Электрификация

Справочник домашнего мастера

Автоматы защиты сети

Содержание

Скачки напряжения – не беда, если в щиток вмонтирована надежная защита

Конструктивное несовершенство электрических сетей является основной причиной резких скачков напряжения. Предугадать время очередного перепада невозможно. Единственное, что мы можем сделать для предотвращения неприятных последствий – это заранее обезопасить электрических потребителей в своем доме. В этой статье мы расскажем, как и чем защитить сеть квартиры и дома.

Что спасет от скачка напряжения

Защита от перепадов напряжения возможна при помощи разных типов защитных устройств. Мы поговорим о самых распространенных. Это реле контроля напряжения (РН) и бытовые стабилизаторы.

Реле защиты от скачков напряжения

Защита дома от скачков напряжения с помощью РН рекомендуется в тех случаях, когда напряжение в сети устойчиво, а его заметные скачки редки. РН представляет собой устройство, способное считывать параметры электрического тока и разрывать электрическую цепь в тот момент, когда показатели выйдут за пределы заданного диапазона. После того, как показетели в общей сети нормализуются, устройство автоматически замкнет цепь и возобновит питание потребителей. Функция возобновления питания через заданный промежуток времени (с задержкой), встроенная в реле напряжения 220в для дома, помогает продлить срок службы некоторых бытовых устройств, холодильников и т.п.

РН обладают небольшими габаритами, сравнительно низкой стоимостью и хорошим быстродействием. К недостаткам РН можно отнести их неспособность сглаживать колебания электрической энергии. Для максимальной защиты всех потребителей потребуется установить сразу несколько устройств.

РН защищает сеть только от недопустимых скачков напряжения и не предназначено для защиты от коротких замыканий (эту функцию выполняют автоматические выключатели).

Современные модели РН бывают трех типов:

1. Стационарное реле, встраиваемое в электрический щиток дома или квартиры.

2. Реле для индивидуальной защиты одного потребителя.

3. Реле индивидуальной защиты нескольких потребителей.

Если с эксплуатацией реле второго и третьего типа все практически ясно, то РН первого типа имеет более сложную конструкцию, а его установка требует определенных знаний. Подобные устройства монтируются на входе в помещение, так выполняется защита от скачков напряжения в сети всего домашнего электрооборудования.

Выбор РН

Выбирая реле, чтобы защитить домашнюю сеть, достаточно знать номинал электрического тока, который способен пропускать через себя вводной автоматический выключатель. Если, к примеру, пропускная способность выключателя равна 25А (что соответствует потребляемой мощности – 5,5 кВт), то рабочие характеристики РН должны быть на ступень выше – 32А (7 кВт). Если выключатель рассчитан на 32А, то реле должно выдерживать ток в 40 – 50А.

loaпоьзователь FORUMHOUSE

Я для такого случая взял реле на 40 А, при вводном автомате 25/32 (стоит первый, но уставка увеличится).

Некоторые люди выбирают марку РН, опираясь на суммарную потребляемую мощность. Это не совсем правильно. Ведь реле, способное выдерживать ток в 32А, может спокойно работать как при нагрузке в 7 кВт, так и при гораздо большей мощности потребления. Только во втором случае в рабочую схему РН необходимо встраивать специальный магнитный контактор. Но об этом в следующем разделе.

Установка РН

Стандартная схема установки РН в распределительный щиток показана на рисунке. Это наиболее простая защита от скачка напряжения.

Работы по установке РН следует производить только при отключенном вводном выключателе!

Как видим, все просто: реле контроля устанавливается сразу после электрического счетчика и подключается к фазному проводу, через который осуществляется электроснабжение всего дома. При скачке за пределы выставленного (регулируемого) диапазона реле отсоединяет внешнюю питающую сеть от внутренней электропроводки, и выполняется защита от скачков напряжения в квартире и в доме.

РН, вмонтированное в панель щитка, занимает минимум пространства на DIN-рейке.

Если мощность потребителей домашней сети даст в сумме 7 кВт и более, производители настоятельно рекомендуют встраивать в рабочую схему РН дополнительный электромагнитный контактор. Хотя, надежный контактор в общей схеме никогда не станет лишней деталью, смотрим следующий комментарий:

Vitichekпользователь FORUMHOUSE

К любому реле лучше ставить контактор, хоть производители и пишут, что РН выдерживает большие токи. Контактор имеет большие контакты и меньшее сопротивление.

Это устройство помогает разгрузить контакты РН, самостоятельно разъединяя силовую линию от общей сети бытовых потребителей. Реле контроля, в момент недопустимого перенапряжения, лишь подает команду на отключение. После этого электромагнитная катушка контактора разъединяет силовые контакты, соединяющие внешнюю и внутреннюю сети. Схема подключения в этом случае будет следующей:

Система защиты от перепада напряжения.

Защита от скачков напряжения 220в

Для того чтобы РН смогло принести пользу своему владельцу, его рабочие параметры (пределы допустимых напряжений и время задержки возобновления питания) необходимо правильно отрегулировать. Если в рабочей схеме используется одно РН, то устанавливать пределы допустимых значений следует, ориентируясь на характеристики бытовой техники, чувствительной к перепадам. Наиболее чувствительным и дорогостоящим оборудованием является аудио- и видеотехника. Диапазон допустимых значений напряжения для нее составляет 200 – 230В.

Допускаемое отклонение напряжения от номинальных показателей в отечественных энергетических сетях составляет 10% (198…242В). В случае частого срабатывания РН эти показатели можно брать за основу, осуществляя регулировку реле. Однако чувствительную бытовую электронику в этом случае рекомендуется защищать с помощью переносных стабилизаторов невысокой цены. DenBakпользователь FORUMHOUSE

Никто и не говорит, что надо при плюс-минус 15В выключаться. Есть диапазон предельно допустимых отклонений в 10%, его большинство приборов должно выдерживать. Ставить нужно, исходя из этого, примерно 190В-250В. Хотя, с нашим состоянием сетей, особенно в частном секторе ожидаемо все. Так что разумная осторожность не повредит.

Для того чтобы обеспечить максимально надежную защиту всех потребителей, следует использовать электрическую схему с несколькими реле. Рабочая схема защиты, включающая несколько РН, позволяет разбить потребителей по группам – в соответствии с их чувствительностью к перенапряжению:

  1. К первой группе относится аудио- и видеотехника (допускаемые значения напряжения – 200 – 230В);
  2. Ко второй можно отнести бытовую технику, оснащенную электрическим двигателем: холодильники, кондиционеры, стиральные машины и т. д. (допускаемые значения – 190 – 235В);
  3. Третья группа – это простые нагревательные приборы и освещение (допускаемые значения – 170 – 250В).

Каждая группа потребителей подключается к своему РН. В такой схеме рабочие параметры каждого реле настраиваются индивидуально.

Защита сети от перенапряжения и скачков.

Время задержки возобновления питания должно соответствовать эксплуатационным требованиям, предъявляемым к бытовой технике. Для некоторых холодильников, к примеру, рекомендуемая задержка равняется 10 минутам.

Защита трехфазной сети с помощью РН

Если электроснабжение вашего дома осуществляется через трехфазную систему, то на каждую фазу целесообразно устанавливать отдельное реле контроля.

Трехфазные реле напряжения созданы исключительно для защиты соответствующего оборудования (электродвигателя и т.п.). Если подобное реле установлено на вводе в жилище, то перекос напряжения на одной из фаз приводит к обесточиванию всех однофазных потребителей.

Стабилизаторы напряжения

Если в вашем доме наблюдаются постоянные скачки напряжения, то РН будет срабатывать несколько раз в сутки, обесточивая весь дом. Поэтому в таких случаях рекомендуется менее простой, более дорогой, но и более практичный способ защиты домашней электроники. Состоит он в применении стабилизаторов – устройств, сглаживающих скачки напряжения во внешней сети, выдавая на выходе постоянный показатель 220В.

По типу подключения различают два вида стабилизаторов: локальные (которые подключаются к розетке, защищая от одного до нескольких потребителей) и стационарные (подключаемые к вводному силовому кабелю и осуществляющие защиту всех потребителей домашней сети). Локальные стабилизаторы следует использовать для защиты наиболее чувствительной бытовой техники. Их можно эксплуатировать в комплекте со стационарным РН.
Стационарные стабилизаторы представляют собой сложные устройства, которые не только сглаживают перепады напряжения во всей бытовой сети, но и способны спасти дорогую технику, автоматически отключая питание потребителей при перегрузке и достижении критических значений.

Устанавливать стационарные стабилизаторы крайне рекомендуется, если значение напряжения несколько раз в сутки выходит за пределы 205…235В (это можно определить с помощью обыкновенного тестера).

