Электрификация

Справочник домашнего мастера

Блок питания усилителя

Содержание

Немного о блоках питания (часть II)

Казалось бы, что может быть проще — взял блок питания, подключил его двумя или тремя проводами к усилителю и всё… должно запеть? Оказывается не всегда. Как мы уже выяснили в первой части этого цикла статей, тут существует множество подводных камней.

Продолжим разбираться в хитросплетении питающих усилитель проводов. И как ни странно, больше всего проблем может доставить общий (земляной) проводник.

Для начала исправим одну оплошность. В первой части статьи была опубликована схема двухполярного блока питания усилителя, но отсутствовала его монтажная схема.

Вот вам и то, и другое:

Двухполярный блок питания усилителя мощности.

Монтажная схема двухполярного блока питания усилителя мощности

По сути здесь два «отзеркаленных» однополярных блока.

Обратный ток акустической системы

Как известно, акустическая система является реактивной нагрузкой. А значит, она может возвращать ток усилителю. Этот ток, протекая по проводникам, создаёт разность потенциалов, что может привести к появлению положительной обратной связи и как следствие нестабильности усилителя.

Для избежания этого, земляную клемму громкоговорителя следует подключать к общему выводу конденсаторов фильтра питания. Часто вывод громкоговорителя подключают к общему выводу микросхемы, как показано на рисунке:

Такое подключение замыкает отрицательную полуволну сигнала в локальном контуре, исключая фильтрующий конденсатор, который мог бы снизить излучаемые помехи и повысить стабильность системы.

На рисунке показано, как ток утечки на землю одной полуволны сигнала может навести неприятные помехи и искажения, если общий провод громкоговорителя подключен к выводу выходного каскада микросхемы:

Аналогично, если на плате усилителя в цепях питания есть байпасные конденсаторы (а они обычно есть) довольно большой ёмкости в несколько сотен микрофарад, то импульсы зарядного тока также создадут на общем проводнике разность потенциалов. Поэтому, повторимся ещё раз, наилучшая точка подключения общего провода акустической системы — это общий вывод конденсаторов фильтра питания.

Чем больше мощность, тем хуже…

Часто радиолюбители стараются сделать свой усилитель как можно мощнее (типа, так круче), да и аудиофилы зачастую оснащают свои системы усилителями с мощностью в разы превышающей необходимую для озвучивания обычной комнаты до нормального уровня громкости, мотивируя тем, что так получается больший динамический диапазон. Такие усилители (большой мощности) порой решают одни проблемы, но создают другие.

Индуктивность проводников питания является основным «слабым звеном» усилителей мощности класса АВ. В таких усилителях выходные транзисторы включаются и выключаются поочередно, соответственно по плюсовой и минусовой шинам питания протекают полуволны зарядных токов.

Если эти импульсы через емкостные и индуктивные связи попадут в звуковой тракт это приводит к ужасному размытому звучанию.

Такое происходит, если какая-то чувствительная дорожка (проводник) проходит рядом с шиной питания. Бифилярная свивка проводов питания эффективно подавляет излучаемые помехи за счёт взаимной компенсации положительной и отрицательной полуволн.

На печатной плате этот метод можно реализовать, если шины питания расположить друг над другом с двухсторон платы (требуется двухсторонняяя печатная плата)

Достойный образец проектирования печатной платы для усилителя мощности — это конструкция Ultra-LD 200W, представленная в одном из номеров журнала «Практическая электроника каждый день». На печатной плате этого усилителя реализованы все рекомендации по монтажу, представленные в данном цикле статей. И во многом за счёт этого удалось получить уровень шумов -122 дБ и уровень нелинейных искажений ниже 0,001%.

Примечание редакции РадиоГазеты: если нашим читателям интересно, пишите в комментариях и мы опубликуем описание этого усилителя.

Заземление одной стороны печатной платы хорошо работает в высокочастотных и слаботочных конструкциях. Для усилителей мощности это не подходит, потому как трудно предсказать протекание токов в зависимости от выбора точек заземления.

В современных ламповых усилителях часто общую шину делают в виде отрезка тостого лужёного провода. Многие гуру проповедуют разводку звездой с единственной точкой подключения. Бывают случаи, когда при таком подходе усилители плохо работают. Сказывает большое количество длинных проводов, которые снижают стабильность конструкции.

Как правило, в хорошем усилителе есть несколько точек заземления.

Развязка

При использовании двух фильтрующих конденсаторов при двухполярном питании надо следить, чтобы две полуволны сигнала суммировались в одной точке, как показано на рисунке:

Часто применение одного конденсатора, включенного между плюсом и минусом питания, позволяет решить эту проблему. Этот метод хорошо работает с операционными усилителями типа 5532, и для усилителей мощности типа LM3886.

Когда питание драйверного каскада и выходного каскада подключено раздельными проводами, это может вызвать некоторую нестабильность усилителя на высоких частотах. Проблема решается подключением керамического конденсатора небольшой ёмкости между выводами питания микросхемы:

увеличение по клику

Если ёмкость байпасных (блокировочных) конденсаторов больше 100мкФ, их общий провод должен подключаться к «грязной» земле, так как большие зарядные токи могут создавать ощутимые помехи, если конденсаторы будут подключены к сигнальной земле.

Цепь Цобеля

Цепь Цобеля на выходе усилителя предотвращает его возбуждение на высоких частотах. Импульсы тока в этой цепи могут вызвать проблемы, поэтому должны замыкаться на «грязную» землю, то есть на общий вывод конденсаторов фильтра или байпасных конденсаторов.

Для некоторых микросхем усилителей мощности длинные провода в цепях Цобеля вызывают нестабильность на отрицательных полуволнах сигнала.

Пример монтажа моно-усилителя

Обычно «звезда» в усилителе с однополярным питанием бывает трёхлучевой: сигнальная земля, земля конденсаторов фильтра питания и «грязная» земля. Пример представлен на рисунке:

увеличение по клику

Здесь под усилителем следует понимать как интегральное исполнение, так и усилители на дискретных элементах.

Как видно, к одному лучу подключена сигнальная земля — здесь токи очень малы, поэтому подключать все элементы отдельными проводниками нет необходимости. Ко второму лучу отдельными проводниками подключены выводы сильноточных цепей: выходного каскада, цепи Цобеля, общий вывод акустической системы и байпасных конденсаторов. К третьему лучу подключен общий вывод фильтрующего конденсатора блока питания.

Правильное подключение общего провода к выводам микросхем показан на рисунке:

Вариант «с» — это неправильный вариант. Из-за сопротивления дорожки большой ток поднимет потенциал слаботочного общего провода относительно вывода микросхемы, что приведет к росту искажений.

Продолжение следует…

Статья подготовлена по материалам журнала «Практическая электроника каждый день»

Джек Розман

Вольный перевод: Главный редактор «РадиоГазеты»

500 Ватт импульсный блок питания для аудиоусилителей

Рубрика: Обзоры / Блоки питания; kirich ; Опубликовано: 14-03-2018, 01:53 $34.99 Многие знают как я люблю разбираться с разными блоками питания. В этот раз у меня на столе несколько необычный блок питания, по крайней мере такой я еще не тестировал. Да и по большому счету вообще не встречал ранее обзоров блоков питания подобной разновидности, хотя вещь по своему интересная и я раньше делал подобные блоки питания сам.
Заказать я его решил из чистого любопытства, решил что может быть полезным. Впрочем подробнее в обзоре.
Вообще стоит наверное начать с небольшого лирического вступления. Много лет назад я довольно сильно увлекался аудиотехникой, прошел как через полностью самодельные варианты, так и "гибриды", где использовались УМ мощностью до 100 Ватт из магазина Юный техник, и полуразобранная Радиотехника УКУ 010, 101 и Одиссей 010, потом был Феникс 200У 010С.
Даже пробовал собрать УМЗЧ Сухова, но что-то тогда не пошло, уже и не вспомню что именно.

Акустика также разная была, как самодельная, так и готовая, например Романтика 50ас-105, Кливер 150ас-009.

Но больше всего запомнились Амфитон 25АС 027, правда они у меня были несколько доработаны. Попутно к небольшим изменениям схемы и конструкции я заменил родные динамики 50 ГДН на 75 ГДН.
Это и предыдущие фото не мои, так как моя аппаратура давно продана, а я потом перешел на Sven IHOO 5.1, а затем вообще стал слушать только мелкие компьютерные колоночки. Да, вот такой регресс.

Но вот что-то начали бродить в голове мысли, сделать что нибудь, например усилитель мощности, возможно просто так, возможно вообще все делать по другому. Но в итоге решил я заказать блок питания. Конечно я могу его сделать сам, мало того, в одном из обзоров я не только это делал, а и выложил подробную инструкцию, но к этому я еще вернусь, а пока перейду к обзору.
Начну со списка заявленных технических характеристик:
Напряжение питания — 200-240 Вольт
Выходная мощность — 500 Ватт
Выходные напряжения:
Основное — +/-35 Вольт
Вспомогательное 1 — +/- 15 Вольт 1 Ампер
Вспомогательное 2 — 12 Вольт 0.5 Ампера , гальванически отвязано от остальных.
Размеры — 133 x 100 x 42 мм
Каналы +/- 15 и 12 Вольт имеют стабилизацию, основное напряжение +/-35 Вольт не стабилизировано. Здесь я наверное выскажу свое мнение.
Меня часто спрашивают, какой блок питания купить для одного либо другого усилителя. На что я обычно отвечаю — проще собрать самому на базе известных драйверов IR2153 и их аналогов. Первый же вопрос, который следует после этого — так у них же нет стабилизации напряжения.
Да, лично на мой взгляд — стабилизация напряжения питания УМЗЧ не только не нужна, а иногда и вредна. Дело в том, что стабилизированный БП обычно больше шумит на ВЧ и кроме того, могут быть проблемы с цепями стабилизации, потому как усилитель мощности потребляет энергию не равномерно, а всплесками. Мы же слушаем музыку, а не одну частоту.
БП без стабилизации обычно имеет немного выше КПД, так как трансформатор всегда работает в оптимальном режиме, не имеет обратной связи и потому больше похож на обычный трансформатор, но с меньшим активным сопротивлением обмоток.
Вот собственно перед нами и пример БП для усилителей мощности.
Упаковка мягкая, но замотали так, что вряд ли получится его повредить в процессе доставки, хотя противостояние почты и продавцов наверное будет вечным.

Внешне выглядит красиво, особо и не придерешься.


Размер относительно компактный, особенно если сравнивать с обычным трансформатором соответствующей мощности.

Более понятные размеры есть на странице товара в магазине.

1. На входе блока питания установлен разъем, что оказалось довольно удобным.
2. Присутствует предохранитель и полноценный входной фильтр. Вот только про термистор, защищающий от бросков тока как сеть, так и диодный мост с конденсаторами, забыли, это плохо. Также в районе входного фильтра расположены контактные площадки, которые надо замкнуть для перевода БП на напряжение 110-115 Вольт. Перед первым включением лучше проверить, не замкнуты ли площадки если у вас в сети 220-230.
3. Диодный мост KBU810, все бы ничего, но он без радиатора, а при 500 Ватт он уже желателен.
4. Входные фильтрующие конденсаторы имеют заявленную емкость 470 мкФ, реальная около 460 мкФ. Так как они включены последовательно, то общая емкость входного фильтра составляет 230мкФ, маловато для выходной мощности в 500 Ватт. Кстати плата предполагает установку и одного конденсатора. Но в любом случае поднимать емкость без установки термистора я бы не советовал. Причем справа от предохранителя есть даже место для термистора, надо только впаять его и перерезать под ним дорожку.

