Электрификация

Справочник домашнего мастера

Без трансформаторные блоки питания

Принцип работы бестрансформаторного блока питания на гасящем конденсаторе

Не для кого не секрет, что источник вторичного электропитания является неотъемлемой частью любого прибора. В данной статье я постараюсь описать довольно распространенный тип источников питания — бестрансформаторные на гасящем конденсаторе.
Основными достоинствами его являются малые габариты, дешевизна и простота устройства, именно по этому его часто используют например, в терморегуляторах тёплого пола, блоках управления бытовыми холодильниками, блоках дистанционного управления люстрами, базы электрочайников с сенсорным управлением и подобных малогабаритных устройствах с сетевым питанием. Не смотря на все положительные качества есть и недостатки, пожалуй самый большой из которых это отсутствие гальванической развязки с питающей сетью и невысокий ток нагрузки.

Отсутствие гальванической развязки требует от мастера повышенного внимания при ремонте и наладке схемы!

Для начала рассмотрим типовую схему такого источника


Это самый стандартный вариант, встречающийся в 80% случаев, в остальных 20% могут присутствовать изменения которые не меняют принципа диагностики и ремонта.

Назначение элементов схемы:

-> Резистор(R1) является токоограничивающим, он ограничивает ток заряда конденсатора в момент включения в сеть т.к. разряженный конденсатор имеет низкое сопротивление, а следовательно потребляет значительный ток, так же в некоторых схемах он используется разрывной и одновременно служит плавким предохранителем
-> Конденсатор (С1) является основным элементом схемы. За счет своего реактивного сопротивления он гасит излишний ток. Напряжение же получается лишь тогда, когда появляется нагрузка, его величина подчиняется закону ома.
-> Резистор(R2) – разряжающий. Он служит для того чтобы разрядить конденсатор, иначе при отключении от сети вилка устройства будет биться током, во многих схемах не имеющих разъемных соединений, например в термостате теплого пола, датчиках движения его не ставят.
-> Диодный мост(Br1) служит для выпрямления тока, в целях экономии его часто заменяют на однополупериодный выпрямитель состоящий из одного диода.
-> Конденсатор(С2) необходим для сглаживания пульсаций выпрямленного тока.
-> Стабилитрон(D1) стабилизирует напряжение. Т.к. конденсатор ограничивает ток, то напряжение в отсутствии нагрузки было бы равно сетевому, а так же при изменении тока нагрузки скакало в широких пределах, стабилитрон же является постоянной нагрузкой в цепи и не позволяет напряжению превышать определенный порог, равный его напряжению стабилизации
Самая частая неисправность с которой подобные устройства заходят на ремонт «Не включается, не светится» и подобные выражения, которые сообщает клиент мастеру.
При данных признаках в большинстве случаев происходит пробой стабилитрона, т.к. он «сдерживает» напряжение при изменении нагрузки или скачках напряжения в сети, а в отсутствии нагрузки вся выработанная мощность БП рассеивается на нем в виде тепла.
С такой проблемой был принят в ремонт термостат тёплого пола Electrolux


Подключаем к питанию, проводим замеры питающего напряжения. Удобнее и быстрее всего произвести замер в очевидных точках, если есть микросхемы, на питающих выводах, на сглаживающем конденсаторе, и т. д.

Когда выяснено, что проблема с питающими линиями, более детально осматриваем цепи питания и воспроизводим схему питания устройства



Данная схема очень типичная, кроме наличия 2 стабилитронов, включенных последовательно, Это необходимо для питания напряжением 12В цепей управления и 17В для запитки реле.(Реле в этом регуляторе используется на 24В, выбранное производителем пониженное напряжение 17В позволяет реле уверенно срабатывать и при этом иметь минимальный нагрев)
Диагностируется данная проблема просто: Находим стабилитрон и мультиметром в режиме прозвонки производим измерение на его выводах При исправном стабилитроне на экране прибора будет какое либо значение много больше нуля, при не исправном раздастся писк свидетельствующий о коротком замыкании.
Если при диагностике обнаружен перегоревший плавкий предохранитель, то в первую очередь проверяем сам гасящий конденсатор на пробой.
Далее удаляем стабилитрон и прозваниваем без него. Короткое скорее всего пропадёт.

