланс.

Рекомендации по разработке DC/DC-преобразователя

Ниже приведены рекомендации по выбору компонентов для разработки эффективного двухтактного преобразователя с высокой токовой нагрузкой.

Следует отметить, что, в противоположность популярному убеждению, выходное напряжение (VOUT) нерегулируемого преобразователя значительно уменьшается при большом изменении тока нагрузки. Разница между VOUT при минимальной нагрузке и VOUT при максимальной нагрузке может превышать диапазон напряжения питания подключаемых микросхем. Поэтому для обеспечения стабильного, не зависящего от нагрузки, питания при сохранении максимально возможной эффективности рекомендуется совместно с двухтактным преобразователем использовать линейный регулятор с малым падением напряжения. Примеры схем преобразователя показаны на рисунках 8-13.

Рис. 8. Изолированный RS-485-интерфейс с питанием линии на SN6501

Рис. 9. Изолированный RS-485-интерфейс с питанием линии, реализованным на базе TPS55010

Рис. 10. Изолированный RS-232-интерфейс

Рис. 11. Изолированный цифровой интерфейс

Рис. 12. Система измерения температуры с изолированным SPI-интерфейсом

Рис. 13. Изолированный I2C-интерфейс для реализации системы сбора информации с 4 входами и 4 выходами

Выбор линейного LDO-регулятора

При выборе линейного регулятора напряжения необходимо учитывать следующие требования:

  • Токовая нагрузочная способность регулятора должна немного превышать специфицированный ток нагрузки в изделии. Как пример- для тока нагрузки 100мА необходимо выбирать регулятор с токовой способностью 100…150мА. Хотя регулятор с большими токами также возможно использовать, однако это приведет к меньшей эффективности, так как обычно такие регуляторы имеют большее падение напряжения.
  • Для получения максимальной эффективности внутреннее падение напряжения регулятора (VDO) на рабочем токе нагрузки должно быть минимальным. Для бюджетных 150мА-регуляторов оно обычно равно ~150мВ на 100мА. При этом следует обратить внимание на то, для каких условий дано это значение, поскольку такое низкое значение, как правило, специфицируется при комнатной температуре и может увеличиваться в несколько раз при изменении температуры, что, в свою очередь, увеличивает требования к входному напряжению.

Минимальное входное напряжение, достаточное для поддержания работоспособности регулятора, определяется следующим образом: VImin = VDOmax + VOUTmax. То есть, чтобы определить требуемое в худшем случае VI, мы должны взять максимальные значения VDO и VOUT, специфицированные для данного регулятора на заданном токе и сложить их вместе. Также следует убедиться, что выходное напряжение выпрямителя на заданную токовую нагрузку равняется или превышает VImin. В противном случае любое изменение на входе регулятора будет передаваться без изменений на выход, так как регулятор не сможет обеспечить стабилизацию и будет вести себя как обычный проводник.

Максимальное входное напряжение регулятора должно быть больше, чем напряжение на выходе выпрямителя без нагрузки. При соблюдении данного условия нет отражения тока в первичную обмотку, таким образом, нивелируется влияние падения напряжения на RDSon и достигается максимальное напряжение на первичной обмотке. Тем самым достигается максимальное напряжение на вторичной обмотке: VSmax = VINmax ґ n, где VINmax — максимальное входное напряжение преобразователя, а n — коэффициент трансформации. Таким образом, чтобы предотвратить возможное повреждение регулятора, его максимальное входное напряжение должно быть выше VSmax. В таблице 1 показаны максимальные значения напряжения вторичной обмотки при различных коэффициентах трансформации, широко используемых в двухтактных преобразователях с выходным током 100 мА.