В инверторе применены транзисторы IRF740, хоть и далеко не новые транзисторы, но раньше я их также широко применял в подобных применениях. Как альтернатива, IRF830.
Транзисторы установлены на отдельных радиаторах, сделано это отчасти не просто так. Радиаторы соединены с корпусом транзистора, причем не только в месте крепления самого транзистора, а и монтажные выводы радиатора соединены на самой плате. На мой взгляд плохое решение, так как будет лишнее излучение в эфир на частоте преобразования, по крайней мере нижний транзистор инвертора (на фото он дальний) я бы отвязал от радиатора, а радиатор от схемы.
Управляет транзисторами неизвестный модуль, но судя по наличию резистора питания, да и просто моему опыту, думаю что не сильно ошибусь, если скажу что внутри стоит банальная IR2153. правда зачем делать такой модуль, для меня осталось загадкой.
Инвертор собран по полумостовой схеме, но в качестве средней точки используется не точка соединения фильтрующих электролитических конденсаторов, а два пленочных конденсатора емкостью 1мкФ (на фото два параллельно трансформатору), а первичная обмотка подключена через третий конденсатор, также емкостью 1мкФ (на фото перпендикулярно трансформатору).
Решение известное и по своему удобное, так как позволяет весьма просто не только увеличить емкость входного фильтрующего конденсатора, а и применить один на 400 Вольт, что может быть полезным при апгрейде.
Габарит трансформатора весьма скромный для заявленной мощности в 500 Ватт. Я конечно протестирую еще его под нагрузкой, но уже могу сказать, что на мой взгляд его реальная длительная мощность на более 300-350 Ватт.
На странице магазина, в перечне ключевых особенностей, было указано —
3. Transformers 0.1 mm * 100 multi-strand oxygen-free enameled wire, heat is very low, efficiency is more than 90%.
Что в переводе означает — в трансформаторе использована обмотка из 100 штук бескислородных проводов диаметром 0.1мм, уменьшен нагрев и КПД выше 90%.
Ну КПД я проверю потом, а вот насчет того, что обмотка многопроволочная, факт. Я конечно их не пересчитывал, но жгут довольно неплохой и данный вариант намотки действительно положительно сказывается на качестве работы трансформатора в частности и всего БП в целом.
Не забыли и про конденсатор, соединяющий "горячую" и "холодную" сторону БП, причем поставили его правильного (Y1) типа.
В выходном выпрямителе основных каналов применены диодные сборки MUR1620CTR и MUR1620CT (16 Ампер 200 Вольт), причем производитель не стал колхозить "гибридные" варианты, а поставил как положено, две комплементарные сборки, одна с общим катодом, а другая с общим анодом. Обе сборки установлены на отдельных радиаторах и также как в случае с транзисторами, они не изолированы от компонентов. Но в данном случае проблема может быть только в плане электробезопасности, хотя если корпус закрыт, то ничего страшного в этом нет.
В выходном фильтре задействовано по паре конденсаторов 1000мкФ х 50 Вольт, что на мой взгляд маловато.
Кроме того, для уменьшения пульсаций между конденсаторами установлен дроссель, а конденсаторы, стоящие после него, дополнительно зашунтированы керамическим 100 нФ.
Вообще на странице товара было написано —
1. All high-frequency low-impedance electrolytic capacitors specifications, low ripple.
В переводе — все конденсаторы имеют низкий импеданс для уменьшения пульсаций. В общем-то так то оно и есть, применены Cheng-X, но это по сути просто немного улучшенный вариант обычных китайских конденсаторов и я бы лучше поставил мою любимую Samwha RD или Capxon KF.
Параллельно конденсаторам нет разрядных резисторов, хотя место на плате для них имеется, потому вас могут ждать "сюрпризы", так как заряд держится довольно долго.
Дополнительные каналы питания подключены к своим обмоткам трансформатора, причем канал 12 Вольт гальванически отвязан от остальных.
Каждый канал имеет независимую стабилизацию напряжения, дроссели для уменьшения помех и керамические конденсаторы по выходу. Но вы наверное заметили, что диодов в выпрямителе пять. Канал 12 Вольт питается от однополупериодного выпрямителя.
По выходу, как и по входу, стоят клеммники, причем весьма неплохого качества и конструкции.
На странице товара есть фото сверху, где видно все и сразу. Уже потом заметил, что в магазине на всех фото есть монтажные стойки, в моем комплекте их не было 🙁
Печатная плата двухсторонняя, качество весьма высокое, использован стеклотекстолит, а не привычный гетинакс. В одном из узких место сделана защитная прорезь.
Снизу также обнаружилась пара резисторов, предположу, что это примитивная схема защиты от перегрузки, которую иногда добавляют к драйверам на IR2153. Но честно говоря, я бы на нее не рассчитывал.
Также снизу печатной платы присутствует маркировка выходов и варианты выходных напряжений, под которые изготавливаются данные платы. Немного заинтриговали две вещи — два одинаковых варианта +/- 70 Вольт и заказной вариант.
Перед тем, как перейти к тестам, немного расскажу о своем варианте подобного БП.
Примерно три с половиной года назад я выкладывал обзор регулируемого БП, где использовался блок питания собранный примерно по такой же схеме.
В собранном виде он также выглядел довольно похоже, извините за плохое качество фото.
Если убрать из моего варианта все "лишнее", например узел регулировки оборотов вентилятора в зависимости от температуры, а также умощненный драйвер транзисторов и схему дополнительного питания от выхода инвертора, то мы получим схему обозреваемого БП.
По сути это тот же БП, только выходных напряжений больше. Вообще схемотехника данного БП совсем простая, проще только банальный автогенератор.
Кроме того обозреваемый БП снабжен примитивной схемой ограничения выходной мощности, подозреваю что реализована она так, как показано на выделенном участке схемы.
Но посмотрим на что способна данная схема и ее реализация в обозреваемом блоке питания.
Здесь надо отметить, что так как стабилизация основного напряжения отсутствует, то оно напрямую зависит от напряжения в сети.
При входном напряжении 223 Вольта выходное составляет 35.2 в режиме холостого хода. Потребление при этом 3.3 Ватта.
При этом присутствует заметный нагрев резистора питания драйвера транзисторов. Его номинал 150 кОм, что при 300 Вольт дает рассеиваемую мощность порядка 0.6 Ватта. Данный резистор греется независимо от нагрузки блока питания.
Также заметен небольшой нагрев трансформатора, фото сделано примерно через 15 минут после включения.
Для нагрузочного теста была собрана конструкция, состоящая из двух электронных нагрузок, осциллографа и мультиметра.
Мультиметр измерял один канал питания, второй канал контролировался вольтметром электронной нагрузки, которая была подключена короткими проводами.
Не буду утомлять читателя большим перечислением тестов, потому сразу перейду к осциллограммам.
1, 2. Разные точки выхода БП до диодных сборок, и с разным временем развертки. Частота работы инвертора составляет 70 кГц.
3, 4. Пульсации перед дросселем канала 12 Вольт и после него. После КРЕНки вообще все гладко, но есть проблема, напряжение в этой точке всего около 14.5 Вольта без нагрузки основных каналов и 13.6-13.8 с нагрузкой, что мало для стабилизатора 12 Вольт.
Нагрузочные тесты проходили так:
Сначала нагружал один канал на 50%, затем второй на 50%, потом нагрузку первого поднимал до 100%, а затем и второй. В итоге получалось четыре режима нагрузки — 25-50-75-100%.
Сначала что на выходе по ВЧ, на мой взгляд очень даже неплохо, пульсации минимальны, а при установке дополнительного дросселя их вообще можно свести почти до нуля.
А вот на частоте 100 Гц все довольно грустно, маловата емкость по входу, маловата.
Полный размах пульсаций при 500 Ватт выходной мощности составляет около 4 Вольт.
Нагрузочные тесты. Так как напряжение под нагрузкой проседало, то я по мере этого поднимал тока нагрузки чтобы выходная мощность примерно соответствовала ряду 125-250-375-500 Ватт.
1. Первый канал — 0 Ватт, 42.4 Вольта, второй канал — 126 Ватт, 33.75 Вольта
2. Первый канал — 125.6 Ватта, 32.21 Вольта, второй канал — 130 Ватт, 32.32 Вольта.
3. Первый канал — 247.8 Ватта, 29.86 Вольта, второй канал — 127 Ватт, 30.64 Вольта.
4. Первый канал — 236 Ватт, 29.44 Вольта, второй канал — 240 Ватт, 29.58 Вольта.
Вы наверное заметили, что в первом тесте напряжение не нагруженного канала больше 40 Вольт. Это обусловлено выбросами напряжения, а так как нагрузки нет совсем, то напряжение плавно поднималось, даже небольшая нагрузка возвращала напряжение в норму.
Одновременно измерялось потребление, но так как есть относительно большая погрешность при измерении выходной мощности, то расчетные значения КПД я также буду приводить ориентировочно.
1. 25% нагрузки, КПД 89.3%
2. 50% нагрузки, КПД 91.6%
3. 75% нагрузки, КПД 90%
4. 476 Ватт, около 95% нагрузки, КПД 88%
5, 6. Просто ради любопытства измерил коэффициент мощности при 50 и 100% мощности.
В общем-то результаты примерно похожи на заявленные 90%
Тесты показали довольно неплохую работу блока питания и все было бы замечательно, если бы не привычная "ложка дегтя" в виде нагрева. Еще в самом начале я оценил примерно мощность БП в 300-350 Ватт.
В процессе привычного теста с постепенным прогревом и интервалами по 20 минут я выяснил, что при мощности 250 Ватт Бп ведет себя просто отлично, нагрев компонентов примерно такой:
Диодный мост — 71
Транзисторы — 66
Трансформатор (магнитопровод) — 72
Выходные диоды — 75
Но когда я поднял мощность до 75% (375 Ватт), то через 10 минут картина была совсем другая
Диодный мост — 87
Транзисторы — 100
Трансформатор (магнитопровод) — 78
Выходные диоды — 102 (более нагруженный канал)
Попытавшись разобраться с проблемой, я выяснил, что идет сильный перегрев обмоток трансформатора, в следствие этого прогревается магнитопровод, снижается его индукция насыщения и он начинает входить в насыщение в итоге резко увеличивается нагрев транзисторов (позже я регистрировал температуру до 108 градусов), затем я остановил тест. При этом тесты " на холодную" с мощностью в 500 Ватт проходили нормально.
Ниже пара термофото, первое при мощности нагрузки 25%, второе при 75%, соответственно через пол часа (20+10 минут). Температура обмоток достигла 146 градусов и был заметный запах перегретого лака.
В общем теперь подведу некоторые итоги, отчасти неутешительные.
Общее качество изготовления очень хорошее, но есть некоторые конструктивные нюансы, например установка транзисторов без изоляции от радиаторов. Радует большое количество выходных напряжений, например 35 Вольт для питания усилителя мощности, 15 для предварительного усилителя и независимые 12 Вольт для всяких сервисных устройств.
Есть схемные недоработки, например отсутствие термистора по входу и малая емкость входных конденсаторов.
В характеристиках было заявлено что дополнительные каналы 15 Вольт могут выдать ток до 1 Ампера, реально я бы не ждал больше 0.5 Ампера без дополнительного охлаждения стабилизаторов. Канал 12 Вольт скорее всего вообще не выдаст более 200-300мА.
Но все эти проблемы либо не критичны, либо легко решаются. Самая сложная проблема — нагрев. БП может длительно отдавать до 250-300 Ватт, 500 Ватт только относительно кратковременно, либо придется добавлять активное охлаждение.
Попутно у меня возник небольшой вопрос к уважаемой общественности. Есть мысли сделать свой усилитель, соответственно с обзорами. Но какой был бы интереснее, усилитель мощности, предварительный, если УМ, то на какую мощность и т.п. Лично мне он не особо нужен, но вот поковыряться настроение есть. Обозреваемый БП к этому имеет слабое отношение 🙂
Этот БП на алиэкспресс — , и еще одна.
На этом у меня все, надеюсь что информация была полезна и как обычно жду вопросов в комментариях. $34.99

Предлагается схема простого двуполярного импульсного источника питания для УМЗЧ. В основе данного источника питания находится специализированная микросхема — драйвер IR2153.

IR2153 – улучшенная версия драйвера IR2155 и IR2151, которая содержит драйвер высоковольтного полумоста с генератором аналогичным промышленному таймеру NE555 (К1006ВИ1). IR2153 отличается лучшими функциональными возможностями и более прост в использовании по сравнению с предыдущими микросхемами. Функция выключения в данном устройстве совмещена с выводом СТ, при этом выключение обоих каналов происходит при подаче управляющего сигнала низкого уровня.

Кроме того, формирование выходных импульсов связано с моментом пересечения увеличивающегося напряжения на Vcc порога схемы блокировки от понижения напряжения, тем самым была достигнута более высокая стабильность импульсов при запуске.

Стойкость к шумам была значительно улучшена за счет уменьшения скорости изменения тока драйверов (di/dt) а также за счет увеличения гистерезиса схемы блокировки от понижения напряжения (до 1В). Наконец, существенное внимание было уделено повышению стойкости защелок и обеспечению всесторонней защиты от электростатических разрядов на всех выводах.

Документация на микросхему IR2153

Принципиальная схема импульсного источника питания представлена на рис. 1.

Рис. 1

Детали подобраны так, что частота импульсов генерируемых микросхемой составляет 40 кГц.

Мощность источника в основном зависит от параметров трансформатора. При использовании трансформатора ETD39 можно получить около 400 Вт мощности.

Печатная плата показана на рис. 2.

Рис. 2

Детали для сборки источника питания:

Конденсаторы 0.47 мкф 400В Переменка 1шт
0.15 мкф 400B Переменка 1шт
0.68 мкф 400в Неполярный 1шт
470 мкф 200в Электролит 2шт
100 мкф 16в Электролит 1шт
910 пф 50в Многослойный 1шт
0.47 мкф 50в Многослойный 3шт
1000 пф 50в Многослойный 1шт
1.0 мкф 250в Неполярный 1шт
2200 мкф 50в Электролит 2шт
Резисторы 100 кОм 1Вт 2шт
18 кОм 1Вт 3шт
27 Ом 1Вт 2шт
100 Ом 2Вт 1шт
Транзисторы IRF740 2шт
Микросхема IR2153 1шт
Диоды FR207 2шт
MBR20200CT 2шт
GBU25M 1шт
Трансформатор ETD 39 или любой другой из БП ATX

Печатная плата в формате .lay:

Блок питания ATX: переделка под усилитель низкой частоты (часть 2)

Продолжение, начало .

  • Модернизация импульсного блока питания
  • Постановка задачи
  • FSP ATX-300GTF
  • Удаление лишнего
  • Выбор способа получения повышенного выходного напряжения
  • Перемотка трансформатора
  • Умножитель
  • Дополнительный трансформатор
  • Выбор и расчет трансформатора
  • Выпрямительные диоды
  • Трансформатор блока питания
  • Дроссель
  • Доработка схемы контроллера блока питания
  • Высокочастотные помехи
  • Наблюдения и выводы
  • Заключение

Модернизация импульсного блока питания

реклама

Если нужен блок питания для нестандартных условий, можно воспользоваться построением с низкочастотным трансформатором. Такое решение просто в реализации и не требует особо глубоких специальных знаний, но есть у него и ряд недостатков – большие габариты, низкий КПД и качество стабилизации выходных напряжений. Можно изготовить импульсный БП, но это довольно сложная процедура с массой подводных камней – при малейшей ошибке будет «хлопок» и куча ненужных деталей.