Если в доме постоянно моргает свет, а напряжение выходит за пределы 195…245В, то пользоваться домашними электроприборами без стабилизатора запрещено!

Как выбирать стабилизатор

Выбирать стабилизатор следует, исходя из суммарной мощности домашних потребителей. Устройство обязательно должно обладать приличным запасом мощности.

Mishael761пользователь FORUMHOUSE,
Москва.

Запас по мощности должен быть в 2 раза больше, чем существующие потребности. То есть стабилизатор мощностью 10 кВт рассчитан на половину реальной нагрузки (5кВт) при минимальном внешнем напряжении – 150 вольт (т.е. при большом падении). Это следует учитывать при выборе.

Стабилизатор напряжения в щиток: установка

Устанавливать стабилизатор рекомендуется вблизи силового щитка в соответствии со следующей схемой.

Встраивать стабилизатор (как и РН) в общую схему следует непосредственно после счетчика. Ведь эти устройства тоже являются потребителями, следовательно, перед прибором учета их устанавливать нельзя.

Защита трехфазных сетей с помощью стабилизатора

Сразу скажем, что трехфазные стабилизаторы призваны защитить исключительно трехфазные потребители. Если же к вашему дому подходит трехфазное питание, то для создания устойчивого напряжения во внутренней сети целесообразно устанавливать на каждую фазу отдельный однофазный стабилизатор.

Подобный подход позволит существенно снизить ваши затраты (3 стабилизатора мощностью 5, 7 и 10 кВт всегда дешевле одного устройства, рассчитанного на 30 кВт). К тому же, при просадке напряжения на одной из фаз, трехфазное устройство обесточит весь дом. Это конструктивная особенность стабилизатора, ориентированного на защиту трехфазных электродвигателей.

Обсудить особенности выбора и эксплуатации стационарных стабилизаторов вы можете, посетив соответствующий раздел нашего форума. Если вам интересно поделиться личным опытом установки реле контроля напряжения в паре с контактором, то на этот случай у нас тоже найдется подходящая тема. А видео, подробно описывающее монтаж щитка и распределительной коробки, поможет вам подключить квартиру к системе электроснабжения в соответствии с общепринятыми правилами электромонтажных работ.

Устройства защиты от скачков напряжения

29.11.2019

Высокий уровень развития современных технологий позволил оснастить наше жилье высокотехнологичной бытовой техникой, которая экономит время, облегчает труд и упрощает жизнь. В подавляющем большинстве квартир и жилых домов обязательно найдутся автоматические стиральные и посудомоечные машины, микроволновки, холодильники, аудио- и видеоаппаратура, персональные компьютеры, а также другие электроприборы, реализованные на основе электронных компонентов и имеющие цифровые алгоритмы управления.

С ростом функциональности, эффективности и удобства эксплуатации растут и требования таких устройств к питающему напряжению, показатели которого, к сожалению, далеко не всегда соответствуют действующим стандартам качества электроэнергии.

По ряду причин, речь о них пойдет ниже, в электрических сетях могут возникать либо резкие колебания (скачки) напряжения, либо его длительные отклонения как в большую, так и в меньшую сторону. И то, и другое приводит не только к сбоям в работе или выходу из строя дорогостоящей бытовой техники, но и представляет реальную угрозу для безопасности жизни и здоровья людей.

Допустимые параметры электроэнергии

Стандартный уровень напряжения однофазной электросети в нашей стране составляет 230 В — именно на это номинальное значение рассчитана вся современная бытовая техника. Согласно требованиям ГОСТ 29322-2014 (IEC 60038:2009), определяющего нормы качества электроэнергии, расхождение с данной величиной не должно превышать ±10%. Таким образом, применительно к однофазной домашней сети диапазон предельно допустимого напряжения составляет 207 — 253 В.

Крайние значения из этого диапазона, не говоря уже о больших отклонениях, губительно влияют на многие современные электроприборы, в особенности на те, которые не имеют в своём составе импульсного блока питания. При этом следует понимать, что неисправность бытовой техники, вызванная некачественным электропитанием, не будет считаться гарантийным случаем – производитель, как правило, оговаривает подобные ситуации следующим образом: «Гарантия не распространяется на изделие, вышедшее из строя по причине повышенного/пониженного входного напряжения».

В чем причины перепадов напряжения в сети?

Возникновение колебаний и резких перепадов сетевого напряжения чаще всего обусловлено следующими причинами:

  1. Недостаточная мощность и общий износ подстанций, которые не всегда соответствуют фактическому потреблению электроэнергии, в результате чего сеть работает с перегрузкой и постоянными сбоями.

  2. Плохое состояние инфраструктуры энергетического комплекса, являющееся причиной частых аварий и ухудшения общего качества электроэнергии.

  3. Несимметричное (неравномерное) распределение нагрузки, вызывающее перекос фаз и скачок напряжения в однофазной сети.

  4. Атмосферные явления, например, попадание разряда грозовой молнии в линию электропередач или обрывающий провода ледяной дождь.

  5. Человеческий фактор. Короткие замыкания и перенапряжения часто возникают вследствие некорректного подключения или умышленного вандализма.

  6. Включение мощных нагрузок, приводящее к падению сетевого напряжения (при отключении таких нагрузок наблюдается обратная картина – резкий рост сетевого напряжения).

Возможные последствия скачков напряжения

Небольшие перепады напряжения в сети снижают, в первую очередь, эффективность осветительного и нагревательного оборудования. Кроме того, они могут повлечь за собой сбои в работе и остальных электроприборов, в особенности тех, которые имеют электронное управление (газовые котлы, стиральные машины, кухонная техника и т. п.).

Куда более плачевные последствия вызывают значительные сетевых отклонения: даже кратковременные провалы или скачки напряжения довольно часто становятся причиной сокращения срока службы бытовой техники, а в худшем случае и её моментального выхода из строя.

Наиболее опасны перенапряжения – резкие и сильные броски сетевого напряжения в большую сторону (на десятки и сотни вольт), такое явление практически всегда губительно для любого электрооборудования.

Спасут ли пробки или автоматы?

Автоматические выключатели и их более ранние аналоги, предохранительные пробки, являются устройствами защиты от коротких замыканий и длительных перегрузок. Их защитное срабатывание происходит только при недопустимо длительном по времени превышении током в цепи определённого значения, которое во время сетевого перепада может быть и не достигнуто. В итоге пробки и автоматы либо вообще не сработают, либо сработают через длительный промежуток времени, поэтому такие изделия вряд ли можно рассматривать в качестве серьёзной защиты от сетевых скачков и колебаний.

Как защитить технику от скачков напряжения?

Для того, чтобы в условиях нестабильной электросети гарантировать безопасное и надёжное функционирование своей бытовой техники необходимо принять определённые меры защиты. Они заключаются в установке и правильной эксплуатации специального устройства, нейтрализующего скачки напряжения и другие негативные сетевые явления.

Рассмотрим основные типы данных устройств.

Сетевой фильтр

Основное назначение этого прибора определяется его названием: фильтрация и сглаживание приходящих из сети помех. При наличии в составе варистора он будет защищать и от экстремальных перенапряжений. Следует понимать, что сетевой фильтр не обеспечивает коррекцию напряжения, следовательно, при сетевых отклонениях как хронических, так и резких прибор будет неэффективен.

Реле контроля напряжения (РКН)

Основная задача такого реле заключается в своевременном обесточивании подключенного оборудования при выходе питающего напряжения из определённого диапазона. Причем границы максимально допустимого и минимально допустимого значения пользователь задаёт самостоятельно.

РКН отличаются компактностью, достаточным токовым номиналом и удобным исполнением, позволяющим размещать их непосредственно в вводном щитке и использовать для защиты сразу всей домашней электросети.

Из недостатков можно назвать не самую эффективную защиту от значительных импульсных перенапряжений, а также неспособность повышать качество сетевого напряжения. Обратите внимание на то, что в случае электросети с периодическими скачками срабатывание РКН может стать постоянным явлением, а частое обесточивание электросети значительно понизит комфорт проживания в квартире или доме.

Устройства защиты от импульсных перенапряжений (УЗИП)

Эти устройства хорошо зарекомендовали себя в качестве защиты от импульсных перенапряжений, возникающих при грозовых разрядах, коротких замыканиях или переходных коммутационных процессах. Но они совершенно бесполезны при сетевых колебаниях и скачках, в результате которых напряжение не достигает экстремальных значений, а именно такие явления наиболее распространены и случаются во многих электросетях практически ежедневно.

УЗИП логичнее всего использовать в связке с другим устройством защиты, например, с упомянутым выше реле контроля напряжения – это повысит надежность системы электропитания и обеспечит ей максимальный уровень устойчивости перед импульсными перенапряжениями.