Так же, чтобы убедиться проверяем стабилитрон.

А далее заменяем его на исправный, если есть следы свидетельствующие о перегреве (потемнение платы) то заменяем его на стабилитрон с большей мощностью рассеяния или заменяем на включенные параллельно с выравнивающими резисторами
Далее проверяем результат нашего ремонта
При включении в сеть загорелся светодиод «Нагрев» и отчетливо слышен щелчок реле.

Расчёт блока питания с гасящим конденсатором + онлайн-калькулятор

Итак, процессы в этой схеме будут достаточно нелинейны, поэтому при рассчётах придётся делать различные упрощения и допущения.

Для начала давайте будем считать, что ёмкость конденсатора C2 достаточна для полного сглаживания пульсаций напряжения после моста, то есть напряжение на конденсаторе C2 = const. Далее попробуем нарисовать пару графиков, — напряжение на входе моста (UM) и ток через конденсатор C1 (IC1), опираясь на график сетевого напряжения UС(t). Будем считать, что сетевое напряжение у нас изменяется по синусоидальному закону и имеет амплитуду Uca (вообще-то рисовать мы будем косинусоиду, нам так будет удобнее, но это по сути одно и то же, только косинусоида сдвинута относительно синусоиды на π/2).

Рассуждаем следующим образом: в каждый момент времени полное напряжение и полный ток в этой цепи можно описать следующими уравнениями:

UC=UC1+UМ (1), iC=iC1+iМ (2)

В момент времени t0 уравнение напряжения примет вид: Uca=UC1+UМ. Поскольку Uca — это максимальное значение сетевого напряжения, то UC1 и UМ также в этот момент должны иметь максимальные значения (здесь в логике есть небольшой провал, максимум суммы — это не всегда сумма максимумов, функции могут быть сдвинуты по фазе, но… в общем, мы потом всё экспериментально проверим).

Максимальное значение UМ равно Uвых, поскольку если бы напряжение на мосту поднималось выше, то и конденсатор C2 заряжался бы до большего напряжения (мост бы открылся и к конденсатору C2 потёк бы зарядный ток, увеличивая напряжение на нём).

Токи через конденсатор и мост в момент t0 равны нулю. Про мост я выше уже написал (если бы через него тек ток, то конденсатор C2 заряжался бы дальше), а через C1 ток не течёт, поскольку ток через конденсатор — это первая производная от напряжения, которая в точках экстремума обращается в ноль (значит когда напряжение на конденсаторе максимально — ток равен нулю).

Далее сетевое напряжение (UC) начинает уменьшаться. При этом напряжение на C1 не меняется (тока-то через мост нет, заряд на C1 не меняется), следовательно вместе с падением UC уменьшается напряжение на входе моста.

В момент, когда сетевое напряжение упадёт до значения Uca-2Uвых (момент времени t1) — напряжение на входе моста достигнет значения -Uвых (находим с помощью формулы 1), диоды моста откроются и в первичной цепи (через мост и конденсатор C1) потечёт ток. При этом напряжение на входе моста перестанет меняться (помните, мы договорились, что ёмкость C2 достаточно большая для того, чтобы полностью сгладить пульсации).

Обратите внимание, что напряжение на входе моста в этот момент равно -Uм, так что ток потечёт в обратную сторону от того направления, в котором он тёк до момента времени t0. Этот ток, поскольку он течёт в обратную сторону, начнёт перезаряжать конденсатор C1.

К моменту времени t3 напряжение в сети достигнет максимума, только с противоположной относительно момента t0 полярностью. Соответственно, для этого момента экстремума сетевого напряжения будут справедливы все те же рассуждения касательно напряжений и токов, которые мы использовали для момента t0. То есть, к этому моменту конденсатор C1 полностью перезарядится (напряжение на нём достигнет максимального значения отрицательной полярности), а ток через C1 и мост упадёт до нуля.

Далее, по мере роста сетевого напряжения, напряжение на конденсаторе C1 будет оставаться неизменным, а напряжение на входе моста будет расти.