Попробуем снизить планку и ограничимся модернизацией обычного компьютерного блока питания ATX под необходимые требования. Гм, а что именно станет предметом рассмотрения? Вообще-то, 300-400 ваттный БП может обеспечить довольно значительную мощность, область применения у него большая. В одной статье трудно объять необъятное, поэтому ограничимся самым распространенным – усилителем низкой частоты, под него и попробуем осуществить переделку.

Постановка задачи

Блок питания довольно большой мощности, хотелось бы его использовать по максимуму. Из 12 вольт мощный усилитель не сделать, здесь требуется совсем другой подход – двуполярное питание с выходным напряжением явно побольше 12 В. Если БП будет запитывать самодельный усилитель, собранный из дискретных элементов, то его напряжение питания может быть любым (в разумных пределах), а вот интегральные микросхемы довольно придирчивы. Для определенности возьмем усилитель на TDA7294 – напряжение питания до 100 В (+/-50 В) с выходной мощностью 100 Вт. Микросхема обеспечивает ток в динамике до 10 ампер, что определяет максимальный ток нагрузки блока питания.

Вроде всё ясно, остается уточнить уровень выходного напряжения. Допускается работа от источника питания 100 вольт (+/-50 В), но попытка выбора такого значения выходного напряжения оказалась бы большой ошибкой. Микросхемы крайне отрицательно относятся к предельным режимам работы, особенно при одновременном максимальном значении нескольких параметров — напряжения питания и мощности. К тому же, вряд ли в обычной квартире есть смысл обеспечивать столь высокий уровень мощности, даже для низкочастотных динамиков с их низкой эффективностью.

Можно установить напряжение в 90 вольт (+/- 45 В), но это потребовало бы очень точного удержания выходного напряжения – в многоканальных блоках питания весьма затруднительно обеспечить одинаковость напряжений на разных выходах. Поэтому стоит немного снизить планку и установить номинальное напряжение для этой микросхемы 80 вольт (+/-40 В) — мощность усилителя немного упадет, но устройство будет работать с должным запасом прочности, что обеспечит достаточную надежность устройства.

Кроме того, если звуковая колонка будет работать не только в низкочастотной области, но еще содержит средне-высокочастотные каналы усилителей, то стоит получить от БП еще одно напряжение, меньше «+/-40 В». Эффективность работы низкочастотных динамиков большого диаметра существенно ниже более высокочастотных, поэтому запитывание усилителя СЧ-ВЧ канала от тех же «+/-40 В» довольно глупо, основная масса энергии уйдет в тепло. Для второго усилителя хорошо бы обеспечить выход +/-20 вольт.

Итак, спецификация блока питания, который хочется получить:

Характеристики определены, осталось выбрать подходящую модель. Совсем уж старый использовать нет никакого желания, конденсаторы давно уж высохли, да и схемные решения тех времен не внушают оптимизма. Стоит отметить, что часть «современных» блоков питания тоже не блещет качеством работы и надежностью, но с этим можно бороться – достаточно выбирать продукцию известных фирм, к которой есть доверие.

Кроме философского осмысления сущности БП и отбора по внешнему виду, есть вполне осмысленный критерий – их тип. Блок может быть выполнен по технологии «двухтактный полумост» или «однотактный прямоход», содержать в себе какую-то разновидность PFC (активную или пассивную на дросселе). Всё данные факторы оказывают влияние на качество работы и уровень помех. Причем, это не «просто слова», при переходе от трансформаторного БП на «импульсный» довольно часто замечается ухудшение качества звучания.

С одной стороны, «странно», ведь такой БП обеспечивает лучшую стабильность напряжения питания усилителя. С другой, ничего странного нет – «импульсник» производит помеху при переключении силовых транзисторов основного преобразователя (и блока APFC), что выражается в высокочастотных «всплесках» на цепях питания и земли. Чаще всего преобразователь БП работает на частоте 40-80 кГц, что выше звукового диапазона, а потому вроде бы не должно мешать устройству, но помехи распространяются по всему усилителю и сбивают рабочую точку усилительных каскадов, что приводит к интермодуляционным искажениям, звук становится «жестче». В компьютерном блоке питания шины 12 В и 5 В выглядят следующим образом:

Так что, проблема не надуманная и на борьбу с ее негативным проявлением следует потратить некоторые усилия.

FSP ATX-300GTF

Ничего необычного, классическая компоновка, разве что дроссель PFC вносит в картинку некоторый элемент дисгармонии. К слову, измерение характеристик и величины пульсаций на выходе показало, что наличие этого дросселя приводит лишь к тому, что блок питания становится тяжелее и немного «гудит» при мощности нагрузки 250-300 Вт.

Удаление лишнего

Компьютерный блок питания должен формировать массу напряжений большой мощности – 12 В, 5 В, 3.3 В, -5 В, смысл в которых сразу теряется, как только речь заходит об усилителе. Кроме того, БП содержит дежурный источник 5 В, но его лучше не трогать и сохранить в неизменном виде – во-первых, он используется для работы основного преобразователя, во-вторых, можно будет реализовать включение-выключение усилителя от внешнего управления или просто по появлению звукового сигнала на входе усилителя. Это функция потребует изготовления высокочувствительного детектора с питанием от 5 вольт и вряд ли кто-нибудь станет делать этот элемент на начальной стадии сборки усилителя, ну хоть возможность такая останется. Пусть будет, это «бесплатно».

После удаления всех цепей формирования выходных напряжений получилось следующее:


Оказалось не так много места, поэтому доработка не должна содержать слишком много деталей – банально не влезет. Фу ты, еще заложили в требования наличие двух выходных каналов.

Выбор способа получения повышенного выходного напряжения

Компьютерный блок питания формирует два основных выхода: 12 В и 5 В, этим объясняется наличие всего двух пар вторичных обмоток. Каким способом можно получить напряжение больше, чем заложено при проектировании БП?

1. Перемотать трансформатор.
2. Поставить умножитель.
3. Добавить второй трансформатор.

Перемотка трансформатора

Первый вариант понятен и прост в техническом плане. Одно «но», конструкция импульсного трансформатора не так проста, как может показаться на первый взгляд. Существует масса требований и ограничений, не выполнив которых можно получить либо «крайне посредственный вариант», либо, что гораздо хуже, некачественную изоляцию вплоть до поражения электрическим током. В трансформаторе первичная обмотка выполнена из двух частей. Первая расположена в самом начале, а потому не мешает перемотке, а вот вторая наматывается самой последней.

Трудности умножаются тем, что между первичной и вторичной обмотками присутствует электростатический экран из медной ленты. Чтобы осуществить перемотку придется аккуратно смотать верхнюю часть первичной обмотки, убрать экран и вторичные обмотки. После чего намотать новые вторичные обмотки, восстановить экран и первичную обмотку. Естественно, между обмотками и экраном должна быть надежная изоляция. Дело усугубляется тем, что трансформатор пропитан лаком, а потому его разборка-сборка занятие «увлекательное» и качество выполнения доработки окажется не слишком хорошим. Впрочем, если у вас руки «прямые» и есть желание попробовать – некоторые рекомендации:

  • Число витков обмотки 12 В почти всегда постоянно (семь витков), что определяется не параметрами трансформатора, а единственным целым соотношением числа витков обмоток 12 В и 5 В (четыре и три). Если на семь витков приходится 12.6 вольт, то на «нужное» напряжение приходится 7*(«нужное»/12.6) число витков, с округлением до ближайшего целого.
  • При удалении обмоток 12 В и 5 В посчитайте место, которое они занимали – новая обмотка должна уместиться в эти же габариты.
  • При наличии места лучше использовать провод диаметром 0.8-0.9 мм. Если сечения одного провода недостаточно, то стоит увеличивать количество проводов, а не их сечение (диаметр)
  • Крайне аккуратно наматывайте экранирующий виток ленты (не замыкайте начало с концом) и изоляцию под и над ним – основной дефект самодельных трансформаторов заключается в пробое изоляции или закорачивании экранирующей обмотки. Медная лента жесткая с острой кромкой, легко режет изоляцию. В домашних условиях лучше использовать алюминиевую фольгу – она значительно мягче и и шансов порезать изоляцию меньше. Кроме того, ее проще найти. Увы, у такого подхода есть небольшой недостаток – к алюминиевой фольге труднее подсоединить отвод.

И всё же я бы не рекомендовал этот вариант переделки для тех, у кого нет опыта намотки импульсных трансформаторов. Не стоит, может выйти боком. К слову, если человек разбирается в вопросе, то ему проще намотать трансформатор полностью «с нуля», по крайней мере, не будет путаться под ногами этот «лак», да и число витков во всех обмотках можно будет выбрать оптимальным.

Умножитель

Второй вариант довольно сложен в реализации и обладает рядом серьезных недостатков. Пример такого построения изображен на рисунке:

  • TV1 – обычный трансформатор блока питания, без каких-либо доработок.
  • TV1.1 – первичная обмотка.
  • TV1.3 и TV1.4 – обмотки канала 5 В.
  • TV1.2 и TV1.5 – обмотки, совместно с TV1.3 и TV1.4 формирующие канал 12 В.

Для анализа важен тот факт, что форма импульсов напряжения на выходе трансформатора с гладким верхом, а не «синус», «пила» или другие вариации. Устройство работает следующим образом — на первичной обмотке следуют импульсы напряжения прямоугольной формы с некоторой скважностью. Напряжение импульсов на первичной обмотке составляет половину напряжения питания или около 140 В при номинальном напряжении сети. На вторичной стороне форма импульсов сохраняется, а амплитуда зависит от числа витков и распределяется примерно как 9 В на обмотках «канала 5 В» (TV1.3 и TV1.4) и 21 В на «канале 12 В» (TV1.2+TV1.3 и TV1.4+ TV1.5).

Предположим, что в данный момент поступает импульс положительной полярности и на верхних выводах обмоток следует «+». Расставим напряжения в контрольных точках:

  • A = +21 В.
  • B = +9 В.
  • С = -9 В.
  • D = -21 В.

Отсюда можно сразу вычислить напряжение в токе «F», оно будет чуть меньше цепи «B» на величину падения напряжения на диоде D1.

  • F = +8.4 В.

При данной полярности диод D2 закрыт, поэтому напряжение в точке «E» будет определено при противоположной полярности импульса.

  • Напряжение на конденсаторе C2 = +8.4 – (-21) = 29.4 В.

Сменим полярность импульса, напряжения в контрольных точках поменяют знак:

  • A = -21 В.
  • B = -9 В.
  • С = +9 В.
  • D = +21 В.

Полярность сменилась и открывается диод D2. Напряжение в точке «F» станет чуть меньше цепи «B» или около +8.4 В.

  • E = +8.4 В.
  • Напряжение на конденсаторе C1 = +8.4 – (-21) = 29.4 В.

Схема симметричная, поэтому напряжения конденсаторов обязаны быть одинаковыми. Из анализа предыдущей полярности импульса следует, что

  • Напряжение в точке «F» смещено относительно точки «D» на величину напряжения конденсатора С2 (29.4 В) и равно +21 + 29.4 = +50.4 В.

Нет смысла анализировать аналогичное состояние точки «E» при смене полярности импульса, схема симметричная и там будет столько же, сколько сейчас на точке «F», +50.4 В.

В итоге, может интересовать только «E» и «F», ведь из них получается выходное напряжение. Соберем значения в этих точках в таблицу. Впрочем, забыл еще одно состояние, «пауза» импульса от ШИМ-регулировки. Этот случай очень прост, на всех обмотках нулевое напряжение и в точках «E» и «F» получается одно и то же напряжение +29.4 В, хранимое в конденсаторах. (При анализе не учитывалась конечная емкость конденсаторов и непрямоугольность формы импульсов).

Импульс:
«E»
«F»
Положительный
+50.4 В
+8.4 В
Отрицательный
+8.4 В
+50.4 В
Пауза
+29.4 В
+29.4 В

Выпрямительная сборка D3 «выбирает» наибольшее напряжение из двух входов («E» и «F»). Это означает, что на входе дросселя L6 будут идти импульсы амплитудой 50 В с паузой 8 В. При скважности ШИМ 70% на выходе сформируется напряжение примерно 37 вольт.

Всё сказанное относилось к получению повышенного напряжения положительной полярности. Если необходимо сформировать и отрицательный выход, то схему следует «удвоить» – добавить конденсаторы C1, С2 и C3, диоды D1 и D2, пару диодов в сборку D3 и намотать вторую обмотку на выходном дросселе. Не забудьте сменить полярность конденсаторов и диодов.

У подобного решения только одно достоинство – не придется что-то делать с трансформатором. Впрочем, есть еще одно — незначительное, девиация напряжения на выходном дросселе небольшой амплитуды, поэтому размеры дросселя и его индуктивность могут быть сниженной величины. Фактически, можно использовать старую обмотку канала 12 В.