Данные приборы регулируют входное напряжение и стараются максимально приблизить его фактические параметры к номинальным значениям. Качественный прибор способен быстро нейтрализовать сетевое колебание или подтянуть хронически пониженное/повышенное напряжение до установленной величины.

Применение современного стабилизатора (в частности – инверторного) позволит повысить качество электроэнергии в домашней сети до уровня, удовлетворяющего требованиям даже самого чувствительного к характеристикам электропитания оборудования. Однако не все стабилизаторы одинаково эффективны — на рынке представлено большое количество моделей, которые не способны обеспечить защиту должного уровня и уязвимы для скачков напряжения.

Ознакомиться с модельным рядом инверторных стабилизаторов напряжения «Штиль».

Источники бесперебойного питания (ИБП)

Аналогично стабилизаторам напряжения, современный ИБП является эффективным средством защиты от сетевых скачков, отклонений и колебаний. Главным отличием этих приборов от всех вышерассмотренных является способность обеспечить бесперебойное питание нагрузки при отсутствии напряжения в основной сети. Работа в автономном режиме поддерживается благодаря аккумуляторным батареям, от емкости которых зависит ее продолжительность.

ИБП, как и стабилизаторы, строятся на основе разных схем и имеют различные принципы работы. Если требуется устройство, гарантирующее высокое качество электропитания при работе и от сети, и от батарей, то необходимо выбирать ИБП с двойным преобразованием или, иначе говоря, онлайн ИБП.

Ознакомиться с модельным рядом онлайн ИБП «Штиль».

Какое устройство лучше использовать для защиты от скачков напряжения?

Подытожив, можно сказать, что сетевой фильтр и РКН обеспечивают лишь частичную защиту и не справляются со всем спектром сетевых проблем. Стабилизатор напряжения и ИБП универсальнее – подключенное к ним оборудование менее досягаемо для негативных сетевых воздействий (если перед стабилизатором или ИБП дополнительно установить УЗИП, то уровень защиты возрастет ещё больше).

Однако далеко не все стабилизаторы и ИБП качественны и по-настоящему надежны, поэтому следует максимально внимательно подходить к выбору устройства и при возникновении любых вопросов консультироваться с профессионалами.

Стоит отметить, что средняя стоимость качественного ИБП превышает стоимость схожего по мощности и качеству стабилизатора (при примерно одинаковом функционале по борьбе с сетевыми скачками).

Защита сети 220 вольт от перенапряжения — как защитить электроприборы в вашем доме?

Хотя подача электричества в квартиры и дома регулируется законодательством, жильцам не стоит полностью рассчитывать на то, что соответствующие службы обеспечат подачу электроэнергии нужного качества. Если из-за бросков сетевого напряжения дорогостоящие электроприборы выйдут из строя, получить компенсацию будет практически невозможно. А поскольку неполадки на электролиниях – не редкость, то стоит самостоятельно принять меры, которые помогут уберечь бытовую технику от поломки. Для этого нужна защита от перенапряжения, обеспечить которую можно, установив в сети соответствующий прибор – защитное реле, датчик с УЗО или стабилизатор напряжения.

Номинал напряжения, обозначенный на всей бытовой электротехнике, составляет 220В, однако в реальной жизни это значение стабильно далеко не всегда. Это учитывается при изготовлении современных приборов, и они могут устойчиво работать при колебании напряжения от 209 до 231В, а также переносить разброс от 198 до 242В. Если бы небольшие перепады разности потенциалов не были предусмотрены конструкцией бытовой техники, она ломалась бы постоянно. Более значительные отклонения приводят к перегрузке сети, и это снижает эксплуатационный ресурс аппаратуры.

Чтобы сгладить колебания напряжения и обеспечить безопасность приборов, достаточно установить стабилизатор. Гораздо опаснее для электротехники перенапряжение (так называется резкий скачок разности потенциалов).

Разновидности перенапряжений

Перенапряжение может длиться как короткое, так и достаточно продолжительное время. Оно может быть вызвано ударом молнии во время грозы или коммутацией, возникшей из-за неполадок подстанции. Для защиты от них в сеть 220 или 380 Вольт (бытовую или промышленную) включается УЗИП (устройство защиты от импульсных перенапряжений). Его автоматическое срабатывание помогает обезопасить линию при воздействии, например, мощного грозового разряда, от которого не сможет спасти стабилизатор напряжения.

Наглядно про УЗИП на видео:

Удар молнии приводит к появлению мощного электромагнитного импульса, под влиянием которого в расположенных рядом с местом разряда проводниках возникают электрические потенциалы, и происходит резкий скачок напряжения. Длится он всего около 0,1 с, но величина разности потенциалов при этом составляет тысячи вольт.

Понятно, что при поступлении такого напряжения в домашние и производственные сети последствия могут быть очень тяжелыми.

Перенапряжение в результате коммутации

Такое явление может произойти при включении в линию или выключении приборов, дающих высокую индуктивную нагрузку. К ним относятся блоки питания, электромоторы, а также мощные инструменты, запитывающиеся от сети.

Этот эффект обусловлен законами коммутации. Моментальное изменение величины тока в соленоиде, а также разности потенциалов на конденсаторе произойти не может. Когда цепь с такой нагрузкой соединяется или размыкается, то в месте контакта отмечается появление вызванного самоиндукцией и коммутационными процессами электрического потенциала.

Течение переходного процесса всегда сопровождается выбросом напряжения, которое обладает полярностью, обратной входному. Небольшая емкость проводников в сети вызывает резонанс, длящийся короткое время и вызывающий высокочастотные колебания. По завершении переходного процесса они затухают.

Сколько продлится перенапряжение и какова будет его величина, зависит от следующих показателей:

  • Индуктивность нагрузки.
  • Моментальное значение разности потенциалов при коммутации.

  • Емкость подключающих электрических кабелей.
  • Реактивная мощность.

Опасность перенапряжения

Поскольку изоляция проводов рассчитана на величину напряжения, значительно превышающую номинал, пробоя чаще всего не случается. Если электроимпульс действует в течение незначительного времени, то напряжение на выходе блоков питания со стабилизатором не успевает возрасти до критического показателя. Это же касается и обычных лампочек – если резко возросшее напряжение быстро нормализуется, то спираль не успевает не только перегореть, но даже перегреться.

Если же изоляционный слой не выдерживает увеличившегося напряжения и происходит его пробой, то появляется электрическая дуга. В этом случае поток электронов проникает сквозь микротрещины, возникшие в изоляции, и идет через газы, которыми наполнены образовавшиеся мельчайшие пустоты. А большое количество тепла, выделяемое дугой, способствует расширению токопроводящего канала. В итоге нарастание тока происходит постепенно, и автомат защиты срабатывает с некоторым опозданием. И хотя оно занимает всего несколько мгновений, их оказывается вполне достаточно для выхода электропроводки из строя.

Какими устройствами обеспечивается защита сети от перенапряжения?

Схема защиты электрической линии от скачков напряжения может включать в себя:

  • Систему молниезащиты.
  • Стабилизатор напряжения.
  • Датчик повышенного напряжения (устанавливается вместе с УЗО).
  • Реле перенапряжения.

Отдельно нужно сказать о блоках бесперебойного питания, через которые в домашних сетях чаще всего подключают компьютеры. Этот прибор не предназначен для защиты от перенапряжения в сети. Его функция заключается в другом: при внезапном отключении света он работает как аккумулятор, позволяя пользователю сохранить информацию и спокойно выключить ПК. Поэтому путать его со стабилизатором напряжения не следует.

Принцип работы защитных устройств

Для защиты от электроимпульсов, возникающих под действием молнии, устанавливается грозозащитный разрядник вместе с УЗИП. А обезопасить линию от потока электронов, параметры которого не соответствуют рабочим характеристикам сети, можно с помощью специальных датчиков, а также реле перенапряжения.

Следует сказать, что как ДПН, так и реле по принципу действия и назначению отличаются от стабилизатора.

Задача этих элементов состоит в том, чтобы прекратить подачу электроэнергии в случае превышения величиной перепада максимального порога, указанного в техническом паспорте средства защиты или выставленного регулятором.

После нормализации параметров электрической линии происходит самостоятельное включение реле. ДПН для защиты линии следует устанавливать только в паре с устройством защитного отключения. Его задача заключается в том, чтобы при обнаружении неполадок вызвать утечку тока, под воздействием которой сработает УЗО.

Наглядно про реле напряжения на видео:

Недостаток такой схемы заключается в необходимости ее ручного включения после того, как напряжение придет в норму. В этом плане выгодно отличается стабилизатор напряжения. Это устройство предусматривает регулируемую временную задержку токоподачи, если происходит его срабатывание под воздействием чрезмерного напряжения. Стабилизатор часто используют для подключения кондиционеров и холодильных аппаратов.