В момент времени t4, когда сетевое напряжение вырастет до значения -(Uca-2Uвых), напряжение на входе моста достигнет значения Uвых, диоды моста откроются и в первичной цепи (через мост и конденсатор C1) снова потечёт ток. Этот ток снова будет перезаряжать конденсатор C1, но уже напряжением положительной полярности.

В момент t6 напряжение на конденсаторе C1 достигнет максимального значения положительной полярности, а ток через C1 и мост упадёт до нуля.

Далее весь цикл повторится с самого начала.

Теперь давайте вспомним закон сохранения заряда. В соответствии с этим законом за один полный цикл через конденсатор C1, мост и нагрузку должно протекать одинаковое количество заряда. Поскольку ток нагрузки у нас постоянный, то количество заряда, протекающего через нагрузку за один цикл, можно найти по формуле Q=Iн*tцикла=Iн/fc, где fc — частота питающего сетевого напряжения. Количество заряда, протекающего через конденсатор C1, будет равно площади под графиком тока (заштрихованная площадь графика IC1(t)). Остаётся только найти эту площадь, приравнять её к заряду, протекающему за один цикл через нагрузку, и выразить из полученного выражения необходимую ёмкость конденсатора C1 в зависимости от тока нагрузки.

Подробные математические расчёты можно найти под вторым спойлером.

13. Сетевой источник питания с гасящим конденсатором.

СЕТЕВОЙ ИСТОЧНИК ПИТАНИЯ С ГАСЯЩИМ КОНДЕНСАТОРОМ

Во многих из описанных выше устройств использовались бестрансформаторные источники питания с гасящим конденсатором. Они удобны своей простотой, малыми габаритами и массой, но не всегда применимы из-за гальванической связи выходной цепи с сетью 220 В. О том, как правильно рассчитать такой источник, рассказывается в данном разделе.

В бестрансформаторном источнике питания к сети переменного напряжения подключены последовательно соединенные конденсатор и нагрузка. Рассмотрим вначале работу источника с чисто резистивной нагрузкой (рис. 123,а).

В радиолюбительской практике часто используют источник, в котором гасящий конденсатор включен в сеть последовательно с

диодным мостом, а нагрузка, зашунтированная другим конденсатором, питается от выходной диагонали моста (рис. 124). В этом случае цепь становится резко нелинейной и форма тока, протекающего через мост и гасящий конденсатор, будет отличаться от

синусоидальной. Из-за этого представленный выше расчет оказывается неверным.

Каковы процессы, происходящие в источнике со сглаживающим конденсатором С2 емкостью, достаточной для того, чтобы считать пульсации выходного напряжения пренебрежимо малыми? Для гасящего конденсатора С1 диодный мост (вместе с С2 и Rн) в установившемся режиме представляет собой некий эквивалент симметричного стабилитрона. При напряжении на этом эквиваленте, меньшем некоторого значения (оно практически равно напряжению Uвых на конденсаторе С2), мост закрыт и ток через него не проходит, при большем — через открытый мост течет ток, не давая увеличиваться напряжению на входе моста.

Рассмотрение начнем с момента t1, когда напряжение сети максимально (рис. 125). Конденсатор С1 заряжен до амплитудного напряжения сети Uс.амп за вычетом напряжения на диодном мосте Uм , примерно равного Uвых. Ток через конденсатор С1 и закрытый мост равен нулю. Напряжение в сети уменьшается по косинусоидальному закону (график 1), на мосте также уменьшается (график 2), а напряжение на конденсаторе С1 не меняется.

Ток конденсатора останется нулевым до тех пор, пока напряжение на диодном мосте, сменив знак на противоположный, не достигнет значения -Uвых (момент t2). В этот момент появится скачком ток Ic1 через конденсатор С1 и мост. Начиная с момента t2, напряжение на мосте не меняется, а ток определяется скоростью изменения напряжения сети и, следовательно, будет точно таким же, как если бы к сети был подключен только конденсатор С1 (график 3).

Когда напряжение сети достигнет отрицательного амплитудного значения (момент tз), ток через конденсатор С1 снова станет равным нулю. Далее процесс повторяется каждый полупериод.