Недостатков больше и они серьезные:

  • Весь импульсный ток протекает через повышающие конденсаторы С1 и С2.
  • Очень большой ток заряда конденсаторов в начальный момент времени. Кроме снижения срока службы конденсаторов, высокая величина тока может вызвать срабатывание общей защиты блока питания и он отключится.
  • Низкий диапазон регулирования выходного напряжения.
  • Невозможно получить больше одного канала со стабилизацией выходного напряжения. Выходы «+37 В» и «-37 В» получаются по вышеприведенной схеме, а вот обычные «+/-12 В» придется формировать на отдельном дросселе при повышенном уровне пульсаций с частотой сети и низкой стабильностью.

Основной недостаток схемного решения — весь ток протекает через конденсаторы С1 и С2. Довольно просто найти конденсаторы с подходящей емкостью или ESR, но вот величина импульсного тока у них окажется низка. Чтобы не быть голословным, подберем подходящий конденсатор для рассматриваемого блока питания усилителя (выходное напряжение соответствует заданным условиям, величина тока до 10 А).

Ранее я ссылался на конденсаторы общего применения фирмы Jamicon серии LP, посмотрим, что есть в данном исполнении – 2200 мкФ 50 В. Максимальный ток 2 ампера. Совершенно не подходит, конденсатор выйдет из строя через неделю работы усилителя. Переходим к серьезным сериям, «Low ESR». Например, серия WL:

В круглых скобках указывается характеристики альтернативного варианта исполнения корпуса конденсатора.

Хочется отметить интересный момент, для конденсатора «680 мкФ 35 В» первое исполнение, в сравнении со вторым, несет меньшее внутреннее сопротивление и максимальный ток, обычно происходит обратное – снижение ESR повышает величину тока. Видимо, причина в разной площади поверхности корпуса.

Если смотреть на ESR, то все конденсаторы вполне устраивают. Ну, сколько может «упасть» на сопротивлении 40-90 мОм при токе 3-8 ампер? Пустяк. Блок питания работать будет. Вот так и появляются «китайские» поделки. К слову, в Китае производится масса качественной продукции, это местные фарцовщики закупают хлам, отсюда и происходит недоверие к китайской продукции … причем зря.

Ну ладно, собираем для себя, поэтому делать плохо не будем. Конденсатор должен выдерживать ток не менее 10/2=5 А в долговременном режиме и на одном конденсаторе получить такую характеристику не удастся. Остается вариант с установкой пары или тройки конденсаторов параллельно. Два конденсатора «1000 мкФ 35 В» обеспечат ток до 5 (4.2) ампера, что маловато. Можно взять конденсаторы того же номинала, но чуть большего напряжения «1000 мкФ 50 В», предельный ток составит величину 6.4 (5.6) ампера.

С учетом конечной индуктивности выходного дросселя этот вариант может устроить, но не особо хорошо. Перейдем к утроению конденсаторов, «680 мкФ 35 В» обеспечит ток до 6 (5.1) А, или «680 мкФ 50 В» 7.8 (6.9) А. Последний вариант смотрится уже веселее, блок питания сможет работать достаточно долго.

В результате получается, что в блок питания придется установить 3*2*2=12 конденсаторов «680 мкФ 50 В», выйдет не самое компактное устройство, а место в БП ограничено.

Схема моделировалась, но практически не испытывалась, поскольку не лежит у меня душа к таким решениям. Этот вариант доработки дается на ваш страх и риск.

Сетевой импульсный блок питания +-25В для УМЗЧ (IR2151, IRF740)

Принципиальная схема сетевого импульсного источника питания для УНЧ, выходное напряжение +-25В при токе до 4,5А (примерно 200Вт). Схема собрана на микросхеме IR2153 и транзисторах IRF740. Приведены полезные советы по сборке и наладке устройства.

Хочу предложить небольшой обзор по данной схеме. Как-то была нужда собрать человеку простенький УНЧ, был найден корпус от старого предусилителя «радиотехника».

Места в корпусе много, но уместить сетевой трансформатор не получилось, корпус оказался по высоте маловат. Было решено собрать импульсный блок питания на микросхеме ir2153, как раз одна валялась без дела.

Принципиальная схема

Изначально за основу была взята схема с — настоятельно рекомендую не собирать так как там предложено, иначе можно устроить пожар или взрыв, схема с фатальной ошибкой и не одной.

Рис. 1. Схема импульсного блока питания, взятая за основу.

Исправил ошибки на той схеме и добавил еще несколько элементов (показаны красными стрелками), чтобы данный импульсник был годен для питания УНЧ.

Рис. 2. Схема импульсного блока питания для УМЗЧ мощностью до 200Вт.

В первой схеме основная ошибка — нет разделительного конденсатора между полевыми транзисторами и трансформатором, без этого конденсатора транзисторы сразу же взорвутся при включении, или через пару минут как раскалятся…

У микросхемы IR2153 первый вывод — это плюс питания, поскольку напряжение на выводе 1 микросхемы в пределах 16-18 вольт то конденсатор должен быть на порядок выше по напряжению, а не впритык как указано на первоначальной схеме — на 16В. Можно установить конденсатор на напряжение 25В, я поставил на 35В.

Идем дальше, запитывать микросхему так как указано на первоначальной схеме через диод и резистор в 18К, нельзя!! Посмотрите как запитывается микросхемы IR2153 у меня (рисунок 2), а не непосредственно от переменки 220вольт (рисунок 1).

В схеме на рисунке 1 скачек напряжения в сети сразу же приведет к сгоранию микросхемы, хорошо если просто работать все перестанет, а так опять же взорвутся транзисторы.

Вот эти три ошибки на схеме с рисунка 1 могут привести к очень печальным последствиям!

Детали и конструкция

Дроссель фильтра по питанию 220 Вольт (Др1) взят из импульсного БП от телевизора, подойдет любой с учетом того какую мощность желаете получить… Варистор — любой на 10 ом, только не от зарядки для телефона и подобных маломощных импульсных БП.

Индуктивность по 25 Вольтам (L) взята от компьютерного БП на 450ватт, лишние обмотки были смотаны — оставляем только те что намотаны толстым проводом.

Высокочастотный трансформатор Tr1 взят оттуда же, подробно остановлюсь на его намотке с нуля. Разобрать такой трансформатор не расколов феррит достаточно сложно. Чтобы упростить задачу, нужно положить его на плиту и нагреть до сотни градусов, иными словами как только капелька воды на феррите будет кипеть — значит можно разбирать.

При таком нагреве, клей становится мягким и половинки феррита легко вытаскиваются из каркаса с обмоткой. При намотке трансформаторов в импульсных схемах рекомендуют мотать обмотки несколькими проводами — до 8 штук одновременно.

Делать так совсем не обязательно, первичную обмотку I мотал одним эмалированным медным проводом диаметром 0,45 мм — 49 витков. Вторичные обмотки II и III мотал двумя проводами диаметром 0,8 мм — по 8 витков в каждой.

Диоды выпрямителя ставим быстродействующие — из отечественных подойдут КД213 или КД212. У последних ток нагрузки по справочнику — 1А, а у КД213 — 10А. Подойдут диоды с граничной рабочей частотой 100кгц.

Вместо транзистора IRF740 можно поставить IRF840 и им подобные. Радиатор под транзисторы можно поставить в два раза меньше, при полной длительной нагрузке транзисторы греются не очень сильно — на ощупь градусов 45. Транзисторы обязательно нужно ставить на радиатор через изолирующие прокладки.

Вместо диодов RL205 можно поставить любой диодный мост с максимальным постоянным обратным напряжением 600В и максимальным постоянным прямым током 6А.

Переходная емкость (0,1мкФ) между транзисторами и трансформатором должна быть обязательно на напряжение 630В!

С указанными номиналами данная схема обеспечивает выходную мощность примерно 200 Вт при токе до 4,5А.

Печатку к схеме БП не делал — сразу рисовал на текстолите. У каждого детали и их варианты расположения могут быть разные. Схема простая и нарисовать свою печатку не составит большого труда.

Вот что получилось у меня:

Рис. 3. План моей печатной платы для импульсного сетевого блока питания.

Как видно из наброска, вместо разделительного конденсатора между транзисторами и трансформатором у меня установлены три штуки. Пришлось так поступить поскольку как не было одного на нужное напряжение, в итоге собрал из разных конденсаторов с общей емкостью в 0,5мкФ.

Самый идеальный вариант будет — 1мкФ на 630В. Но все работает вполне нормально и с емкостью на 0,1мкФ и с емкостью на 0,5мкФ.

Рис. 4. Готовая печатная плата для импульсного источника питания (вид со стороны соединений).

Рис. 5. Готовая плата импульсного источника питания (вид со стороны деталей).

Рис. 6. Самодельный сетевой импульсный блок питания для УМЗЧ.

Рис. 7. Внешний вид сетевого импульсного БП для усилителя мощности НЧ.

Налаживание

После сборки схемы, первое включение делаем через лампочку на 220В 60Вт, включенную последовательно с блоком питания.

Если при сборке не было сделано ошибок и замыканий, то при включении лампочка должна кратковременно вспыхнуть и потухнуть — это говорит о том, что все собрано правильно и КЗ в схеме нет.

Можно на низкую сторону в качестве нагрузки включить лампу на подходящее напряжение и дать поработать схеме минут пять. Если ничего не задымилось, то можно убирать лампу на 220 и пользоваться готовым БП.

Если же лампа включенная в разрыв питания 220В при первом включении горит и не тухнет — значит в схеме есть неисправность.

Рис. 8. Импульсный блок питания установлен в корпус с усилителем НЧ.

Рис. 9. Плата УНЧ и блока питания к нему в корпусе от предусилителя Радиотехника (фронтальный вид).

Рис. 10. Плата УНЧ и блока питания к нему в корпусе от предусилителя Радиотехника (тыловой вид).

В качестве дополнения: схема УНЧ взята из .

Рис. 11. Схема УНЧ с выходной мощностью 60Вт при нагрузке 4 Ома и питании +-28В.

Всем доброго времени. Позвольте представить силовой инвертор для питания мощного аудиоусилителя. К сожалению, в интернете мало таких проектов, особенно хорошо повторяемых. Поэтому решено было сделать такой источник питания с нуля. Потребовалось немало времени, чтобы проектировать, построить и протестировать этот ИБП. И вот, проведя последние испытания (все тесты прошли успешно) можно сказать что проект закончен и его можно выставить на суд уважаемой радиолюбительской аудитории сайта 2 Схемы.ру

Проект этого инвертора отлично подходит для УМЗЧ на 2x TDA7294, собственно для него он и разрабатывался. Преобразователь не сложен и должен быть успешно собран не слишком продвинутыми электронщиками. Для запуска не требуется даже осциллограф, но конечно это было бы полезно. Основа схемы источника питания — м/с TL494.

Он имеет защиту от короткого замыкания и должен обеспечить непрерывную мощность 250 Вт. Преобразователь также имеет дополнительное выходное напряжение +/- 9..12 В, которое будет использоваться для питания предусилителя, вентиляторов и т.д.

Импульсный БП для усилителя — схема

Преобразователь выполнен в соответствии с этой схемой. Размеры платы 150×100 мм.

Инвертор состоит из нескольких базовых модулей, присутствующих в большинстве похожих БП, таких как блок питания ATX. Предохранитель, термистор и сетевой фильтр, состоящий из C21, R21 и L5, идут к источнику питания переменного тока 220 В. Затем выпрямительный мост D26-D29, входные конденсаторы инвертора C18 и C19 и силовые транзисторы Q8 и Q9 для переключения напряжения на трансформаторе. Силовые транзисторы управляются с помощью дополнительного трансформатора T2 одним из самых популярных ШИМ-контроллеров — TL494 (KA7500). Трансформатор тока Т3 для измерения выходной мощности последовательно соединен с первичной обмоткой. Трансформатор T1 имеет две разделенные вторичные обмотки. Одна из них формирует напряжение 2×35 В, а другая 2×12 В. На каждой из обмоток есть фаст диоды D14-D17 и D22-D25, которые в общей сложности образуют 2 выпрямительных моста.

После нагрузки линии +/- 34 В резистором 14 Ом, напряжение падает до +/- 31 В. Это довольно хороший результат для такого небольшого ферритового сердечника. Через 5 минут диоды D22-D25, основной трансформатор и MOSFET нагревались до температуры порядка 50C, что вполне безопасно. После подключения двух каналов TDA7294 напряжение упало до +/- 30 В. Инверторные элементы нагревались подобно резистивной нагрузке. После экспериментов выходная цепь оснащена конденсаторами 2200uF и дросселями 22uH / 14A. Падение напряжения немного выше, чем в случае с 6.8uH, однако их использование явно уменьшает нагрев МОП-транзисторов.

Выходное напряжение под нагрузкой обоих выходов с лампочками мощностью 20 Вт:

Принцип работы импульсного блока питания

Напряжение 220 В выпрямляется мостом с диодами D26-D29. Входные конденсаторы C18 и C19 заряжаются до общего напряжения 320 В, а поскольку инвертор работает в полумостовой системе, они делят их на половину, что дает 160 В на конденсатор. Это напряжение дополнительно уравновешивается резисторами R16 и R17. Благодаря этому разделению можно подключить трансформатор Т1 к одному каналу. Тогда потенциал между конденсаторами обрабатывается как масса, один конец первичной обмотки подключен к +160 В, другой к -160 В. Напряжение переключения первичной обмотки трансформатора Т1 осуществляется с помощью переменного транзистора N-MOSFET Q8 и Q9.