Таблица 1. Требуемые максимальные значения входных напряжений LDO для различных конфигураций двухтактного преобразователя

Выбор выпрямительного диода

Для обеспечения максимально возможного напряжения на выходе преобразователя, выпрямительный диод должен обладать малым прямым падением напряжения. Также, когда диод используется в режиме переключения с высокой частотой, например, для SN6501 — с частотой 450 кГц, он должен обеспечивать быстрое время восстановления. Диоды Шоттки обладают обоими этими свойствами, поэтому рекомендуется использовать их в устройствах двухтактного преобразователя. Примером такого диода может быть MBR0520L либо STP0520Z с типовым падением 300 мВ при токе 100 мА. Для больших выходных напряжений, таких как ±10 В и выше, подойдет MBR0530, обеспечивающий работу при напряжениях 30 В.

Выбор конденсатора

В представленных ниже схемах (рисунки 8…13), все емкости являются конденсаторами с многослойной керамикой (MLCC). В качестве развязывающего конденсатора по питанию используется емкость в диапазоне 10…100 нФ. Входной сглаживающий конденсатор, присоединенный к центральному выводу первичной обмотки, поддерживает в ней рабочие токи во время переключения. Для обеспечения минимальных выбросов этот конденсатор должен быть номиналом 10…22 мкФ. При двухсторонней разводке печатной платы со специально предусмотренной земляной шиной этот конденсатор должен располагаться рядом с центральным выводом обмотки, что обеспечит минимальную индуктивность проводника. При четырехслойной печатной плате с отдельными слоями «земли» и VIN, конденсатор может быть установлен в точке подачи питания на плату. В этом случае, чтобы обеспечить минимальную индуктивность проводника при подключении конденсатора к слоям питания, необходимо использовать как минимум два параллельных переходных отверстия в каждой точке перехода.

Сглаживающий конденсатор на выходе выпрямителя обеспечивает минимальные выбросы выходного напряжения. Величина данного конденсатора должна быть порядка 10…22 мкФ. Конденсатор на входе регулятора является необязательным, хотя, исходя из практики аналоговых схем, использование малого номинала ~47…100 нФ позволяет улучшить подавление шумов и стабильность работы схемы при переходных процессах.

Выбор конденсатора на выходе регулятора зависит от требований к стабильности регулятора при заданной нагрузке. Данный конденсатор стабилизирует внутреннюю цепь управления и указывается в паспорте микросхемы. В большинстве случаев будет достаточным применение керамического конденсатора емкостью 4,7…10 мкФ с малым эффективным сопротивлением. Так для семейства TPS763xx достаточно использовать конденсатор 4,7 мкФ.

Выбор трансформатора

Одним из критериев выбора трансформатора изолированного DC/DC-преобразователя является произведение Vt. Правильно выбранная величина данного параметра позволит предотвратить насыщение катушки трансформатора. Для этого произведение Vt трансформатора должно быть больше, чем максимальное произведение Vt, прилагаемое драйвером. Максимальное напряжение, выдаваемое SN6501, это номинальное напряжение входа +10%. Максимальное время, в течение которого данное напряжение прикладывается к первичной обмотке драйвером SN6501- это полупериод минимально возможной частоты при заданном входном напряжении. Таким образом, минимальные требования к произведению Vt трансформатора определяются следующим соотношением:

,

Применительно к использованию драйвера SN6501, получаем:

для напряжения питания 3,3 В и

для напряжения питания 5 В.

Для большинства маломощных трансформаторов с выводом средней точки значения параметра Vt находятся в диапазоне 22…150В мкс при типовых размерах 10х12мм. В то же время трансформаторы, разработанные специально для PCMCIA, обеспечивают наименьшие значения 11В мкс и поставляются в значительно уменьшенном размере 6х6мм.

Несмотря на то, что большинство доступных трансформаторов удовлетворяют требованиям к Vt и могут использоваться совместно с SN6501, перед окончательным выбором трансформатора в разрабатываемый источник следует также учесть другие важные параметры, такие как напряжение изоляции, мощность трансформатора, коэффициент трансформации.

В зависимости от требований изделия к величине гальванической развязки выбирается трансформатор, обеспечивающий необходимую изоляцию в диапазоне 0,5…6 кВ.

Также трансформатор должен обладать коэффициентом трансформации, который позволит разрабатываемому преобразователю работать при необходимых токах нагрузки и во всем диапазоне температур.