Ток через мост протекает лишь в интервале времени t2-t3, его среднее значение может быть рассчитано как площадь заштрихованной части

При отсутствии стабилитрона на необходимое напряжение Uвых;

допускающего рассчитанный максимальный ток стабилизации, можно соединить несколько стабилитронов на меньшее напряжение последовательно.

Подставлять в формулу (4) минимальный ток нагрузки Iн nun следует лишь тогда, когда этот ток длителен — единицы секунд и более. При кратковременном минимальном токе нагрузки (доли секунды) его надо заменить средним (по времени) током нагрузки. Если стабилитрон допускает ток, больший рассчитанного по формуле (4), целесообразно использовать гасящий конденсатор несколько

источника по схеме рис. 124 зарядка этого конденсатора длится четверть периода напряжения сети, и столько же — разрядка. При таком приближении двойное напряжение пульсации 2Uп (размах ) равно: 2ип=0,25Iн mах/fС.

Аналогично можно считать, что для источника по схеме рис. 126 зарядка длится то же время, а разрядка — три четверти периода:

2Uп=0,75Iнmax/fC.

Для выходного напряжения менее 100 В реально зарядка длится большее время, разрядка — меньшее, и эти выражения дают заметно завышенный результат, поэтому расчет емкости сглаживающего конденсатора по полученным из них формулам обеспечивает некоторый запас: С=5Iнmax/2Uп (для рис. 124); С= 15Iнmax/2Uп (для рис. 126), где ток — в миллиамперах, емкость — в микрофарадах, напряжение — в вольтах.

Хотя стабилитрон и уменьшает напряжение пульсации, использовать сглаживающий конденсатор емкостью, менее рассчитанной, не рекомендуется. В ранее рассмотренном примере при размахе пульсации 0,2 В емкость сглаживающего конденсатора равна:

С2=5*15/0,2=375 мкФ.

Для ограничения броска тока через диоды выпрямительного моста в момент включения источника в сеть последовательно с гасящим конденсатором необходимо включать токоограничивающий резистор. Чем меньше сопротивление этого резистора, тем меньше потери в нем. Для диодного моста КЦ407А или моста из диодов КД103А достаточно резистора сопротивлением 36 Ом.

Рассеиваемую на нем среднюю мощность Р можно определить по формуле: Р= 5,6С1^2R, где емкость — в микрофарадах, сопротивление -в омах, мощность — в милливаттах. Для рассмотренного выше примера P=5,6*0,39^236=30 мВт. Для надежности (ведь в момент включения к резистору может быть приложено амплитудное напряжение сети) рекомендуется использовать резистор мощностью не менее 0,5 Вт.

Для того, чтобы исключить возможность поражения электротоком при налаживании устройств с рассматриваемыми источниками, питать их следует не от сети, а от сетевого лабораторного низковольтного блока питания через токоограничительный резистор. Выходное напряжение лабораторного блока устанавливают больше напряжения питания налаживаемого устройства настолько, чтобы ток через токоограничительный резистор был близок к Iст min+ Iнmax.

Иногда удобно использовать в роли токоограничительного резистор источника, ограничивающий бросок тока через диоды выпрямительного моста. В этом случае достаточно замкнуть выводы

(рис. 130) на ток нагрузки до 0,3 А и источник бесперебойного питания для электронно-механических часов (рис. 131).

Делитель напряжения пятивольтового источника состоит из бумажного конденсатора С1 и двух оксидных С2 и СЗ, образующих нижнее по схеме неполярное плечо емкостью 100 мкф. Поляризующими диодами для оксидной пары служат левые по схеме диоды моста. При номиналах элементов, указанных на схеме, ток замыкания (при Rн=O) равен 600 мА, напряжение на конденсаторе С4 в отсутствие нагрузки — 27 В.

Электронно-механические часы обычно питают от одного гальва

нического элемента напряжением 1,5 В. Предлагаемый источник вырабатывает напряжение 1,4 В при среднем токе нагрузки 1 мА. Напряжение, снятое с делителя С1С2, выпрямляет узел на элементах VD1, VD2, СЗ. Без нагрузки напряжение на конденсаторе СЗ не превышает 12 В.