Конденсатор C10 и первичная обмотка трансформатора тока T3 расположены последовательно с первичной обмоткой. Конденсатор связи не нужен для функционирования схемы, но он играет очень важную роль — защищает от несбалансированного потребления энергии от входных конденсаторов и, следовательно, перед зарядкой одного из них до более чем 200 В. Трансформатор тока Т3, также расположенный последовательно с первичной обмоткой, действует как защита от короткого замыкания. Трансформатор тока обеспечивает гальваническую развязку и позволяет измерять величину тока, уменьшенную до точности ее передачи. Его задача — информировать контроллер о величине тока, протекающего через первичную обмотку T1.

Параллельно с первичной обмоткой основного трансформатора имеется так называемая схема гашения импульсов, которую образуют C13 и R18. Она подавляет всплески напряжения, возбуждаемые при переключении силовых транзисторов. Они не опасны для МОП-транзисторов, поскольку их встроенные диоды эффективно защищают от перенапряжения на стоках. Однако всплески напряжения могут отрицательно влиять на эффективность инвертора, поэтому важно их устранить.

Силовые МОП-транзисторы не могут управляться напрямую от контроллера из-за изменения потенциала верхнего транзисторного источника. Транзисторы управляются с помощью специального трансформатора Т2. Это обычный импульсный трансформатор, работающий в двухтактном режиме, открывающий силовые транзисторы. Управляющий трансформатор Т2 имеет на входе набор элементов управления напряжением на обмотках, которые помимо генерирования напряжения, продиктованного контроллером, защищают от возникновения размагничивающего напряжения сердечника. Неконтролируемое напряжение размагничивания удерживало бы транзистор открытым. Элементами, непосредственно ответственными за устранение напряжения размагничивания, являются диоды D7 и D9, а также транзисторы Q3 и Q5. Во время простоя, когда оба МОП-транзистора закрыты, ток протекает через D7 и Q5 (или D9 и Q3) и поддерживает напряжение размагничивания около 1,4 В. Это напряжение безопасно и не может открыть силовой транзистор.

Осциллограмма напряжения на входах MOSFET:

На осциллограмме можно четко видеть момент, когда сердечник ​​перестает размагничиваться диодами D7 и D8 (D6 и D9) и начинает намагничиваться в противоположном направлении транзисторами Q3 и Q4 (Q2 и Q5). В фазе размагничивания сердечника напряжение на затворе Т2 достигает 18 В, а на фазе намагничивания оно падает примерно до 14 В.
Почему не использован один из драйверов типа IR? Прежде всего управляющий трансформатор более надежный, более предсказуемый. IR-драйверы очень капризны и подвержены ошибкам.

На вторичной обмотке основного трансформатора Т1 генерируется переменное напряжение, поэтому необходимо его выпрямить. Роль выпрямителя играют выпрямительные фаст диоды, генерирующие симметричное напряжение. Выходные дроссели расположены за диодами — их присутствие влияет на эффективность инвертора, подавляя всплески заряжающие выходные конденсаторы при включении одного из силовых транзисторов. Далее выходные конденсаторы с резисторами предварительной нагрузки, которые препятствуют подъёма напряжения до слишком высоких значений.

Контроллер импульсного ИП

Контроллер является основой инвертора, поэтому опишем его более подробно. В инверторе использован контроллер TL494 с установленной частотой работы такой же, как и в блоках питания ATX, то есть 30 кГц. Инвертор не имеет стабилизации выходного напряжения, поэтому контроллер работает с максимальным коэффициентом заполнения импульсов, который составляет 85%. Контроллер оснащен системой плавного пуска, состоящей из элементов C5 и R7. После запуска инвертора схема обеспечивает плавное увеличение коэффициента заполнения начиная с 0%, что устраняет всплеск зарядки выходных конденсаторов. TL494 может работать от 7 В, и такое напряжение, подающее буфер управляющего трансформатора Т2, вызывает генерацию напряжения на затворах порядка 3 В. Такие не полностью открытые транзисторы выдадут десятки вольт, что приведет к огромным потерям мощности и существует высокая вероятность превышения опасного предела. Чтобы предотвратить это, сделана защита от слишком высокого падения напряжения. Она состоит из резисторного делителя R4 — R5 и транзистора Q1. После того как напряжение падает до 14,1 В, Q1 разряжает конденсатор плавного пуска, тем самым уменьшая заполнение до 0%.

Другая функция контроллера — защитить инвертор от короткого замыкания. Информация о токе первичной обмотки получается контроллером через трансформатор тока Т3. Ток вторичной обмотки Т3 протекает через резистор R9, на котором падает небольшое напряжение. Информация о напряжении на R9 через потенциометр PR1 поступает на усилитель ошибки TL494 и сравнивается с напряжением резисторного делителя R1 и R2. Если контроллер распознает напряжение выше 1,6 В на потенциометре PR1, он закрывает транзисторы до того, как они пересекут опасный предел и фиксируется через D1 и R3. Силовые транзисторы остаются закрытыми до тех пор, пока инвертор не будет перезапущен. К сожалению, эта защита работает правильно только на линии +/- 35 В. Линия +/- 12 В намного слабее и в случае короткого замыкания может быть недостаточно тока, чтоб защита сработала.

Источник питания контроллера — безтрансформаторный с использованием сопротивления конденсатора. Два конденсатора C20 и C24 потребляют реактивную энергию от сети, и, следовательно, заставляя ток течь, они заряжают фильтрующий конденсатор C1 через выпрямитель D10-D13. Стабилитрон DZ1 защищает от слишком высокого напряжения на C1 и стабилизирует их при 18 В.

Импульсные трансформаторы в БП

Качество и производительность импульсного трансформатора влияют эффективность всего преобразователя и выходное напряжение. Однако трансформатор выполняет функцию не только преобразования электричества, но также обеспечивает гальваническую изоляцию от сети 220 В и, таким образом, оказывает большое влияние на безопасность.

Вот как правильно сделать такой трансформатор. Прежде всего должен быть ферритовый сердечник. Он не может иметь воздушный зазор, его половинки должны отлично соединяться друг с другом. Теоретически здесь можно использовать тороидальный сердечник, но сделать хорошую изоляцию и обмотку будет довольно нелегко.

Рекомендуем брать основной ETD34, ETD29 в крайнем случае, но тогда максимальная непрерывная мощность будет составлять не более 180 Вт. Они стоят немного, поэтому лучшим решением будет получить поврежденный блок питания ATX. На сгоревших источниках питания от ПК в дополнение ко всем необходимым трансформаторам содержится ещё много полезных элементов, в том числе сетевой фильтр, конденсаторы, диоды, а иногда и TL494 (KA7500).

Трансформаторы должны быть осторожно выпаяны с платы блока питания ATX, предпочтительно с помощью термофена. После распайки не пытайтесь разобрать трансформатор, потому что он ​​сломается. Трансформатор следует класть в воду и кипятить. После 5 минут нужно осторожно захватив половинки сердечника через ткань, разделить. Если они не хотят расходиться, не тяните сильно — сломаете! Положить обратно и варите еще 5 минут.

Процесс намотки основного трансформатора должен начинаться с подсчета количества провода, который будет намотан. Из-за постоянной рабочей частоты и заданной максимальной индукции, количество обмоток первички зависит только от площади поперечного сечения основного столба ферритового сердечника. Максимальная индукция ограничена 250 мТ из-за работы в полумостовом режиме — здесь асимметрия намагниченности проста.

Формула для вычисления числа витков:

n = 53 / Qr,

  • где n — количество обмоток первичной обмотки,
  • Qr — площадь поперечного сечения основного стержня сердечника, приведенного в см2.

Таким образом, для сердечника с поперечным сечением 0,5 см2 необходимо наматывать 106 витков, а для сердечника с поперечным сечением 1,5 см2 потребуется только 35. Помните, что не стоит наматывать половину витка — всегда округлите до одного в плюс. Расчет количества обмоток вторички такой же, как и для любого другого трансформатора — отношение выходного напряжения к входному напряжению в точности равно отношению количества вторичных обмоток к числу обмоток первички.

Следующий шаг — рассчитать толщину проводов обмоток. Самое важное, что следует учитывать при расчете толщины проводов, — это необходимость заполнить все окно ядра проволокой — от этого зависит магнитное соединение обмоток трансформатора, и, следовательно, падение выходного напряжения. Полное поперечное сечение всех проводов, проходящих через окно сердечника, должно составлять около 40-50% поперечного сечения основного окна (основное окно — место, где провод проходит через сердечник). Если вы впервые мотаете трансформатор, нужно приблизиться к этим 40%. В расчетах также должны учитываться токи, протекающие через поперечное сечение обмоток. Обычно плотность тока составляет 5 А / мм2, и это значение не стоит превышать, использование более низких плотностей тока является желательным. При моделировании ток первичной стороны составляет 220 Вт / 140 В = 1,6 А, поэтому сечение провода должно быть 0,32 мм2, значит его толщина составит 0,6 мм. На вторичной стороне ток 220 Вт / 54 В будет равен 4,1 А, что приводит к поперечному сечению 0,82 мм и реальной толщине провода 1 мм. В обоих случаях учитывалось максимальное падение напряжения при загрузке. Следует также помнить, что из-за скин-эффекта импульсных трансформаторов толщина провода ограничена рабочей частотой — в нашем случае на 30 кГц максимальная толщина провода составляет 0,9 мм. Вместо провода толщиной 1 мм лучше использовать два более тонких провода. После расчета количества катушек и проводов проверьте, соответствует ли расчетное заполнение медного окна 40-50%.

Первичная обмотка трансформатора должна быть размещена в двух частях. Первая часть первички (из 35 витков) мотается как первая, на пустой каркас. Необходимо сохранить направление обмотки к каркасу — вторая часть обмотки должна быть намотана в том же направлении. После намотки первой части необходимо припаять другой конец к переходному, укороченному штифту, который не входит в плату. Затем наложите 4 слоя изоляционной ленты на обмотку и намотайте всю вторичную обмотку — это означает метод намотки. Это улучшает симметрию обмоток. Следующая вторичная обмотка для напряжения +/- 12 В может быть намотана непосредственно на обмотку +/- 35 В в местах, где было сохранено небольшое количество свободного места, а затем полностью изолирована 4 слоями изоляционной ленты. Конечно также необходимо изолировать места, где концы обмоток приводятся к штифтам корпуса. В качестве последней обмотки намотайте вторую часть первичной обмотки, обязательно в том же направлении, что и предыдущий. После намотки можно изолировать последнюю обмотку, но не обязательно.

Когда обмотки готовы, сложите половинки сердечника. Лучшее и проверенное решение — это соединение изолентой с капелькой клея. Несколько раз обматываем сердечник изоляционной лентой.

Управляющий трансформатор сделан как и любой другой импульсный трансформатор. В качестве сердечника можно использовать небольшой EE / EI, полученный от блоков питания ATX. Также можете купить тороидальный сердечник TN-13 или TN-16. Количество обмоток зависит, как обычно, от поперечного сечения сердечника.

В случае тороидальных формула такая:

n = 8 / Qr,

  • где n — количество обмоток первичной обмотки,
  • Qr — площадь поперечного сечения сердечника, приведенная в см2.

Вторичные обмотки должны быть намотаны с таким же количеством витков, что и первичные, допускаются только незначительные отклонения. Поскольку трансформатор будет управлять только одной парой МОП-транзисторов, толщина провода не важна, его минимальная толщина составляет менее 0,1 мм. В этом случае 0,3 мм. Первая половина первичной обмотки должна быть намотана последовательно — изоляционный слой — первая вторичная обмотка — изоляционный слой — вторая вторичная обмотка — изоляционный слой — вторая половина первичной обмотки. Направление обмотки обмоток очень важно, здесь MOSFET-ы необходимо включать поочередно, а не одновременно. После намотки соединяем сердечник так же, как и в предыдущем трансформаторе.

Трансформатор тока похож на вышеуказанные. Количество катушек здесь произвольно, в принципе, достаточно количества обмоток вторичной обмотки:

n = 4 / Qr,

  • где n — количество обмоток вторичной обмотки,
  • Qr — площадь поперечного сечения окружности сердечника, приведенная в см2.

Но поскольку токи тут очень малы, лучше всегда использовать большее количество витков. С другой стороны, более важно поддерживать соответствующее соотношение количества витков обеих обмоток. Если решите изменить это соотношение, придется отрегулировать значение резистора R9.

Вот формула для вычисления R9 в зависимости от количества витков:

R9 = (0.9Ω * n2) / n1,

  • где n2 — количество обмоток вторичной обмотки,
  • n1 — количество обмоток первичной обмотки.

С изменением R9 также необходимо изменить C7 соответственно. Трансформатор тока легче наматывать на тороидальный сердечник, рекомендуем TN-13 или TN-16. Тем не менее, вы можете сделать трансформатор на Ш-сердечника. Если намотаете трансформатор на тороидальный сердечник, сначала намотайте вторичную обмотку большим количеством витков. Затем изоляционную ленту и, наконец, первичную обмотку проволокой толщиной 0.8 мм.

Описание элементов схемы

Почти все элементы можно найти в блоке питания ATX. Диоды D26-D29 с напряжением пробоя 400 В, но лучше взять немного выше, по меньшей мере 600 В. Готовый выпрямитель можно найти в блоке питания ATX. Диодные мосты для питания контроллера также целесообразно применять не менее 600 В. Но они могут быть дешевыми и популярными 1N4007 или похожими.

Стабилитрон, ограничивающий напряжение питания контроллера, должен выдерживать мощность 0,7 Вт, поэтому его номинальная мощность должна составлять 1 Вт или более.