Длительные перенапряжения

Продолжительные перенапряжения очень часто происходят из-за обрыва нулевого проводника. Неравномерность нагрузки на фазных жилах становится причиной перекоса фаз – смещения разности потенциалов к проводнику с самой большой нагрузкой.

Иначе говоря, под воздействием неравномерного трехфазного электротока на нулевом кабеле, не имеющем заземления, начинает скапливаться напряжение. Ситуация не нормализуется до тех пор, пока повторная авария окончательно не выведет линию из строя или специалист не устранит неисправность.

При обрыве нулевого провода в электророзетке будет происходить изменение напряжения в соответствии с нагрузкой, которую пользователи, не знающие о неполадках, будут подключать на различные фазы. Пользоваться неисправной цепью практически невозможно, даже если в линию питания включен хороший стабилизатор. Дело в том, что сетевые параметры, регулярно выходящие за пределы стабилизации, приведут к тому, что прибор будет постоянно выключаться.

Наглядно про обрыв ноля и что нужно при этом делать – на видео:

Недостаток напряжения (провал)

Это явление особенно хорошо знакомо людям, проживающим в деревнях и селах. Провалом (проседанием) называется падение величины напряжения ниже допустимого предела.

Опасность проседаний заключается в том, что в конструкцию многих бытовых приборов входит несколько блоков электропитания, и недостаток напряжения приведет к тому, что один из них кратковременно выключится. Аппарат среагирует на это выдачей ошибки на дисплее и остановкой работы.

Если речь идет об отопительном котле, а неисправность произошла в зимнее время, то дом останется без отопления. Избежать такой ситуации поможет подключение стабилизатора. Этот прибор, зафиксировав проседание, повысит величину напряжения до номинала. Стабилизатор может спасти ситуацию, даже если напряжение в сети упало по вине трансформаторной подстанции.

В этой статье мы рассказали, для чего нужна защита от перенапряжения в сети, какими устройствами она обеспечивается и как правильно ими пользоваться. Приведенные рекомендации помогут читателям разобраться в причинах сбоя сетевого напряжения, а также выбрать и установить устройство для защиты электросети.

Устройство защиты от перенапряжения

В конструкцию всех современных бытовых приборов входят чувствительные электронные компоненты. В результате, несмотря на все положительные качества и высокие технические характеристики, данное оборудование крайне отрицательно реагирует на перепады напряжения. Подобные скачки присутствуют во всех электрических сетях и полностью устранить их практически невозможно. Поэтому, чтобы сберечь дорогостоящую технику, требуется устройство защиты от перенапряжения.

Причины возникновения и опасность скачков напряжения

В момент перепада напряжения в электрических сетях его амплитуда изменяется на короткий промежуток времени. После этого она быстро восстанавливается с параметрами, приближенными к начальному уровню.

Подобный импульс электрическим током продолжается буквально в течение нескольких миллисекунд, а его возникновение обусловлено следующими причинами:

  • Грозовые разряды. Вызывают скачки напряжения до нескольких киловольт, которые не сможет выдержать ни один прибор. Подобные перепады нередко становятся причиной отключения сети и пожара.
  • Перенапряжение, вызываемое процессами коммутации, когда подключаются или отключаются потребители с высокой мощностью.
  • Явление электростатической индукции при подключении электросварки, коллекторного электродвигателя и другого аналогичного оборудования.

Опасность последствий от перенапряжений наглядно отражается на рисунке, где грозовой и коммутационный импульсы существенно отличаются от номинального сетевого напряжения. Изоляционный слой в большинстве проводов рассчитан на значительные перепады и пробоев обычно не случается. Часто импульс действует очень недолго и напряжение, проходя через блок питания и стабилизатор, просто не успевает подняться до критического уровня.

Иногда слой изоляции сети 220 В может не выдержать возрастающего напряжения. В результате случается пробой, сопровождающийся появлением электрической дуги. Для потока электронов образуется свободный путь в виде микротрещин, а проводником служат газы, наполняющие микроскопические пустоты. Этот процесс сопровождается выделением большого количества тепла, под действием которого токопроводящий канал расширяется еще больше. Из-за постепенного нарастания тока, срабатывание защитной автоматики немного запаздывает, и этих нескольких мгновений вполне хватает, чтобы вывести из строя в частном доме всю электропроводку.

Особую опасность представляют повышенное и пониженное напряжение, находящееся в таком состоянии долгое время. В основном это происходит по причине аварийных ситуаций, которые требуется устранить, чтобы ток пришел в норму. Других способов нормализации и каких-либо специальных приборов, защищающих от этого явления, не существует.

Длительные перенапряжения и провалы из-за недостатка напряжения

Как правило, причиной длительных перенапряжений в сетях становится обрыв нулевого провода. В этом случае нагрузка на фазные жилы распределяется неравномерно, что приводит к перекосу фаз, когда разность потенциалов смещается к проводнику с максимальной нагрузкой.

Таким образом, неравномерный трехфазный ток, воздействуя на нулевой кабель, находящийся без заземления, способствует концентрации на нем избыточного напряжения. Этот процесс будет продолжаться до полного устранения неисправности или до тех пор, пока линия окончательно не выйдет из строя.

Другим опасным состоянием сети является провал или недостаток напряжения. Подобные ситуации очень часто возникают в сельской местности. Суть явления заключается в падении напряжения ниже допустимой величины. Такие проседания представляют серьезную опасность и реальную угрозу для оборудования. Многие современные приборы оборудованы несколькими блоками питания и недостаточное напряжение приводит к кратковременному выключению одного из них.

В результате, последует незамедлительная реакция электронной аппаратуры в виде ошибки, выведенной на дисплей, и полной остановки рабочего процесса. Если подобная ситуация сложилась с отопительным котлом в зимнее время года, тогда отопление дома будет прекращено. Устранить проблему возможно с помощью стабилизатора, фиксирующего такие проседания и поднимающего напряжение до номинальной величины.

Виды и принцип действия защитных устройств

Защита электрической сети от скачков напряжения может осуществляться разными способами. Наиболее распространенными и эффективными считаются следующие:

  • Молниезащитные системы.
  • Стабилизаторы напряжения.
  • Датчики повышенного напряжения, используемые совместно с УЗО. В случае неполадок они вызывают токовую утечку, под влиянием которой произойдет срабатывание защитного устройства.
  • Реле перенапряжения.

Похожие функции выполняют блоки бесперебойного питания, с помощью которых компьютеры подключаются к домашней сети. Данные приборы не защищают от перенапряжений, они действуют как аккумуляторы, позволяя выполнить нормальное выключение компьютера и сохранить нужную информацию в случае внезапного отключения света. Стабилизировать напряжение это устройство не может.

Под действием молнии возникают электрические импульсы. Защита от их негативного воздействия осуществляется путем установки грозозащитного разрядника, используемого совместно с УЗИП – устройством защиты от импульсных перенапряжений. Он также известен, как автомат для защиты от перенапряжения. Кроме того, необходимо обеспечить дополнительную безопасность от электронного потока с параметрами, отличающимися от рабочих характеристик данной сети. Для этих целей используются специальные датчики, используемые с УЗО, и реле защиты от перенапряжения. Назначение и принцип работы данных устройств не такие, как у стабилизатора.

Основной функцией обоих компонентов является прекращение подачи электрического тока, когда перепад напряжения превысит максимальное значение, определенное паспортными техническими показателями этих устройств. После того как параметры сети нормализуются, реле включается самостоятельно и возобновляет подачу тока.

Молниезащита от перенапряжений

Защитные системы против грозовых разрядов могут быть устроены разными способами, в зависимости от технических условий.

Первый вариант предполагает внешнюю молниезащиту, устанавливаемую дома (рис. 1). В этом случае допускается максимальная сила удара молнии непосредственно в элементы самой системы. Расчетная величина такого тока составит примерно 100 кА. Защититься от мощного импульса при перегрузке возможно с помощью комбинированного УЗИП, который устанавливается внутрь вводного электрического щита и действует как выключатель. Одно такое устройство защитит все оборудование, находящееся в доме.

В другом случае внешняя молниезащита отсутствует, а напряжение подается к дому по воздушной линии (рис. 2). Молния ударяет в опору ЛЭП с расчетным током, проходящим через УЗИП, величиной тоже 100 кА. Защитить электрооборудование от мощного импульса помогут специальные устройства с защитой, размещаемые во вводном щите, на стене здания или на самом столбе, в месте ответвления линии. При использовании распределительного щита, защита организуется по такой же схеме, как и в предыдущем варианте.

Если же УЗИП устанавливается на столбе, то нецелесообразно применять дифференциальные устройства 3 в 1, поскольку на участке от столба до здания возможно появление наведенных, то есть, повторных перенапряжений. Поэтому будет вполне достаточно прибора класса 1+2, а при расстоянии до дома свыше 60 метров, внутри дома в главный щит дополнительно устанавливается УЗИП 2-го класса.