Транзистор VT1, включенный эмиттерным повторителем, и гальванический элемент G1 составляют стабилизатор напряжения. На выходе источника будет напряжение элемента минус падение напряжения на эмиттерном переходе транзистора.

Ток, потребляемый от элемента G1 при наличии сетевого напряжения, меньше тока нагрузки в h21э раз, что существенно продлевает срок службы элемента. Практически это означает, что элемент приходится заменять не из-за его разрядки током нагрузки, а вследствие других причин — саморазрядки, высыхания электролита и т. п.

В случае пропадания напряжения в сети транзистор выходит из режима эмиттерного повторителя и нагрузку питает гальванический .элемент G1 через открытый эмиттерный переход. После появления сетевого напряжения транзистор возвращается в режим эмиттерного повторителя и нагрузка переходит на питание от сети. Конденсатор С4 обеспечивает нормальную работу часов при глубокой разрядке элемента G1.

Диоды Д223 можно заменить на любые другие, транзистор МП41А — на любой германиевый структуры р-n-р. Элемент G1

лучше использовать алкалиновый, например, Duracell, Energizer. Реальный срок эксплуатации такого элемента в блоке питания может достигать 10 лет.

И последнее. Конструкция бестрансформаторных источников и устройств, питающихся от них, должна исключать возможность прикосновения к любым проводникам в процессе эксплуатации. Особое внимание нужно уделить изоляции органов управления.

БЕСТРАНСФОРМАТОРНОЕ ПИТАНИЕ СХЕМ

Понадобился мне блок питания для самодельной мини-дрели, сделанной из моторчика на 17 Вольт. Пересмотрел много схем различных БП, но во всех использовался трансформатор, которого у меня нету, а покупать как-то неохота. Тогда решил поступить проще и собрать бестрансформаторный блок питания на данное напряжение — 17 Вольт. Схема довольно простая, на такой готовый блок питания нужно подавать 220 вольт переменного напряжения, короче питать схему от розетки, а на выходе мы получаем 17 вольт постоянного напряжения. Обычно источники питания такого типа применяют во всяких небольших бытовых вещах, например в фонарике с аккумулятором, в качестве зарядного, где нужен небольшой ток, до 150 mA или в электробритвах.

Принципиальная схема бестрансформаторного блока питания

Итак, детали для схемы. Вот так выглядят высоковольтные металлопленочные конденсаторы (те что красные), и слева от них электролитический конденсатор на 100 мкФ.

Вместо микросхемы 78l08 можно использовать такие стабилизаторы напряжения, как КР1157ЕН5А (78l08) или КР1157ЕН5А (7905).

Если отсутствует выпрямительный диод 1N4007, то его можно заменить на 1N5399 или 1N5408, которые рассчитаны на более высокий ток. Серый кружок на диоде обозначает его катод.

Резистор R1 взял на 5W, а R2 — на 2W, для страховки, хотя оба можно было применять и на 0,5 Вт.

Стабилитрон BZV85C24 (1N4749), рассчитан на мощность 1,5 W, и на напряжение до 24 вольт, заменить его можно отечественным 2С524А.

Этот бестрансформаторный БП собрал без регулировки выходного напряжения, но если вы хотите организовать такую функцию, то просто подключите к выводу 2 микросхемы 78L08 переменный резистор примерно на 1 кОм, а второй его вывод — к минусу схемы.

Плата к схеме бестрансформаторного блока питания конечно есть, формат лэй, скачать можно . Думаю вы поняли, что диоды без пометки — это 1n4007.

Готовую конструкцию нужно обязательно поместить в пластиковый корпус, из-за того что включенная в сеть схема находиться под напряжением 220 вольт и прикасаться к ней ни в коем случае нельзя!

На этих фото вы можете видеть напряжение на входе, то есть напряжение в розетке, и сколько вольт мы получаем на выходе БП.