Конденсаторы C18 и C19 могут использоваться с другой емкостью, но не менее 220 мкФ. Емкость более 470 мкФ также не должна использоваться из-за излишне увеличенного тока при включении инвертора в сеть и больших размеров — они могут просто не влезть на плату. Конденсаторы C18 и C19 также находятся в каждом блоке питания ATX.

Силовые транзисторы Q8 и Q9 — очень популярные IRF840, доступные в большинстве электронных магазинов по 30 рублей. В принципе, вы можете использовать другие МОП-транзисторы на 500 В, но это повлечет изменение резисторов R12 и R13. Установленные на 75 Ом обеспечивают время открытия / закрытия затвора около 1 мкс. В качестве альтернативы, их можно заменить либо на 68 — 82 Ома.

Буферы перед входами MOSFET и управляющим трансформатором I, на транзисторах BD135 / 136. Здесь могут использоваться любые другие транзисторы с напряжением пробоя выше 40 В, такие как BC639 / BC640 или 2SC945 / 2SA1015. Последний может быть выдран из блоков питания ATX, мониторов и т. д. Очень важным элементом инвертора является конденсатор C10. Это должен быть полипропиленовый конденсатор, адаптированный к большим импульсным токам. Такой конденсатор находится в блоках питания ATX. К сожалению, иногда он является причиной отказа источника питания, поэтому нужно тщательно его проверить прежде чем паять в схему.

Диоды D22-D25, которые выпрямляют напряжение +/- 35 В, использованы UF5408, подключенные параллельно, но лучшим решением было бы использовать одиночные диоды BY500 / 600, которые имеют более низкое напряжение падения и более высокий номинальный ток. Если возможно, эти диоды должны быть спаяны на длинных проводах — это улучшит их охлаждение.

Дроссели L3 и L4 намотаны на тороидальные порошковые сердечники из источников питания ATX — они характеризуются преобладающим желтым цветом и белой окраской. Достаточны сердечники диаметром 23 мм, 15-20 витков на каждом из них. Однако испытания показали, что они не нужны — инвертор работает и без них, достигает своей мощности, но транзисторы, диоды и конденсатор C10 становятся более горячие из-за импульсных токов. Дроссели L3 и L4 повышают эффективность инвертора и снижают частоту отказов.

Выпрямители D14-D17 +/- 12 В оказывают большое влияние на эффективность этой линии. Если эта линия будет питать предусилитель, дополнительные вентиляторы, дополнительный усилитель для наушников и, например, индикатор уровня, диоды должны использоваться по крайней мере на 1 A. Однако, если линия +/- 12 В будет питать только предусилитель, который тянет до 80 мА, даже можно использовать тут 1N4148. Дроссели L1 и L2 практически не нужны, но их присутствие улучшает фильтрацию помех от электросети. В крайнем случае вместо них можно использовать резисторы на 4,7 Ом.

Ограничители напряжения R22 и R23 могут состоять из серии силовых резисторов, соединенных последовательно или параллельно, чтобы получить один резистор с более высокой мощностью и соответствующее сопротивление.

Запуск и настройка инвертора

После травления плат начните сборку элементов, начиная от самых маленьких до самых больших. Необходимо припаять все компоненты, кроме дросселя L5. После завершения сборки и проверки платы установите потенциометр PR1 в крайнее левое положение и подключите сетевое напряжение к разъему INPUT 220 В. На конденсаторе C1 должно присутствовать напряжение 18 В. Если напряжение останавливается примерно на уровне 14 В, это означает проблему управления трансформатором или силовыми транзисторами, то есть короткое замыкание в цепи управления. Владельцы осциллографа могут проверить напряжение на транзисторных затворах. Если контроллер работает правильно, проверьте правильность переключения MOSFET.

После включения питания 12 В и источника питания контроллера на линии +/- 35 В должно появиться +/- 2 В. Такое дело означает, что транзисторы контролируются должным образом, поочередно. Если лампочка на блоке питания 12 В была включена и на выходе не было напряжения, это означало бы, что оба силовых транзистора открываются одновременно. В этом случае управляющий трансформатор должен быть отсоединен, а провода одной из вторичных обмоток трансформатора должны быть поменяны. Далее припаять трансформатор назад и повторить попытку с источником питания 12 В и лампой.
Если тест пройдет успешно и получим на выходе +/- 2 В, можно отключить источник питания лампы и припаять индуктивность L5. С этого момента инвертор должен работать от сети 220 В через лампу на 60 Вт. После подключения к сети лампочка должна кратковременно мигнуть и немедленно полностью отключиться. На выходе должно появиться +/- 35 и +/- 12 В (или другое напряжение в зависимости от соотношения оборотов трансформатора).

Загрузить их небольшой мощностью (например от электронной нагрузки) для тестирования и лампочка на входе начнет немного светиться. После этого теста нужно переключить инвертор непосредственно на сеть, а на линию +/- 35 В подключить нагрузку с сопротивлением около 20 Ом для проверки мощности. PR1 следует отрегулировать так, чтоб инвертор не отключается после зарядки нагревателя. Когда инвертор начнет нагреваться, вы можете проверить падение напряжения на линии +/- 35 В и рассчитать выходную мощность. Для проверки силовой мощности инвертора достаточно 5-10-минутного теста. За это время все компоненты инвертора смогут нагреться до их номинальной температуры. Стоит измерить температуру радиатора MOSFET, она не должна превышать 60C при температуре окружающей среды 25C. Наконец, необходимо нагрузить инвертор усилителем и установить потенциометр PR1 как можно больше влево, но чтобы инвертор не выключался.

Рекомендации по монтажу и повышению мощности

Инвертор может быть адаптирован к любым потребностям по питанию различных УМЗЧ. При проектировании пластины старались, чтобы она была как можно более универсальной, для монтажа различных типов элементов. Расположение трансформатора и конденсаторов позволяет монтировать довольно большой радиатор МОП-транзисторов по всей длине платы. После надлежащего изгиба выводов диодных мостов, их можно установить в металлический корпус. Увеличение теплоотвода позволяет увеличить мощность преобразователя теоретически до 400 Вт. Затем необходимо использовать трансформатор на ETD39. Для этого изменения конденсаторы C18 и C19 требуются на 470 мкФ, C10 на 1.5-2.2 мкФ и использование 8 диодов BY500.