Минимальный коэффициент трансформации определяется отношением минимального напряжения во вторичной обмотке к минимальному напряжению в первичной обмотке, умноженному на корректирующий коэффициент, который учитывает эффективность трансформатора:

Значение VSmin (рисунок 7) должно быть таким, чтобы при максимальном падении на диоде VFmax обеспечить достаточное напряжение на входе регулятора для его дальнейшей работы.

Рис. 7. Схема к расчету минимального коэффициента трансформации

Используя данные из предыдущего раздела для вычисления минимального входного напряжения регулятора и добавляя к этому значению VFmax, получаем минимально необходимое напряжение вторичной обмотки.

Для расчета минимального напряжения в первичной обмотке VPmin необходимо вычесть максимально возможное напряжение «сток-исток» транзисторного ключа VDSmax, из минимально возможного напряжения на центральном выводе VINmin. В то же время следует учесть, что VDSmax является произведением максимального значения RDSon и ID для заданного напряжения питания.

Таким образом, получаем:

Используя выражения для VPmin и VSmin, получаем выражение для расчета минимального коэффициента трансформации:

Как пример расчета минимального коэффициента трансформации возьмем схему преобразователя с входным напряжением VIN = 3,3 В и выходным напряжением VOUT = 5 В. В качестве остальных элементов схемы выберем выпрямительный диод MBR0520L и линейный стабилизатор TPS76350. Из спецификаций на устройства для нагрузки 100 мА и температуры 85С° получаем следующие значения: VFmax = 0,2 В, VDOmax = 0,2 В, VOUTmax = 5,175 В. Так как напряжения питания SN6501 — 3,3 В, получаем VINmin = 3,234 В, также из спецификации на SN6501 берем значения RDSmax = 3 Ом и IDmax = 150 мА. Подставляя вышеперечисленные данные в формулу для коэффициента трансформации, получаем минимальное значение:

Большинство доступных коммерческих трансформаторов для двухтактных преобразователей из 3…5 В имеют коэффициент трансформации 2,0…2,3, с точностью ±3%

Примеры готовых трансформаторов приведены в таблице 2.

Таблица 2. Трансформаторы для использования с SN6501

Примеры готовых решений

На рисунках 8…13 приведены схемы применения SN6501 и TPS55010 для реализации изолированных интерфейсов в системах с напряжением питания 3,3 В. Для систем с 5 В-питанием необходимо будет только изменить коэффициент трансформации и подобрать нужный регулятор там, где это требуется.

Примеры реализации изолированных интерфейсов RS-485 для коммуникации с контроллером MSP430, построенных на базе трансиверов ISO3082/88, показаны на рисунках 8 и 9. Более подробную информацию о трансиверах для реализации промышленных интерфейсов вы найдете в отдельной статье номера.

На рисунках 10…13 показаны примеры реализации коммуникации с контроллерами MSP430 при помощи микросхем цифровых изоляторов ISO7242, ISO7641, ISO1541.

В приведенных примерах для стабилизации изолированного выходного напряжения 5 В используются различные типы линейных регуляторов TPS76350, LP2985-50, LP2981-50, принципы выбора которых описаны в статье ранее. Следует также отметить использование источников прецизионного опорного напряжения REF5025 и REF5040 (рисунки 12, 13), использование которых совместно с ЦАП/АЦП позволяет разрабатывать высокоточные системы измерения.

Выводы

Использование компактных драйверов SN6501(SOT23-5) и TPS55010 (QFN16) совместно с доступными низкопрофильными трансформаторами позволяет реализовать простое малогабаритное решение гальванически развязанного источника питания. Такое решение успешно используется для обеспечения питания различного типа промышленных интерфейсов (CAN, RS-485, SPI и т.д.). Для обеспечения быстрой разработки гальванически развязанных интерфейсов и проверки функциональности данного решения Texas Instruments предоставляет как образцы самих драйверов, так и типовые проекты и отладочные платы.

Получение технической информации, заказ образцов, поставка — e-mail: analog.vesti@compel.ru

admin

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Наверх