Видео работы схемы бестрансформаторного БП

Большим плюсом этой схемы можно считать очень скромные размеры готового устройства, ведь благодаря отсутствию трансформатора этот БП можно сделать маленьким, и относительно недорогая стоимость деталей для схемы.
Минусом схемы можно считать то, что есть опасность случайно дотронуться к работающему источнику и получить удар током. Автор статьи — egoruch72.
Форум по ИП

Обсудить статью БЕСТРАНСФОРМАТОРНОЕ ПИТАНИЕ СХЕМ

Бестрансформаторные Схемы Питания

Без трансформаторная Концепция Электропитания
Без трансформаторная концепция работает с использованием высоковольтного конденсатора для снижения переменного тока сети до требуемого более низкого уровня, необходимого для подключенной электронной схемы или нагрузки.
Спецификация этого конденсатора выбрана с запасом. Пример конденсатора, который обычно используется в схемах без трансформаторного питания, показан ниже:
Этот конденсатор соединен последовательно с одним из входных сигналов переменного напряжения АС.
Когда сетевой переменный ток входит в этот конденсатор, в зависимости от величины конденсатора, реактивное сопротивление конденсатора вступает в действие и ограничивает переменный ток сети от превышения заданного уровня, указанным значением конденсатора.
Однако, хотя ток ограничен, напряжение не ограниченно, поэтому, при измерении выпрямленного выхода без трансформаторного источника питания, обнаруживаем, что напряжение равно пиковому значению сети переменного тока , это около 310 В.
Но поскольку ток достаточно понижен конденсатором, это высокое пиковое напряжение стабилизируется с помощью стабилитрона на выходе мостового выпрямителя.
Мощность стабилитрона должна быть выбрана в соответствии с допустимым уровнем тока конденсатора.
Преимущества использования без трансформаторной схемы питания
Дешевизна и при этом эффективность схемы для маломощных устройств.
Без трансформаторная схема питания, описанная здесь, очень эффективно заменяет обычный трансформатор для устройств, мощностью тока ниже 100 мА.
Здесь высоковольтный металлизированный конденсатор использован на входном сигнале для понижения тока сети
Схема показанная выше может быть использована как источник электропитания DC 12 В для большинства электронных схем.
Однако, обсудив преимущества вышеописанной конструкции, стоит остановиться на нескольких серьезных недостатках, которые может включать в себя данная концепция.
Недостатки без трансформаторной схемы питания
Во-первых, цепь неспособна произвести сильнотоковые выходы, что не критично для большинства конструкций.
Другим недостатком, который, безусловно, требует некоторого рассмотрения, является то, что концепция не изолирует цепь от опасных потенциалов сети переменного тока.
Этот недостаток может иметь серьезные последствия для конструкций связанных с металлическими шкафами, но не будет иметь значения для блоков, которые имеют все покрыты в непроводящем корпусе.
И последнее, но не менее важное: вышеупомянутая схема позволяет скачкам напряжения проникать через нее, что может привести к серьезному повреждению цепи питания и самой схемы питания.
Однако в предложенной простой без трансформаторной схеме питания этот недостаток был разумно устранен путем введения различных типов стабилизирующих ступеней после мостового выпрямителя.
Этот конденсатор основывает мгновенные высоковольтные пульсации, таким образом эффективно защищая связанную электронику с ним.
Как схема работает
1. Когда сетевой вход сети переменного тока включен, конденсатор C1 блокирует вход сетевого тока и ограничивает его до более низкого уровня, определенного значением реактивного сопротивления C1. Здесь можно примерно предположить, что он составляет около 50 мА.
2. Однако напряжение тока не ограничено, и поэтому 220V может находиться на входном сигнале позволяя достигнуть последующий этап выпрямителя тока .
3. Выпрямитель тока моста выпрямляет 220V к более высокому DC 310V, к пиковому преобразованию формы волны AC.
4. DC 310V быстро уменьшен к низкоуровневому DC стабилитроном, который шунтирует его к значение согласно номинала стабилитрона. Если используется 12V стабилитрон, то и на выходе будет 12 вольт.
5. C2 окончательно фильтрует DC 12V с пульсациями, в относительно чистый DC 12V.