Прежде чем я позволю Вам прикоснуться к частичке моей жизни, я хочу поблагодарить всех людей, кто хоть чем-то похож на наших глубокоуважаемых и любимых граждан. Именно благодаря их трудам и желанию поделиться с нами радостью творения, мы, такие не простые люди, воспламеняемся желанием поделиться плодами рук своих и мощи интеллекта. Низкий поклон Вам! Однако теперь перейдем к полезному. Смотрел я, как один мой приятель терзался с блоком питания для ламповика, и жаль мне его становилось до слез. То размер транса большой, то тяжелый, то не тянет, то греется. Жуть! Запомнилось мне это до глубины души. После этого решил я, что мне подойдет усилитель вообще без блока питания. Сказано сделано.
Писалось мне как-то об инверторном импульсном блоке питания от микроволновки «Panasonic». О том, что с помощью этого чудного устройства можно запитать хоть киловатт, да еще и с гарантией от пробоя по току анода. Стабилизец такой, что я вам братцы скажу, слов нет! Напряжение на лампочки сразу дает, а ток можно постепенно за любое время поднять от «нуля» до номинала. И это все параллельно с накальным током! Вещь!
Вещь-то оно вещь, да вот вопросов больше чем ответов. Уровень у нас с вами несколько слабоват в этом вопросе. И решил я свой уровень приподнять! Взять, да и поспрашивать людей сведущих. Постараюсь проиллюстрировать все возможное, но так же прошу меня простить, заново переделывать ИБП ради фотографирования всего процесса, желания не имею, и буду пользоваться уже имеющимися материалами. Думаю, их будет более чем достаточно для усвоения материала.
А теперь к делу. Вот есть, к примеру, конкретное устройство. По-нашему, по-простому, называется так: Устройство комбинированное — «Генератор синусоидальных сигналов сверх высокой частоты и высокой выходной мощности с комбинированной резонансной камерой переменной нагрузочной способности». Можно и по другому назвать и сформулировать более точно, но, по моему мнению, суть от этого уже не изменится.
В народе это устройство приобрело страшно неточное название — «Микроволновка». В быту ее название печь микроволновая. Стоить заметить, что с точки зрения маргинала, устройство печи простое, если не сказать примитивное. Потому и стоит она просто смешные деньги. И ремонтировать их стали все меньше и меньше. Фирмы производители склонны попросту заменять готовые блоки, по причине их невиданной дешевизны. А поломанное куда? В мусор!
Я против мусора! Мне стыдно, что мы люди, что бы ни изобрели, с момента его (изобретения) появления на свет это уже мусор! Либо это, нечто, должно быть поистине ценностью! Тогда есть шанс, что дело рук Ваших не станет мусором! Вот поэтому, мы попробуем некоторым вещам дать вторую жизнь!
1. Где взять инверторную микроволновку? Желательно без денег!
И начнем Мы с вопроса: где взять? Можно конечно на свалке… Но не стоит так утруждаться! Достаточно дать объявление (можно даже бесплатно на столбах в районе расклеить): «Куплю микроволновку в любом состоянии, дорого». И к вам начнут звонить, звонить, звонить…
Задавая правильные вопросы, Вам не придется бегать по разным концам города. Ведь вы догадались, что первый вопрос будет — «как-как вы сказали, она называется?». И правильно! Вам нужны только инверторные «панасоники». Для того, что бы узнать, как отличить инверторную печь от не инверторной печи, следует проконсультироваться у специалистов. Почему не у меня? Я-то расскажу, факт. А вот кто Вас тогда познакомит с мастером, который в Вашем городе (районе, селе, поселке, квартале) ремонтирует микроволновки? А так, есть повод, познакомится с этим чудесным человеком, показать ему мою статью. Похвалить, что такие люди вообще есть на свете и попросить поделиться некоторым хламом инверторного назначения. Не уверен, что он отдаст «за так», однако могу с легкостью предположить, что цена блока будет подъемной даже для Вас. Но скорее всего вы поймаете удачу значительно раньше, получив заветный звонок по телефону от бабули. Бабуля позвонит узнать, сколько вы предложите за железный ящик, подаренный пронырой внуком, и бесполезно стоящем на балконе, ввиду отсутствия возможности ремонта, так как ремонт (любой) за деньги, стоит примерно половину начальной стоимости аппарата. В гробу видала бабка такой ремонт вещи, которую она сама не покупала! Спросите у нее, сколько она ДУМАЕТ за нее получить. Слово «думает» тут не случайно использовано. У старых леди слово «думает» очень-очень сильно отличается от слова «хочет». Как в анекдоте: «- Водки хочешь? — Нет! — А будешь? — Да!».
Если Вы легкомысленно спросите бабулю, сколько она ХОЧЕТ получить, то услышите цену НОВОЙ(!) микроволновки! Я это проверял на себе несколько раз! Это теперь я могу купить самую дорогую микроволновку, распотрошить ее и даже не вспомнить, сколько я за нее заплатил! А раньше я покупал микроволновки по 100 — 200 рублей и чуть не плакал от счастья! Спросите бабушку нежно и вкрадчиво, сколько она думает за нее получить… Бабушка, тут же вычтет из цены новой микроволновки цену ремонта (она эти цифры уже знает) и скажет заветную цифру Вам. Именно столько по ее мнению и стоит оставшийся хлам. И поверьте, она так считает искренне, иначе давным-давно выбросила бы микроволновку на свалку, а не «заштырила» ее в чулане. Теперь Вам совершенно необходимо взять эту «новую» цену за основу и сразу заявить, что печка-то б/у и следует цену как минимум поделить на половину. И, о чудо, бабуля соглашается, не моргнув взглядом! Обычно это рублей пятьсот-девятьсот в остатке. Потом следует добавить, что вы хотите очень внимательно осмотреть аппарат на предмет повреждений и прочих неприятностях, которые, по вашему мнению, тоже влияют на цену изделия. Вы же пришли покупать вещь! Хоть и поломанную. И упаси Вас Бог пытаться «причесать» бабуле, что то, зачем вы пришли и хотите унести с собой, сущий хлам и Вам вообще не следовало сюда приходить. Бабули — стихийные психологи! Раскусят Вас в один миг! Будьте честны с ней! Торгуйтесь! Объясняйте, что вы не «Рокфеллер», и что вы в одиночку, в нужде и опасностях, поднимаете уровень образованности населения страны на свои кровно заработанные деньги! И что у бабули остался единственный шанс помочь юному населению страны преодолеть кризис. Я думаю, что каждый из Вас, дорогие мои, может найти теплые слова в адрес человека, который прожил свою жизнь рядом с Вами и сумел не напакостить Вам лично. Поверьте оно того стоит!
И вот она почти у Вас! Убедитесь, что вы покупаете именно то, за что платите! Вскройте микроволновку прямо при бабуле. Сообщите, что камера выпекания здорово повреждена с внутренней стороны, и вы ее (камеру) брать не хотите и не будете. Но, что бы уж совсем не уходить с пустыми руками, Вы согласны взять из внутренностей вот ЭТО и вот ТО. И так как большая часть микроволновки остается у бабушки в виде ящика для хранения хлебобулочных изделий, то конечную цену нужно еще раз обсудить. Постарайтесь сильно не обманывать бабушку. Стоимость импульсного блока питания мощностью от 600 до 1300 ватт стоит уж никак не менее 500 рублей, а для бабушки это большие деньги. Не жадничайте! Удачной Вам в охоты, друзья мои!
2. Как проверить? Или, что теперь с этим хламом делать?
Если вы не забрали всю микроволновку, то зря! На чем вы теперь будете проверять работоспособность блока питания? Можно конечно собрать нагрузку в один киловатт из старых зеленых керамических сопротивлений, каждое размером с кулак. А можно и микроволновку починить. И использовать в дальнейшем в качестве испытательного стенда.
Как правило, чаще всего, в инверторной печи ломается только две вещи — магнетрон и ИБП. Остальные компоненты столь редко выходят из строя быстро, что ими можно пренебречь. Нам ведь главное «вкл» и «выкл». Вот об этом мы сначала и поговорим.
Техника безопасности
В микроволновой печи все имеет значение и ничего не стоит упускать из виду. Если энергию микроволн нельзя потрогать, это не значит, что их нет. Они есть! А если они есть, то предназначение печи в том, что бы создать условия, при которых энергия микроволн будет направлена в нужный объект, и этот объект поглотит направленную в него энергию, нагреваясь при этом. В целом проблема заключается в том, что если энергия микроволн не будет поглощена, то:
Все о микроволновке для ламповика. Часть 1
1. Энергия, частично, а иногда вся, вернется в магнетрон. В результате длительного (секунды — минуты?) воздействия, в конце концов, разрушит его. Чаще всего это перегрев и деформация анодных ламелей или разгерметизация с пробоем электрического разряда в катод.
2. Магнетрон выключится от перегрева, и ИБП будет молотить сам на себя и ему тоже крышка. Почему? Будет ниже.
Ну, и не забываем про технику безопасности. Категорически (!) нельзя блокировать разрыватели на дверце и включать микроволновку с открытой дверцей, что бы лично посмотреть, как там микроволны работают. На этом все развлечения и эксперименты закончатся. Роговица глаз будет разрушена, если глаза не лопнут раньше от перегрева внутриглазной жидкости. Надеюсь все всем ясно?!
Приступаем к лечению
Я уже упоминал, что у меня есть друг — Перистый Виталий Федорович. Рукастый и головастый самоделкин. С раннего детства он посвятил свою жизнь электрическим цацкам. Я не слышал ни одного воспоминания о его детстве, где не было бы лампы или трансформатора. По первому образованию он — радио инженер. Именно РАДИО. Поэтому вся его жизнь это радиоприемники. У него, кстати, есть великолепная коллекция первых радиоприемников. Если у кого-то есть желание сохранить жизнь радиоприемнику, превратив его в музейный экспонат — дайте знать мне. А я уж Виталию передам в лучшем виде.
Итак, я попросил Виталия смастерить этакий стенд для проверки работоспособности ламп (магнетронов) и блоков питания. Не стану описывать, как в камеру микроволновки была вставлена силиконовая трубка, смотанная в виде спирали. Где мы привесили водяной насос от стиральной машинки и подходящий бачек для воды, что бы гонять по кругу и охлаждать жидкость одновременно. И еще много чего навесили. Это отдельная статья, и если Вы пожелаете, то я конечно же напишу про это чудо — стенд для проведения экспериментов с микроволновыми устройствами.
Реализация стенда
В Вашем случае все можно упростить до минимума. В камеру микроволновки поставим литровую банку с налитой в нее водой с начальной температурой около 20 градусов Цельсия. Для первых работ этого более чем достаточно. Лучше всего запастись хорошими измерительными приборами, но и косвенно все проверить можно! Микроволновка или работает или нет. В идеале следует иметь заведомо исправный магнетрон и заведомо исправный ИБП. Но если этого нет?
Следует проверить, работает ли собственно ИБП. Для примера, берем схему ИБП, с которым я работал — 1300 Вт. Я видел вживую и меньший ИБП (800 Вт), и даже трогал его руками, но он меня мало заинтересовал. Так же мне известно, что принципиальной схемотехникой эти два устройства мало чем отличаются друг от друга. Отсюда, для объяснения работы устройства, я буду пользоваться тем, что есть и не морочить себе и Вам голову. Кому, что не ясно будет, можно «спросить» меня отдельно, и я уточню.
И вот он наш герой!
Как я уже писал, в целом оказалось, что блок собран как регулируемый источник тока со стабилизированным напряжением. Я не совсем понимаю, как это происходит, так как там загадочный чип-драйвер стоит. Естественно описания на этот чип я так и не нашел. Но! Работает он надежно. Стабильность выходного напряжения держит неплохо. При плавном изменении входного напряжения питания от 110 до 220 вольт совершенно нормально, на мой взгляд, удерживает выходные параметры. Штатное напряжение накала — 3,15 V и напряжение анода — 2,6 kV. С помощью управляющего ШИМ-сигнала можно регулировать выходной ток (ток анода) в пределах от 0,1 — 0,2А до 1А. Не буду описывать всех приколов с его освоением и сколько мы их сожгли и отремонтировали. Но ИБП очаровал меня полностью. Вначале я не понимал, какое сокровище у меня в руках. Но через некоторое время я задумался. А почему японцы вместо транса (дешевле некуда) поставили импульсник И только тогда когда я взял в руки разрисованную Виталием схему я все понял.
К моему великому сожалению, сколько я не искал нормальную схему этого ИБП, так и не нашел. Думаю, мне следовало обратиться к разработчикам, так, где ж их взять?! У сервисных инженеров полной схемы просто нет. Или я не нашел, хотя перекопал кучу информации в сервисном центре. Снова выручил Перистый Виталий! Мужественно и стойко он восстановил схему по готовому устройству. Смотрим ниже.
Забегая немного вперед, следует сказать несколько слов о самой схеме. Специалисты сразу увидят ряд типовых решений заложенных в схему блока. Здесь и контроль входного напряжения, и контроль мощности и прочие не менее важные вещи. Однако имеет смысл разобрать схему отдельно и по порядку. И сделано это в статье — «Как устроен блок? Как ремонтировать? И какая редкая сволочь это все придумала?!»
Для начинающих скажу сразу: существует простая последовательность действий, которая позволит определить работоспособность ИБП без особых разбирательств структуры схемы и особенностей ее работы. Мы ведь понимаем, что купили ПОЛОМАНУЮ микроволновку! А значит, ее совершенно необходимо починить. Или, в крайнем случае, удостоверимся, что импульсный блок питания работоспособен.
Это регулятор анодного тока при хорошо стабилизированном напряжении. При этом у него нет обратной связи даже по оптике. Не знаю хорошо это или плохо. И тут как током шарахнуло! Магнетрон это лампа!!! Я имею почти готовый блок питания для лампового усилителя. Накал в десятки, а то и сотни ампер? Пожалуйста! Стабильное напряжение? Извольте! Оставалось понять, как переделать само устройство с минимально возможным количеством телодвижений,и как отреагирует сам блок на вмешательство. Благо есть схема и ее можно проанализировать. И я решился! Нужно было аккуратно разобрать транс и перемотать накальную и анодную обмотки так, как нужно. Сказано сделано!
Первое: Выпаиваем и разбираем транс. Сердечник естественно склеен, и что бы разобрать его нужно его нагреть. Нагреть сердечник можно в микроволновке! С обмотками ничего не случится, не бойтесь. Сердечник нагреется быстро и его можно сразу разобрать. Если микроволновки под руками нет, можно нагреть сердечник двумя стоваттными паяльниками. Впрочем, так Виталий и сделал! Если без хвастовства, то первый сердечник мы поломали. Давили не в том месте — на излом через щель. Почему сломался?
Первое, что приходит в голову после разогрева вставить в щель отвертку и надавить. Так мы сломали первый сердечник. Смотрим картинку… Тонкими стрелками указано направление разъема, а толстыми стрелками место, где сломалось или может сломаться. В общем, делать, так как мы сделали, категорически нельзя! А как можно?
Разборка сердечника без краха
В общем, разборка сводится к смещению сердечника вокруг оси центрального сектора. На картинке не указано где именно и как мы его захватывали. От себя добавлю, что сердечник мы зажали сверху в тисках через ткань. Для этого пришлось спилить боковые бородки на первичной катушке. А нижнюю часть поворачивали воротком. Совсем немного на 1 мм. В общем, у нас получилось почти без проблем, если не считать некоторых ожогов пальцев. Все нужно делать слаженно и очень быстро. Хотя, может и стоило нагреть сердечник чуть сильнее, но мы боялись расплавить катушку. А если мы все равно решили оригинальную катушку убирать, то, наверное, и жалеть ее не стоило.
Если все-таки сломался…
Не беда! На фотке видно как мы сердечник из кусков склеили клеем «Хват». Я поместил эту фотку, что бы вы видели, что и такое бывает и после склейки транс работает нормально. Только, обратите внимание, что в щель между сердечником и катушкой медная фольгушка вставлена. Это для электрического соединения между кусочками сердечника. А то шить будет. Не забывайте, что сердечник заземлен!!!
Итак, разобрали. Вытаскиваем внутреннюю катушечку. О, япошки — красавцы, все литцендратом намотали, качественно!!! Ладно, посчитали витки, поделили, накальную обмотку придется домотать в один виток и сделать (соответственно) две независимые накальные обмотки. Анодную обмотку тоже придется перематывать (благо сразу есть чем), и делать их тоже две. Однако придется переделывать внутреннюю катушечку, не помещается все.
Сама переделка транса
Катушечку можно сделать из куска полипропиленовой трубы, а щечки для секций из поликарбоната. Мне потребовалось четыре секции. Все склеили двухкомпонентным клеем «Хват».
После переделки это выглядит так. Как видно на фотографии все очень даже поместилось. Виталя как всегда все обмазал клеем! Уж очень он его любит.
Только дополнительный виток для накальной обмотки пришлось прямо по первичке мотать проводом с фторопластовой рубашкой (ПЛМ-200 кажется).
ВНИМАНИЕ!!! Зазор в сердечнике трансформатора не для прикола! Если Вам нечем замерить штатную (начальную) индуктивность транса по первичной обмотке, что бы после реконструкции привести в норму, то не стоит и заморачиваться! Спалите ИБП менее чем за секунду после включения. У меня так и получилось. Благо запасся IGBT— транзисторами загодя (к стати о них будет отдельный разговор).
Остальные движения и настройка
Выпрямители и все такое пришлось выполнять на отдельной плате. Штатный выпрямитель-удвоитель демонтировали. Его видно на фото.
Внимание!!! Без нагрузки включать категорически не рекомендую! Хоть и есть в нем (ИБП) защита, но иногда все же, конфузы случались. Чик… и нет транзисторов!!!
Кстати о них родимых…
Как видно на фото на радиаторе три компонента. Первый (слева на право) диодный мостик (очень мощный) потом два транзистора. По факту, это почти аналоги (Q701 — G60N321, Q702 — GT30J322). Второй имеет ровно половину мощности от первого. Почему его туда поставили? А у него нет металлической подложки и он весь пластмассовый. Можно ли его заменить первым (благо он реально доступен в магазинах)? Отвечаю — без проблем, однако не следует забывать, что придется поставить слюду для изоляции от радиатора. Собственно именно так мы и поступили. Поставили два совершенно одинаковых G60N321 и оба на слюду. Так, на всякий случай.
Включаем!
Проверяем накал — есть 6,36 вольта. Ладно, немного завышено, но можно подправить позже. Нагрузил 10 ампер — держит. 50 ампер — держит!
Управляющий сигнал подал на 50% мощности. Обычный меандр с частотой 220 герц и амплитудой 5 вольт.
Внимание! ШИМ-сигнал это сигнал амплитудой в 4 — 5 вольт и частотой от 150 до 200 герц, но лучше чуть-чуть больше. Меняется скважность от 20% до 90% соответственно. КАТЕГОРИЧЕСКИ не рекомендую управлять постоянным напряжением. Очень быстро перегревается сердечник транса. После перегрева сердечника транса вас ждет пробой и далее мгновенный крах! Чтобы не «потерять» блок, рекомендую поставить сверху на площадку сердечника температурный разрыватель (размыкатель?), как сделал это я. Размыкатель разорвет цепь питания 220V на ИБП и его можно купить штатный. В микроволновках он живет на магнетроне, иногда на стенке волновода. Бывают они на разные значения температур. Я оставил на 85С. Так на всякий случай.
И тут случилось!
Ладно, теперь включаем нагрузку на накал лампочек в усилителе. Лампы прогрелись без проблем. Все вроде в норме. Подал анодное и…
Вот это был шок!!! Как уже писал AlexD первое, что приводит в изумление это полнейшая тишина. Не поверив ушам своим, ткнул жалом паяльника в разъем — есть тырррр. Убрал — тишина неимоверная. Никаких тресков,»взыков», хрюков и прочей ерунды, которую мне обещали, вращая выпученными глазами и размахивая руками.
Включаем музыку!
Вот это да! Такое ощущение, что запаса мощности блока просто бесконечность! Повернул ручку на всю громкость и замер. Раньше питая усилитель от транса я замечал, что лампы немного пригасали (наверное из-за резистора в цепи питания или транс был слабоват), а теперь вся мощь в лампочки идет. А как же иначе почти 1,5 киловатта в печке выдает!
В общем, вариан питания ламповика ИБП проверил. По моему решение очень неплохое. Позже буду строить новый аппарат сразу на ИБП. Почему не примотал к герою дня… Дык придется корпус переделывать… а уже не охота!
Возможные проблемы
1. Охлаждение. Не только и не столько радиатора с транзисторами, сколько сердечника транса. Следует подобрать такой токовый режим, что бы, не гнать лишнего. У меня получилось. Вы начните подбирать с половины мощности.
2. Иногда его (ИБП) почему-то тыркает. Проявляется в резком пропадании питания и восстановлении мгновенно (меньше чем пол секунды). Фиг — знает, что такое. Но, подперев хорошими емкостями на шине питания, вы этого даже не заметите.
3. Осторожно с высоким напряжением. Не вздумайте мерить напряжение на девятой ноге драйвера или на базе управляющего транзистора. Убивает блок питания мгновенно.
4. Если убили оба IGBT-шника. Вообще-то они вроде как бы одинаковые, но один помощнее, а другой послабее подходят одинаковые мощные (в «чип & дип» имеется), но ставить через слюду обязательно.
5. Зазор в сердечнике трансформатора можно настроить только с помощью прибора изначально замерив индуктивность на первичной катушке. На разных ИБП я получал разные значения и настраивал соответственно так как было в начале. ЭТО ВАЖНО! Так как верхнее плечо ИБП работает в режиме резонанса, японцы видимо его настраивают. А иначе «сквозняк». Если кто не знает что это такое, сразу поймет. Ну или не сразу… %)
Удачи всем!