И, наконец, третья ситуация, когда питание дома подается через подземный кабель, в том числе и в сети 380 В, а внешняя молниезащита тоже отсутствует (рис. 3). Максимум, что может случиться – появление наведенных импульсных перенапряжений. Ток молнии не попадет в сеть даже частично. Величина расчетного импульсного тока составляет около 40 кА. Чтобы защитить электрооборудование достаточно УЗИП 2-го класса, установленного во вводный электрический щит.

Ограничители перенапряжений

Рассматривая вопросы защиты от перенапряжения сети, следует отметить, что данную функцию в первую очередь должны выполнять организации, отвечающие за электроснабжение. Именно они устанавливают на ЛЭП необходимые защитные устройства. Однако, как показывает практика, это выполняется далеко не всегда, и проблемы защиты дома от перенапряжений вынуждены решать сами потребители.

Защита от перенапряжения в сети на подстанциях и воздушных ЛЭП осуществляется с помощью ОПН – нелинейных ограничителей перенапряжения. Основной этих устройств является варистор, имеющий нелинейные характеристики. Его нелинейность состоит в изменяющемся сопротивлении элемента в соответствии с величиной приложенного напряжения.

Когда электрическая сеть работает в нормальном режиме, а напряжение имеет свое номинальное значение, ограничитель напряжения в это время обладает большим сопротивлением, препятствующим прохождению тока. Если же при ударе молнии возникает импульс перенапряжения, наступает резкое снижение сопротивления варистора до минимального значения и вся энергия импульса уходит в контур заземления, соединенный с ОПН. Таким образом, обеспечивается безопасный уровень напряжения, и все оборудование оказывается надежно защищенным.

Для электрических сетей дома или квартиры существуют компактный блок модульных ограничителей перенапряжений, не занимающих много места в распределительном щитке. Они работают точно так же, как и в линиях электропередачи. Эти приборы подключены к заземляющему контуру или к рабочему заземлению, по которому уходят опасные импульсы.

Другие виды защитных устройств

Существуют и другие варианты защиты от перенапряжения в сети. Они широко применяются в быту и считаются одними из наиболее эффективных средств.

Сетевые фильтры

Отличаются простой конструкцией и доступной стоимостью. Несмотря на свою малую мощность, это устройство вполне способно защитить оборудование при скачках, достигающих 380 вольт и даже 450 вольт. Более высокие импульсы фильтр не выдерживает. Он просто сгорает, сохраняя в целости дорогостоящую электронику.

Данное устройство защиты от перенапряжения оборудуется варистором, играющим ключевую роль в обеспечении защиты. Именно он сгорает при импульсах свыше 450 В. Кроме того, фильтр надежно защищает от помех высокой частоты, возникающих при работе сварки или электродвигателей. Еще одним компонентом служит плавкий предохранитель, срабатывающий при коротких замыканиях.

Стабилизаторы

В отличие от сетевых фильтров, эти устройства позволяют выполнить нормализацию напряжения дома и привести его в соответствие с номиналом. Путем регулировок устанавливаются граничные пределы от 110 до 250 вольт, и на выходе устройства получаются требуемые 220 В. В случае скачков напряжения и выходе его за допустимые пределы, стабилизатор автоматически отключает питание. Подача напряжения возобновляется лишь после приведения сети к нормальному рабочему режиму.

Что лучше сетевой фильтр или стабилизатор напряжения. В определенных условиях, например, за городом или в сельской местности, стабилизаторы являются наиболее эффективной защитой от перенапряжения, выступают в качестве единственного варианта, способного выровнять напряжение до установленных норм.

Все стабилизирующие устройства, используемые в быту, разделяются на два основных типа. Они могут быть линейными, когда к ним подключается один или несколько бытовых приборов, или магистральными, устанавливаемыми на вводе сети в квартире или во всем здании.

Читайте далее:

Как поднять напряжение в сети до 220 в частном доме

Морозной зимой сельским жителям много хлопот доставляет обогрев своих жилищ. Тем же, кто отказался от печного отопления, проблему, как будто специально, создает заниженный уровень поступающей электроэнергии.

Да и в многоэтажных зданиях многочисленных городских поселков жители страдают от плохого электричества. Вот люди и задаются вопросом: Как повысить напряжение в сети до 220 в частном доме с наименьшими затратами и почему энергоснабжающие организации не качественно выполняют свои обязанности?

Предлагаю рассмотреть его объективно с точки зрения потребителя и поставщика. Решение проблем лучше искать совместными усилиями на основе компромисса.

Электрические районные сети: где искать потери напряжения

Рекомендую обратить внимание на три вопроса:

  1. Работу трансформаторной подстанции.
  2. Состояние линии электропередач.
  3. Равномерность распределения нагрузки по фазам.

Виды трансформаторных подстанций 10/0,4 кВ: простая оценка по внешнему виду

Электроэнергия от промышленных генераторов к нам в жилой дом поступает по линиям электропередач через трансформаторные подстанции. На них напряжение с 10 или 6 киловольт снижается до 0,4.

Конструкция ТП должна пройти реконструкцию с заменой изношенного оборудования, отвечать современным требованиям надежности и безопасности.

В этом случае вам просто уже повезло. Если воздушная ЛЭП 380 вольт идет от подобной модульной подстанции, то она обладает резервом мощности.

Однако довольно часто еще можно встретить старые конструкции ТП, введенные в работу в советское время.

Нельзя сказать, что они выработали свой ресурс и не пригодны к работе. Просто надо понять, что сейчас сильно изменились условия их эксплуатации. Они уже не справляются нормально с современными, сильно возросшими нагрузками.

Их резерв мощности был рассчитан на энергоснабжение групп потребителей в частных домах, подключенных к бытовой проводке, собранной алюминиевыми жилами 2,5 мм кв. Сила тока тогда практически никогда не превышала 16 ампер, что соответствовало примерно 3 киловаттам.

С тех пор многое изменилось. Даже простой электрочайник потребляет 2 кВт. А ведь еще есть различные отопители и нагреватели, стиральные машины, микроволновки, бытовой инструмент. У многих мастеров работают насосы, станки, сварка.

Все эти потребители вместе сильно нагружают старые трансформаторные подстанции: их мощности не хватает на обеспечение полноценного питания подключенных нагрузок.

Воздушная линия электропередач: влияние конструкции на качество электроснабжения

Закон Ома определяет, что падение напряжения на участке воздушной линии электропередач от трансформаторной подстанции до конечного потребителя зависит от силы тока и величины сопротивления проводов.

На последний параметр влияют протяженность токопроводящей магистрали и конструкция проводников:

  • тип металлических жил;
  • общее поперечное сечение провода;
  • качество контактных соединений в местах стыковок — переходное сопротивление.

Чем длиннее магистраль от трансформаторной подстанции до последнего потребителя, тем больше проблем возникает у энергоснабжающей организации, да и жителей дальних домов.

Существующие нормативы ПУЭ определяют, что уровень напряжения в однофазной сети должен укладываться в предел 207÷253 вольта. Для обеспечения этого условия на ТП предусмотрена возможность его оперативного регулирования.

Обычно им пользуются для переключения режимов работы при смене сезонов: зимний период связан с большим энергопотреблением. Он требует завышать выходной уровень сети 0,4 на трансформаторной подстанции.

Длинные воздушные линии и возросшее количество мощных потребителей приводят к тому, что у владельцев домов, запитанных около ТП, напряжение находится на максимуме предела регулирования и поднимать его уже нельзя, а на самых удаленных потребителях падает ниже допустимого уровня вплоть до 180 вольт, а то и ниже.

В этой ситуации поставщик энергии быстро решить вопрос не сможет. Ему необходимо:

  • полностью менять оборудование трансформаторной подстанции;
  • или строить новые линии электроснабжения;
  • либо решать одновременно все задачи.

Нам следует понимать, что они энергозатратны, не дешевы, требуют приложения больших усилий и материальных средств.

Как устроена старая ВЛ

За основу передачи энергии раньше массово использовали алюминиевые провода со стальным сердечником. Их так и называли: АС. Кстати, производство алюминиево-стальных проводов различных типов существует до сих пор.

В сельской местности применяется провод АС с сечением 16 мм квадратных, как наиболее бюджетный вариант. Его небольшой диаметр при значительной длине и наличии стальной жилы создает довольно высокое электрическое сопротивление.

Ухудшает его еще способ соединения раскатки провода на составляющие проволоки и скрутку их в единый узел. Хорошо, если он выполняется с обжатием в гильзе. А ведь его могут сделать и на скорую руку.