Пример схемы
Цепь драйвера показанная ниже управляет лентой менее 100 светодиодов (при входном сигнале 220В), каждый светодиод рассчитан на 20мА, 3.3 В 5мм:

Здесь входной конденсатор 0.33 uF / 400V выдает около 17 ма, что примерно правильно для выбранной светодиодной ленты.
Если драйвер использовать для большего числа подобных светодиодных лент 60/70 параллельно, то просто значение конденсатора пропорционально увеличить для поддержания оптимального освещения светодиодов.
Поэтому для 2 лент включенных в параллель требуемое значение будет 0.68 uF/400V, для 3 лент заменить на 1uF / 400V. Аналогично для 4 лент должно быть обновлено до 1.33 uF / 400V, и так далее.
Важно: хотя не показан ограничивающий резистор в схеме, было бы неплохо включить резистор 33 Ом 2 Вт последовательно с каждой светодиодной лентой, для дополнительной безопасности. Можно вставить в любом месте последовательно с отдельными лентами.
ПРЕДУПРЕЖДЕНИЕ: ВСЕ ЦЕПИ, УПОМЯНУТЫЕ В ЭТОЙ СТАТЬЕ, НЕ ИЗОЛИРОВАНЫ ОТ СЕТИ ПЕРЕМЕННОГО ТОКА, ПОЭТОМУ ВСЕ СЕКЦИИ ЦЕПИ ЧРЕЗВЫЧАЙНО ОПАСНЫ ДЛЯ ПРИКОСНОВЕНИЯ ПРИ ПОДКЛЮЧЕНИИ К СЕТИ ПЕРЕМЕННОГО ТОКА.

Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Схемы бестрансформаторного сетевого питания микроконтроллеров

Бестрансформаторные источники питания проще в изготовлении и дешевле, чем трансформаторные, однако они представляют определённую опасность для жизни человека при налаживании, ремонте и в эксплуатации. Неосторожное прикосновение одновременно ктоковедущей части и к заземлённой поверхности может окончиться весьма плачевно.

Схемы без гальванической развязки применяют в тех конструкциях, где не требуется постоянное присутствие человека или обеспечена надёжная изоляция от поражения током. Стоит отметить, что использовать такие источники питания целесообразно только при небольших токах нагрузки, так как в противном случае размеры и стоимость нужных компонентов растут очень быстро.

Различают следующие разновидности бестрансформаторных блоков питания:

  • с балластным резистором во входной цепи;
  • с балластным конденсатором во входной цепи;
  • с импульсным неизолированным AC/DC-преобразователем.

Балластными резисторами и конденсаторами гасится излишек сетевого напряжения. Соответственно резисторы должны быть рассчитаны на большую мощность рассеяния, а конденсаторы должны быть плёночными, например, К73-17, желательно с рабочим напряжением не менее 630 В. Запас нужен, потому что допустимое переменное напряжение КАС на частоте 50 Гц у данного класса конденсаторов значительно меньше допустимого постоянного напряжения KDC (Табл. 6.2).

Схемы балластного типа «не любят» частых включений/выключений, поскольку в начальный момент времени возникают всплески напряжения. Если имеется возможность, то лучше вообще обойтись без сетевого тумблера, что значительно продлит ресурс работы устройства. Оптимальная сфера применения балластных схем — маломощные приборы с круглосуточным режимом функционирования.

Импульсные сетевые бестрансформаторные преобразователи напряжения носят название AC/DC («переменное» АС в «постоянное» DC). Они обеспечивают высокий КПД и малые габариты, но генерируют импульсные помехи достаточно высокой частоты и амплитуды. Кроме того, микросхемы, применяемые в этих преобразователях, к числу дешёвых и широкораспространённых не относятся.

Рис. 6.3. Схемы бестрансформаторного питания с балластными элементами (начало):

а) диоды VD1…VD4 должны выдерживать обратное напряжение не менее 400 В. Резисторы Rl, R2 являются балластными для стабилитрона VD5. Сопротивление резистора R3 выбирается так, чтобы выходное напряжение не превышало +5.25 В при любом токе нагрузки. ФНЧ на элементах C1, R3, С2 сглаживает сетевые пульсации удвоенной частоты 100 Гц;

б) аналогично Рис. 6.3, а, но параллельные балластные резисторы заменяются последовательно включёнными резисторами RL..R3, RС-фильтр заменяется LC-фильтром LI, C1, а также добавляется предохранитель FUI. Максимально допустимый ток через дроссель LI должен быть с запасом больше, чем ток нагрузки;