В комнату невозможно было войти, везде лежали провода, накальные и анодные трансформаторы, запчасти от компьютеров, старые запылившиеся колонки, проигрыватель дисков и недоделанная конструкция стереофонического лампового усилителя. Только чёрная кошка Барся помогала мне всё подсоединять. Сбросив со стола очерёдной резистор, играя, подкатила его мне.

— Ладно, подойдёт, — говорю я, откусывая часть вывода, превращаю его в пульку для рогаток и соединяю в разъёме зелёный с черным провода, выходящие из компьютерного блока питания. Красный и чёрный — стабилизированное напряжение накала, 5 вольт и 40 ампер подсоединяю к накалам радиоламп. Какие бы не были броски по сети, радиолампам больно не будет.

Включение тумблера, и зашелестел вентилятор, знакомые с детства спирали накала порозовели. Включаю анодное напряжение, и кошка под музыку прыгает на диван, и с удивлением смотрит на звуковые колонки. Я присаживаюсь рядом.

— А что, фон-то пропал! Попса 70-х, предельно!

Первая проба прошла на отлично, но 5 вольт (на нагрузке напряжение стало 5,2 вольта) маловато будет для всей конструкции, не укладываюсь в 10 — 15 % разброс по напряжению накала. Вроде напряжение вполне нормальное, всё работает неплохо, но повышается отравление катодов радиоламп остаточными газами.

Остаётся напряжение 12 вольт (жёлтый и чёрный), правда ток в 2 раза меньше, тоже годится. Надо только перераспределить накал, последовательно включать по две одинаковые лампы, то есть с одинаковым током накала. Таким образом, на каждой лампе распределится напряжение по 6 вольт, причём постоянное и стабилизированное — как раз то, что нужно. Для стереоусилителя это сделать удобно, всегда есть пара одинаковых ламп.

Избавиться бы от трансформаторов совсем, насколько легче и компактней стала бы ламповая конструкция…

А не использовать ли мне преобразователь с 12 на 220 вольт для бытовой техники, чтобы получить от него анодное напряжение после выпрямителя? Анодное от 12 вольт, и накал от 12 вольт, тогда усилитель можно поставить в машину, вот будет классно!

Надо бы у Паши проконсультироваться, Паша знает.

От 12 вольт к постоянному напряжению 200.

Всех, кто не прошёл инструктаж по технике безопасности

при работе наустановках до 1000 вольт, просьба покинуть страницу!

— Зачем тебе ещё один преобразователь, тем более они ненадёжные. Фон в 50 Гц устранить сложнее, да и синусоида там будет не чистая, много высших гармоник, причём в звуковом диапазоне. Надо с этого же компьютерного блока, его уже низкое пульсирующее напряжение преобразовать в высокое с последующим выпрямлением. Высокую частоту от 40 кГц, легко сгладить, и от сети дополнительная защита. Я так делал,- говорит Паша, доставая из своей «барахолки» такую же плату питания компьютерного блока, выпаивает из неё трансформатор и припаивает к выходным обмоткам трансформатора моей платы, этими же, выходными обмотками. Теперь входные обмотки нового трансформатора должны выдать высокое напряжение.

Время пробовать. Я пошёл к своему рабочему столу и был уверен, что Паша сейчас тоже подойдёт и, когда я включу тумблер, хлопнет в ладоши над ухом, изображая короткое замыкание… Но ошибся, ибо он наблюдал за моими действиями с трёх метров.

Ага, решил я, значит здесь не всё так просто. В общем, оказался прав, нужного напряжения при нагрузке в 60 Вт так и не удалось получить, максимум, что я смог «отжать» – это 130 вольт, мало… Даже обрадовался, когда шкатулка моя задымилась и больше не включалась, потому как помучился с ней достаточно.

С этой радостной вестью я опять пошел за советом.

— Вовремя пришёл, — сказал Паша.

Он, в это время, направив широкое дуло пистолета, прицельно нажимал на курок, производя, таким образом, зачистку материнской платы компьютера.

Как быстро снять радиодетали с материнской платы.

Нет, неправильно поняли. Ему не нужна была плата, он строительным феном сдувал с неё радиодетали, с кусками припоя они падали на расстеленную газету. Фен надо направить на печать, добиться, чтобы припой стал мягким, после этого сильно стряхнуть плату или ударить об твёрдый предмет. Несмотря на то, что все двери и окна были открыты и работали все вентиляторы, дышать было невозможно. Поэтому в квартире лучше этой процедурой не заниматься. Желательно на улице, в крайнем случае, на балконе.

— Вот ключи на полевых n-канальных транзисторах, 30 вольт, 20 ампер, собирай на них преобразователь.

— Такие маленькие и такой большой ток держат? Без радиаторов на плате стоят.

— У них маленькое сопротивление переходов в 5 – 7 миллиОма, от того и не греются.

Изготовление макета повышающего преобразователя напряжения, используя трансформатор компьютерного блока питания и ключевых n-канальных транзисторов материнской платы.

Настроение моё совсем упало, тем более блок питания с полпинка не получился, но желание проверить, как будет работать ламповый усилитель от импульсного блока, было настолько захватывающим и интересным, что я даже остался после работы и, затратив один час, сделал простенький его макет.

Терпеть не могу собирать импульсные схемы, ноль — единица, поди, разбери, кто во что «перевернётся». Вот плавно меняющиеся процессы, меня больше успокаивают, а поэтому решил, что просто собираю генератор с широтно-импульсной модуляцией. Правда, когда собрал схему и подсоединил осциллограф, понял, что не напрасно провел время.

Нет, люблю логические схемы, потому как думать не надо — если и забыл сигнал перевернуть, ещё раз через инвертор пропускаешь. Короче, отлично всё получилось. Тонкие импульсы будут по очереди штурмовать ключевые транзисторы и трансформатор, не давая деталям перегреваться.

Рис.5. Осциллограмма на затворах ключевых транзисторов.

А вот сама схема, на самом деле отладочный макет, т.е., сделан только для проверки, хотя вполне работоспособен. Отличает его от конечной схемы — отсутствие унифицикации, минимальной однотипности наименований, например микросхем, или транзисторов, одних и тех же номиналов резисторов и конденсаторов и т.д. Вот и Паша посмотрел и сказал: «Да здесь всё на одном микропроцессоре можно сделать!». Паша может.

Рис.6. Паша обещал нормальную электрическую схему нарисовать. Когда у него очередь рассосётся. (Ему это 5 сек.).

Вот микросхема ICM 7555 MAX, называемая таймером, выдаёт импульсы со скважностью 2, совершенно не удел, была просто под рукой, — и поставил. Мультивибратор можно сделать на транзисторах или на логических элементах уже используемой серии CD..HC00.

Рис.7. На выходе таймера.

Зато в процессе настройки и испытаний, используя эту микросхему, я мог покачать импульсы по частоте, используя вывод 5 управления, или сделать линейный передатчик сверхдлинных частот, присоединив усилитель с микрофоном к тому же выводу, или ультразвуковой отпугиватель кротов, если, конечно, блок питания не получится. С детства люблю играть в конструктор.

Рис.8. После дифференцирующих цепочек.

Импульсы с микросхемы приходят на два одинаковых (верхний и нижний) канала управления ключевыми транзисторами, но приходят в противофазе и с задержкой, благодаря первому нижнему инвертору, а дифференцирующие цепочки по ходу процесса их укорачивают, затем логические элементы их восстанавливают до ровных форм.

Регулировка, ответственный момент.

Без нагрузки всё было приемлемо, но настроение стало меняться в худшую сторону, стоило подсоединить светильник с 60 Вт лампой — напряжение сильно проседало с нагрузкой, значит трансформатор требовал доработки. Но заниматься переделкой не хотелось, так аккуратно я точно не доведу трансформатор до ума. Получалось, что преобразователь тянул только один стереофонический канал, а всего каналов два, ну и трансформаторов пусть будет два – каждый на свой канал! Ведь делают так, на свой канал своя обмотка трансформатора, как и в схеме Астахова, по которой собран усилитель.

Рис.9. Трансформатор ERL35AL (или 39). Использовал эти обмотки. Розовый провод — питание (+12 В).

Рис.10. Макет импульсного источника питания на один канал.

Вечером, попив чаю, я опять разворачиваю ламповый усилитель. Подсоединил накал и анодные напряжения. Зачарованно 30 минут слушаю песни 70-х, чтобы сделать потом выводы:

1. Анодное напряжение 175,0 В. Теоретически маловато, надо хотя бы 200, но практически приемлемо. Независимо от фонограмм в числе 175 ничего не менялось после запятой, но стоило поднять громкость выше средней, цифра 5 затряслась в такт низким частотам от +2 до -2 вольта. Громкость выше средней не понравилась моей жене, думаю, соседям тоже не понравится, поэтому я не сильно расстроился.

2.Отличный тепловой режим. Ключевые транзисторы и трансформатор нагрелись до температуры 36,6 градусов, Выпрямительные транзисторы в мосте остались холодными.

Нет мощных радиаторов во всей схеме!

3. Один канал на одном трансформаторе потребляет ток при напряжении 12 вольт около 2-х ампер.

4.В сглаживающем, высоковольтном фильтре отсутствуют громоздкие электролитические конденсаторы! Подрезаю первый электролит в усилителе мощности, в звучании ничего не меняется, но моя доработанная «Селга» даёт понять, что усилитель превратился в передатчик, и теперь попса звучит в двух диапазонах сразу. Вместо громоздкого электролитического конденсатора ставлю обычный конденсатор номиналом 3,3 мкФ и передатчик опять превращается в усилитель.

Возможно, громоздкие электролитические конденсаторы в самом усилителе заменятся на малогабаритные неполярные. В этом месте предстоит ещё работа.

О задержке включения по времени анодного напряжения после нагрева накала.

Все кто уважает ламповые конструкции, обязательно делают задержку включения анодного напряжения. В старых схемах такие задержки получались автоматически, пока выпрямительная лампа (кенотрон) не прогреется, высокое напряжение не появится. В этой схеме задержка обеспечивается конденсатором большой ёмкости 3300 мкФ, который, заряжаясь после подачи напряжения, откроет пару ключевых транзисторов (Т1, Т2) спустя 30 секунд, подав, таким образом, питание на преобразователь.

О стабилизаторе на пять вольт, выпрямительных диодах и сглаживающем фильтре.

Стабилизатор нужен только в макете или в том случае, когда всё питание устройства происходит от источника с одним напряжением в 12 вольт. При использовании компьютерного блока питания можно использовать его же 5-вольтовое напряжение, но резистор 30 Ом с двумя блокирующими конденсаторами лучше оставить, сопротивление будет предохранителем.

Выпрямительные диоды BY 359Х , высоковольтные, высокочастотные с барьером Шоттки, рассчитаны на ток в несколько ампер. Обычные выпрямительные диодные сборки не подойдут, перегреются в момент, частота достаточно высокая 50 кГц. А вот демпферная лампа 6Д20С такую частоту и ток переваривает, у неё маленькая внутренняя ёмкость (10 пФ), но в однополупериодной схеме выпрямления она проигрывает полупроводниковому диоду в 2 вольта. Нагрев ей привычен, ещё бы, ток накала 1,9 А!

Рис.11. Мал — да удал!

О сглаживающих фильтрах,которые должны убрать пульсации после выпрямления. На вторичной обмотке трансформатора частота возросла в 2 раза и составляет около 100 кГц. В мостовой схеме выпрямления частота пульсаций возрастает в 2 раза и стала уже 200 кГц.

Чем выше частота пульсаций, тем меньше ёмкость фильтра. Сам фильтр упрощается, но он нужен, чтобы высшие гармоники передатчика, ой, преобразователя, не забивали длинноволновый диапазон приёмников.

Обычные платы фильтров, которые непосредственно крепятся на сетевой разъём компьютерных блоков питания, я поставил после выпрямительных диодов.

Рис.12. Сглаживающий фильтр, он же убирает помехи.

О конструкции.

Сам блок питания надо экранировать, Трансформатор и провода излучает высшие гармоники от частоты 50 кГц. Возможно, я использую освободившийся корпус самого блока питания компьютера. На два скреплённых корпуса оставлю один вентилятор, уменьшив его скорость вращения.

admin

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Наверх