Косвенным признаком вины алюминиевых проводов является характерное снижение напряжения вечером и нормальная величина ночью, когда большая часть нагрузки снята.

Модернизация ВЛ кабелем СИП

Современная конструкция воздушного кабеля сделана для обеспечения минимальных потерь напряжения. У них используется улучшенная технология сборки и повышенная проводимость токопроводящих жил. Каждая из фаз покрыта слоем светостойкой ПВХ изоляции, что разрешает скручивать их единой магистралью.

Кабель СИП монтируется по специальной технологии, обеспечивающей минимальные потери напряжения при транспортировке по нему электрической энергии.

Переход воздушной линии с открытых алюминиевых проводов типа АС на кабель СИП повышает надежность и эксплуатационные характеристики ВЛ.

Распределение нагрузки по фазам: как просто определить дисбаланс

Идеальное трехфазное напряжение создается генераторами на холостом ходу.

Его схему и диаграмму удобно представлять векторной формой в виде равностороннего треугольника. Между вершинами A, B и C создается линейное напряжение 380, а относительно нуля и вершин — фазное.

Это напряжение 220 поступает к нам в жилой дом и ко всем потребителям. К нему каждый владелец по своему усмотрению подключает нагрузку. Процесс этот носит чисто случайный характер на всем протяжении питающей ЛЭП.

Если какая-то фаза станет перегруженной (течет больший ток), то на ней может произойти посадка напряжения. Точка рабочего нуля в треугольнике смещается из центра, меняются разности двух других фазных потенциалов.

На этот процесс снабжающая организация реагировать практически не может. Она влияет на него на стадии проекта и очень редко переключает потребителей при эксплуатации.

Электрические замеры под напряжением на ВЛ около дома способны дать объективную оценку качества напряжения. Но делать их могут только подготовленные бригады электриков с соблюдением ряда организационных и технических мероприятий.

Владелец дома может оценить роль снабжающей организации в подводе электричества в его жилище только визуально по внешнему виду подстанции, воздушной ЛЭП и опросе ближайших соседей о качестве электроэнергии в их зданиях.

Причина низкого напряжения довольно часто может быть создана по вине владельца здания.

Электропроводка в частном доме: скрытые ошибки монтажа, создающие проблемы

Внимание: зона ответственности снабжающей организации заканчивается на ответвительной опоре! Схема подключения к ней, кабель ввода в дом и весь внутренний монтаж лежат на совести частного владельца.

Поэтому вначале надо обращать внимание на состояние качества уличной проводки, а затем — внутридомовой.

Контакты на улице

Ввод в здание и подключение к счетчику делают бригады электриков от поставщика и энергосбыта. От качества их работы может пострадать хозяин дома. Ему следует контролировать состояние проводов и создаваемых контактов.

Обычная скрутка алюминиевых жил на воздухе покрывается слоем окислов и ухудшает переходное сопротивление. Это место начинает больше греться и сильнее окисляться. Процесс со временем нарастает, хотя визуально может быть не заметен.

Естественный обдув воздухом и длина открытого провода его маскируют, но не останавливают. Увеличенное переходное сопротивление такого контакта — причина потери напряжения на нем.

Подключение ответвления специальными зажимами с нарушениями технологии — тоже возможная причина плохого контакта.

Если на нем образовались трещины, сколы, потемнения и другие дефекты, то они явно свидетельствуют об увеличенном переходном сопротивлении, потерях энергии.

Контакты вводного автомата

Подключение силового провода к автоматическому выключателю на вводе часто требует использования специальных переходников с созданием надежного ужима. Халатная работа сразу может не сказаться, но со временем проявиться.

Переходное сопротивление контактов владелец может проверить созданием электропроводке режима максимальной нагрузки на некоторое время. Сразу потребуется проконтролировать их нагрев. Проводя визуальный осмотр, следует обращать внимание на потемнение корпуса защитного модуля, состояние изоляции.

Внутри дома возможны и другие причины, ведущие к снижению уровня электричества.

Общие организационные вопросы: что обсуждать с поставщиком электроэнергии

Приступать к обсуждению возникших проблем следует только после того, как окончательно стало ясно, что у владельца здания все выполнено надежно и его вины нет.

Это же должны подтвердить соседи, у которых не решены аналогичные вопросы. Действовать лучше сообща. Обращаться следует в различные инстанции власти с письменными заявлениями, но начать необходимо с поставщика. Он в первую очередь должен обеспечить качество подводимой электроэнергии.

Однако, как показано выше, этот процесс, скорее всего, растянется на длительный срок. Владельцу дома до его решения придется принимать самостоятельные меры.

Как повысить напряжение в сети: 2 подхода

Решить вопрос можно своими руками или приобрести специальное промышленное оборудование.

Как повысить напряжение: бюджетные варианты от бывалого

Способ №1: старый стабилизатор от черно-белого телевизора

Кинескопные ламповые модели телевизоров в советское время потребляли много электроэнергии, порядка 400 ватт. Им требовалось стабилизированное питание.

Для них многочисленные заводы массово выпускали различные модели стабилизаторов напряжения. Со временем необходимость в них пропала и они попали к мастерам в кладовки, а кто-то просто выбросил, хотя надежность и работоспособность этих устройств сохранилась и по сей день.

Использовать такой старый стабилизатор вполне допустимо, но, стоит обратить внимание на его выходную мощность. Питать через него лучше какой-то один бытовой прибор с электродвигателем.

Если имеются два одинаковых стабилизатора, то их можно объединить и подключить более высокую нагрузку.

Способ №2: понижающий трансформатор

Подойдет любая модель от старого ненужного зарядного устройства автомобильных аккумуляторов или самодельная конструкция. Показываю на примере трансформатора 220/12-36 вольт. Его номинальная мощность 315 вольт-ампер.

На правой части картинки показаны выходные цепи со снятым корпусом. Подобных зарядных было выпущено очень много. Из них можно выцепить схему электроники. Она не нужна.

Далее поступаем очень просто. Собираем схему увеличения напряжения, когда первичная обмотка работает, как обычно, а вторичка добавляет свои вольты к питанию прибора.

С научной точки зрения необходимо выполнять фазировку, а на ее основе ставить перемычку между обмотками, которая позволит сделать вольт-добавку. Предлагаю более простой вариант:

  1. Соединяем перемычкой произвольно одну клемму входной цепи с любой выходной, действуя по принципу: «мне повезет».
  2. Включаем трансформатор в сеть обмоткой 220 и замеряем сигнал на его выходе вольтметром.
  3. Если он увеличился, то удача нам улыбнулась и все получилось.
  4. Когда напряжение снизилось, то это значит, что мы собрали схему понижения и требуется переключить перемычку на одной из клемм входа или выхода.

Если отсутствует трансформатор заводского исполнения, то его не так уж сложно намотать своими руками на подходящем магнитопроводе. Можно использовать даже статор от сгоревшего асинхронного двигателя.

Методику расчета и сборки описывать не буду. Она довольно подробно изложена в этой статье про трансформаторный паяльник Момент. Что будет не понятно — спрашивайте. Я помог уже многим читателям в этом вопросе.

Подключать бытовой прибор к добавленному трансформатором напряжению следует с учетом мощности нагрузки. Первичная и вторичная обмотки могут перегреться от повышенных токов.

Чтобы не допустить перегрева добавочного ТН, достаточно правильно подобрать к нему предохранитель, контролировать и ограничивать время работы при максимальных нагрузках.

При скачках напряжения в сети на величину до 25-30 вольт необходимо в выходную цепь трансформатора включать реле РКН. Без него выходной уровень при броске может перевалить за 253 вольта, что создаст аварийную ситуацию.

Способ №3: стабилизатор напряжения своими руками

Любителям мастерить предлагаю собрать относительно не сложную электронную схему на трансформаторе с тремя обмотками, работающими по принципу приведенной выше вольт-добавки понижающего трансформатора.

Предлагаемый стабилизатор напряжения своими руками нормально справляется со стабилизацией электроэнергии для нагрузок 1,5 кВт при уровне сети 200 вольт и 700 ватт при снижении до 180В. Работает он автоматически.

Компаратор имеет 4 ступени настройки порогов срабатывания. Переключение обмоток осуществляют контакты реле РП-21 постоянного тока с напряжением 24 вольта. Их можно заменить аналогами, но обращайте внимание на коммутационную способность контактов. Иначе они сгорят.

Марки и номиналы компонентов электронной базы показаны на схеме. Однако, проще купить такой прибор промышленного изготовления.

Стабилизатор напряжения для частного дома: на какие характеристики обращать внимание

Индуктивная нагрузка

Выбирать модель стабилизатора следует под конкретные нужды его эксплуатации. Необходимо учесть, что пусковые токи электродвигателей превышают в два-три раза номинальную величину нагрузки.