в) полная классическая схема источника питания с балластным конденсатором C1. Резистор R1 ограничивает начальный ток заряда конденсатора С2 и является обязательным в подобных схемах. Резистор R2 быстро разряжает конденсатор C1 после отключения вилки от сети 220 В. Сборка диодов VD1 выпрямляет напряжение и может быть заменена двумя диодами типа 1 N4004… 1 N4007. Конденсатор С2 сглаживает сетевые пульсации, а конденсатор СЗ устраняет ВЧ-помехи. Выходное напряжение зависит от параметров стабилитрона VD2 и тока нагрузки;

г) питание от трёхфазной сети через балластные резисторы RL..R3. Стабилитрон VD4 нужен, чтобы микросхема DA1 не вышла из строя от высокого входного напряжения при обрыве нагрузки в цепи +5 В или при резком снижении тока потребления;

Рис. 6.3. Схемы бестрансформаторного питания с балластными элементами (продолжение):

д) стабилитроны VD3, VD4 имеют повышенную мощность рассеяния 1…3 Вт и выполняют предварительное ограничение напряжения. Стабилизатор на микросхеме DA I обеспечивает выходное напряжение;

е) двухполупериодный выпрямитель с диодным мостом VD1 и светодиодной индикацией наличия питания. Резистор R3 определяет ток в нагрузке, а также яркость свечения индикатора HLI. Выходное напряжение зависит от параметров стабилитрона VD2 и тока нагрузки;

ж) двухполярный источник питания. Для полной симметрии схемы желательно обеспечить одинаковые токовые нагрузки по цепям +5 и -5 В;

з) разделение выходного напряжения на две отдельные ветви для исключения взаимных помех, например, для питания МК и для управление тиристором. Стабилитрон VD1 ограничивает напряжение на уровне +5.6 В. Диоды VD2, VD3 снижают его до +4.8…+5 В в каждом канале;

Рис. 6.3. Схемы бестрансформаторного питания с балластными элементами (окончание):

и) получение двух напряжений от одного источника питания. Суммарный ток нагрузки состоит из суммы токов в каналах +9…+12 В и +5 В. При значительных колебаниях тока нагрузки следует выбрать стабилитрон VD3 с повышенной мощностью рассеяния 1…3 Вт;

к) стабилитроны VDI, VD2 одновременно служат стабилизаторами и выпрямителями. Стабилитроны следует выбирать мощные, с запасом по току;

л) вместо одного применяются два балластных конденсатора C1, С2, которые могут быть рассчитаны на меньшее допустимое напряжение;

м) в закрытом состоянии тиристора VS1 ток на бестрансформаторный стабилизатор напряжения (C1…CJ, RL..R3, VDI, VD2) проходит через нагрузку RH. Ввиду низкого значения тока, нагрузка не работает в полную мощность, например, лампа не светится, вентилятор не крутится и т.д. После включения тиристора VSI, в нагрузку RH подаётся полная мощность, а напряжение на выходе стабилизатора снижается с +5 до +2.7 В. Чтобы МК нормально функционировал, он должен быть широкодиапазонным по питанию и иметь возможность организации рестарта.

Рис. 6.4. Схемы сетевых бестрансформаторных блоков питаь с AC/DC-преобразователями:

а) типовая схема включения импульсного AC/DC-преобразователя напряжения на микросхеме DA1 фирмы ROHM;

б) типовая схема включения импульсного AC/DC-преобразователя напряжения на микросхеме DA1 фирмы Power Integrations. Дроссели LI, L2снижают уровень пульсаций;

в) формирователь двух популярных у радиолюбителей напряжений питания +5 и +3.3 В. Микросхема DA1 — это импульсный АC1DC-преобразователь напряжения фирмы Supertex;

т) DAI — это импульсный АC1DC-преобразователь напряжения фирмы Supertex. Общий ток нагрузки по выходам +18 и +5 В не должен превышать 40 мА.

Источник: Рюмик С.М. 1000 и одна микроконтроллерная схема.

admin

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Наверх