Мощность источника должна их надежно перекрывать. Особенно важно выполнять это требование для электродвигателей насосов различных жидкостей и компрессоров, начинающих свой запуск под нагрузкой рабочей среды, а не раскручивающихся на холостом режиме.

Способы регулирования

Стабилизаторы напряжения работают по принципу автотрансформатора и построены по одной из двух схем:

  1. ступенчатого переключения дополнительных обмоток релейными или полупроводниковыми ключами;
  2. плавного регулирования выходной величины за счет перемещения сервопривода по принципу работы ЛАТР.

В первом случае на автотрансформаторе создаются отпайки. Их количество влияет на величину ступени регулирования напряжения. Коммутации происходят по командам от электронного блока тиристорами или симисторами.

Стабилизатор с сервоприводом плавнее переключает напряжение движением угольных электродов по виткам автотрансформатора.

Сервоприводный механизм и щетки плохо переносят часто меняющиеся нагрузки и разрушаются от токов, которые возникают при работе от сварочных трансформаторов. Даже если кто-то из соседей пользуется сваркой, то он может повредить сервопривод.

Стабилизаторы напряжения изготавливают для работы с трехфазной и однофазной нагрузкой. Однако при их выборе надо хорошо представлять условия их эксплуатации.

Особенности трехфазного питания

В доме с таким электроснабжением на вводе лучше устанавливать 3 однофазных устройства на каждую фазу отдельно. Любой из них будет нормально выравнивать напряжение при разных нагрузках намного лучше, чем один общий.

Трехфазные электродвигатели и трансформаторы подключают через соответствующие 3-х фазные стабилизаторы. Они больше приспособлены к симметричным нагрузкам.

Режим Bypass

Полезной функцией прибора является возможность транзита электроэнергии, минуя орган стабилизации.

Режим байпас имеется не на всех стабилизаторах, а только на более дорогих. Он позволяет при номинальных уровнях напряжения экономить ресурс работы оборудования.

Видеоролик владельца Voltra BY «Как выбрать стабилизатор для дома» поможет вам определиться с поиском подходящей конструкции. Рекомендую посмотреть.

Если же у вас еще остались вопросы и не ясно, как повысить напряжение в сети до 220 в частном доме, то спрашивайте. Постараюсь помочь.

Эффект «проседания» входного напряжения ниже установленной нормы довольно распространенная проблема. Она более характерна для электроснабжения в сельской местности, но нередко ее проявления могут наблюдать и горожане. Известно, что низкое напряжение в сети приводит к сбоям в работе бытовых приборов, понижению их мощности и преждевременному выходу из строя. Этих причин достаточно, чтобы не пускать дело на самотек и принимать решительные меры для устранения или снижения перепадов напряжения.

Причины просадки напряжения

Существуют определенные требования к электрической сети, они приведены в ГОСТе 13109 97. В нем указано, что возможны длительные отклонения напряжения от номинала в пределах 10% (-5% и +5%). Помимо этого допускаются краткосрочные скачки напряжения до 20% от номинала (от -10% до +10%). То есть, при норме 220 вольт длительное «проседание» до 209,0 В будет не критичным, как и краткосрочное понижение до 198,0 В. Падение напряжения за указанные пределы (например, до 180 Вольт) говорит о том, что параметры сети не отвечают установленным нормам.

190 В – это уже пониженное напряжение

Важно установить природу «просадок» напряжения, в противном случае устранение последствий будет неэффективным. Проблемы с электрической сетью могут быть связаны со следующими причинами:

  1. Износ проводов ЛЭП, большое число соединителей, магистральные лини не соответствуют возросшей нагрузки и т.д.
  2. Мощность трансформаторов недостаточна для текущей нагрузки. Большинство трансформаторных подстанций были установлены более 30-40 лет назад, естественно, что за прошедшее время число потребителей электроэнергии существенно возросло. В результате действительные мощности превышают расчетные, что приводит к перегрузке трансформаторов, и, как следствию – нестабильному напряжению сети.
  3. Дисбаланс мощности. Как правило, в квартиру или дом заводится однофазное питание, но каждая из фаз является отдельным плечом трехлинейной схемы. Соответственно, при неравномерном распределении нагрузки будет наблюдаться понижение или повышение напряжения. Такой эффект получил название «перекос фаз».
  4. Подвод осуществляется кабелем с недостаточным сечением проводов для подключения нагрузки. Например, при расчетной мощности 11 кВт, подключение нагрузки осуществляется жилами сечением 6,0 мм2, при норме 10,0 мм2.
    Таблица соответствия площади сечения вводного кабеля подключаемой нагрузке
  5. Некачественное ответвление от воздушной линии.
  6. Плохой контакт на входном автомате.

В первых трех случаях самостоятельно устранить причину не представляется возможным, но можно подать жалобу в энергосбыт на поставщика электроэнергии (подробно об этом будет рассказано в другом разделе). В пунктах 4-6 указаны неисправности в домашних электросетях, поэтому такие проблемы решаются потребителями электроэнергии самостоятельно или для этой цели привлекаются специалисты.

Влияние и последствия низкого напряжения на электроприборы

Пониженное напряжение отражается на бытовых электроприборах следующим образом:

  • Происходит существенно ухудшение пусковых характеристик электродвигателей и компрессорных установок. В частности, превышает норму пусковой ток, что может привести критическому перегреву обмоток.
  • Изменяются основные параметры и эксплуатационные характеристики электрических приборов, например, на нагрев воды бойлером занимает больше времени из-за слабой мощности.
  • Понижается интенсивность светового потока у ламп с нитью накала. Примечательно, что перепады в сети не приводят к снижению яркости энергосберегающих и светодиодных источников с импульсными источниками питания. Качественные модели могут работать и с сетевым напряжением 140 Вольт, но при этом снижается ресурс устройства.
    Снижение яркости лампы накаливания – характерный признак падения напряжения
  • Повышение силы тока и как следствие перегрев проводов линий сети частного дома, что может привести к разрушению изоляции.
  • Сбои в работе электроники.

Исходя из вышесказанного, можно констатировать, что наиболее подвержены пагубному воздействию пониженного (маленького) напряжения те устройства, конструкция которых включает в себя электродвигатель или компрессор. К таковым относится большая часть бытовых электроинструментов, холодильные установки, насосное оборудование и т.д. Встроенная защита такого оборудования может не позволить включить приборы, если напряжение скачет или существенно ниже нормы. Нештатные режимы работы снижают ресурсы оборудования, что приводит к уменьшению срока эксплуатации.

Менее подвержена влиянию техника, оснащенная импульсными БП с широким диапазоном входных напряжений. На нагревательном оборудовании «проседание» практически не отражается, единственное, что наблюдается – снижение мощности по сравнению с нормальным напряжением. Исключение – устройства с электронным управлением.

Способы решения проблемы

Начать необходимо с установления причины, повлекшей «проседание» электрической энергии. Распишем подробно алгоритм действий:

  1. Можно начать с опроса соседей, чтобы установить имеется ли у них подобная проблема. Если они столкнулись с подобной ситуацией, то велика вероятность, что имеет место внешний фактор (слабый трансформатор на подстанции, проблемы с ВЛ или дисбаланс мощности). Но прежде, чем писать коллективное заявление в Энергосбыт, следует проверить внутреннею сеть, поэтому вне зависимости от результатов опроса переходим к следующему пункту.
  2. Отключите вводный автомат защиты и измерьте напряжение на входных клеммах, после чего повторить измерение с подключенной нагрузкой.
    Вводный автоматический выключатель отмечен зеленым овалом

Если без нагрузки напряжение в пределах нормы, а после подключения внутренней сети «проседает», то можно констатировать, что проблема имеет местный характер и решать ее придется своими силами. В первую очередь необходимо проверить вводный автомат, поскольку слабый контакт на его входе или выходе может вызвать «проседание» напряжения.

Проблемы с электрическим контактом в автоматическом выключателе (АВ)

Как правило, в случаях с плохим электрическим контактом в проблемном месте выделяется много тепла, что приводит к деформации корпуса АВ. В таких случаях необходимо произвести замену защитного устройства. Поскольку на входе прибора имеется высокое напряжение, такую работу должен выполнять специалист с 3-й группой допуска, самостоятельно производить замену опасно для жизни.

  1. Если с АВ все в порядке и дефектов не обнаружено, следует проверить соответствие сечения вводного кабеля. Для этой цели можно воспользоваться таблицей, приведенной на рисунке 2. При необходимости производится замена провода.
  2. В том случае, когда проверка кабеля и АВ не дала результатов (автомат защиты в норме, а кабель соответствует нагрузке), следует проверить отвод. Оплавленный корпус или искрение при подключении нагрузку свидетельствует о ненадежном контакте, следовательно, необходимо выполнить переподключение.

Обратим внимание, что все монтажные работы «до счетчика» должны выполняться специалистами поставщика услуг (если договор заключен напрямую) или управляющей компании.

Все значительно сложнее, когда имеют место внешние причины. Модернизацию линии или трансформаторов на подстанции можно ждать годами. В таких случаях поднять напряжение до приемлемого уровня поможет установка стабилизатора.

Электронный стабилизатор Luxeon EWR-10000

Представленный на рисунке стабилизатор напряжения имеет рабочий диапазон от 90,0 до 270 Вольт и рассчитан на нагрузку до 10,0 кВА. Приборы такого типа устанавливаются на весь дом или квартиру, то есть, нет необходимости защищать каждый бытовой прибор отдельно. Стоимость электронных стабилизаторов напряжения около $200-$300, что однозначно дешевле, чем покупка новой техники, взамен вышедшей из строя.

Поднять напряжение до должного уровня также можно путем подключения домашней сети через повышающий трансформатор. Такой способ решения проблемы неудачный, поскольку нормализация электросистемы приведет к перенапряжению, что в лучшем случае приведет к срабатыванию защиты в бытовой технике. По этой же причине не рекомендуется использовать повышающей автотрансформатор.

Иногда проблему пытаются решить путем установки реле напряжения. Эффективность такого решения нулевая, прибор просто отключает питание сети, когда напряжение выходит из допустимого диапазона. В результате в розетках нет тока пока ситуация не нормализуется.

Куда звонить и жаловаться на электросети?

Звонками сложившуюся проблему не решить, необходимо подавать претензию на ненадлежащее качество предоставляемых услуг. То есть, пишите заявление в компанию, обеспечивающую поставки электроэнергии (если договор заключен напрямую) или подавайте жалобу в управляющую компанию. Заявление необходимо зарегистрировать или отправить заказное письмо (почтовый адрес указан в договоре).

Если вышеуказанные меры не помогли, можно обратиться в прокуратуру, Роспотребнадзор, районную администрацию, общественную палату, а также в районный суд.

Обратим внимание, что более эффективны коллективные жалобы, поэтому если с проблемой низкого напряжения столкнулись соседи или другие жильцы дома (района, поселка и т.д.), то лучше и их привлечь к процессу.

Если из-за отклонения напряжения от установленных норм (по вине поставщика услуг) вышла из строя бытовая техника, можно требовать возместить ущерб. Для этого необходимо действовать по следующему алгоритму:

  1. Следует обратиться к поставщику услуг, чтобы его представители зафиксировали, что авария имела место, и составили соответствующий акт.
  2. Берется заключение из сервисного центра, в котором указывается причина выхода бытовой техники из строя.
  3. Подается претензия поставщику услуг с требованием возместить ущерб.
  4. При отказе, необходимо решать вопрос в судебном порядке.

Как увеличить напряжение в сети 220

Как увеличить напряжение сети 220 В своими руками

Падение напряжения в первичной сети 220 вольт является иногда очень серьезной проблемой в сельской местности, да и не только. Холодильник не запускается, плитка не греет, утюгом не погладишь, паяльником не припаяешь, да мало ли… . Если падение напряжения для нагревательных приборов, имеющих для сети активное сопротивление, явление не летальное, то для аппаратуры, в которой установлены двигатели, в частности – холодильники, оно может стать последним в их жизни.

Начнем с простого, с нагревательной аппаратуры. Так как форма напряжения для нагревателей, не имеет ни какого значения, то поднять действующее (среднеквадратичное или эффективное) значение напряжения питания для них нет ни какой проблемы. Смотрим схемку.

Эта приставка напряжение сети (фиг.1) сперва выпрямляет (фиг.2), а потом за счет энергии, запасенной в конденсаторах, увеличивает эффективное напряжение, см. фигуру 3.

Выпрямительный мост можно использовать, как готовый, так и спаять из отдельных диодов. В сельской местности линии электропередачи воздушные и высоковольтные импульсные всплески напряжения не редкость, так что, выбирая элементы выпрямителя, обратите внимание на максимальное рабочее напряжение диодов. Чем выше, тем лучше, в разумных пределах конечно. Рабочий ток диодов должен превышать ток нагрузки раза в 2 в 3. Емкость конденсаторов вам придется подобрать самим. Она зависит и от величины провала напряжения сети и от мощности вашего нагревателя. С этой приставкой будьте осторожны, если напряжение сети восстановится до нормы, то на ее выходе напряжение будет выше рабочего напряжения нагрузки. Величина превышающего напряжения зависит от величины емкости подключенных в данный момент конденсаторов. Отсюда и необходимый запас по току диодов. У меня такая приставка имеется для большого паяльника 100Вт в виде топора, для его быстрого разогрева.

Теперь про, например холодильник. Этому товарищу необходим переменный синус. Конечно, можно купить и автотрансформатор и стабилизатор. Но можно обойтись и простым трансформатором, так называемым трансформатором вольтдобавки. Смотрим схемку.

Из схемы видно, что последовательно с верхним проводом сети 220 вольт включена дополнительная обмотка трансформатора. Если ее включить синфазно с сетью, то напряжения будут складываться (когда надо поднять напряжение), Если ее включить противофазно, то напряжение сети и напряжение на вторичной обмотке трансформатора будут вычитаться, это тот случай, когда напряжение надо уменьшить.

Как повысить напряжение сети, расчеты.

Теперь давайте немного посчитаем, хотя бы примерно. Допустим провал напряжения у вас тридцать вольт. Необходимый ток нагрузки равен пяти амперам. Отсюда следует, что нам необходима мощность 150Вт. С такое мощностью гарантированно справится трансформатор от старого лампового телевизора. Например, ТС-180.
Трансформатор ТС-180, ТС-180-2, ТС180-2В параметры скачать

Так, скачали данные, нашли ТС-180, Складываем все витки первичных обмоток, 375+58+375+58=866 витков. Находим число витков на один вольт 866/220 = примерно, 4 витка на вольт. Для получения необходимых нам 30В умножаем 30 на 4 = 120витков. По 60 витков на катушку (у ТС-180 их две). Диаметр провода для пяти ампер равен 0,7 √I = 0,7√5 = 0,7∙2,236 ≈ 1,56 мм. Небольшие пояснения. Я всегда после разборки заводских трансформаторов увеличиваю число витков первичной обмотки, в первую очередь это связано с тем, что обратно собрать сердечник, как это делают в условиях производства, не удастся. Поэтому увеличение тока холостого хода (возможно в несколько раз из-за отсутствия ферронаполнителя в зазоре, т.к. сердечник разрезной) гарантировано. Да и броневой сердечник полностью не собрать, пластина 1,2,3, все равно останутся.

Вы, наверное, уже заметили, что через такой трансформатор можно питать двигатель мощностью один киловатт. В схеме нет тумблера для подключения нашего трансформатора. Он может коммутировать, как первичную обмотку трансформатора, но здесь будут потери из-за постоянно включенной в сеть вторичной обмотки, так переключать саму вторичную обмотку, но здесь будут потери из-за постоянно включенной первичной обмотки. Пока пишу этот текст, пришла в голову идея. Сейчас допишу и нарисую схему. Так вот, для коммутации трансформатора потребуется два переключателя или один с несколькими направлениями. Все теперь об идее, схему нарисовал. Смотрим схему.

И так, переключатель в нижнем положении, трансформатор добавляет напряжение. Переключатель в верхнем положении, первичная обмотка замкнута накоротко, значит и во вторичной обмотке короткое замыкание, а это ничто иное, что трансформатор исчез, осталось только активное сопротивление вторичной обмотки.

Тааа…к, родилась еще одна схема. Сейчас нарисую. Что же я раньше до этого не додумался, хотя в Сети, может быть, уже давно кто-то это нарисовал. Смотрим.

Если переключатели оба внизу или оба вверху, то трансформатора в цепи нет, в первичной обмотке режим КЗ, оставшееся активное сопротивление менее Ома. Теперь левый вверх, правый вниз – трансформатор, например, добавляет напряжение, а правый вверх левый вниз – убавляет. Ну, вот и все, может, кому это и пригодится. Успехов. К.В.Ю. Да, еще чуть, чуть. А если вместо переключателей применить Н-мост из полевых транзисторов, да еще микроконтроллер, следящий за уровнем сетевого напряжения, то можно, наверное, сделать стабилизатор переменного напряжения релейного типа с маленьким (относительно) трансформатором на большую (относительно) мощность. Кто бы только все это сделал. По крайней мере есть над чем подумать.
Скачать статью

Онлайн помощник домашнего мастера

Пакетный выключатель считается устаревшим аналогом электрического автомата. Опытные профессионалы называют эту конструкцию – пакетник. Этот механизм использовали для полной блокировки подачи электроэнергии в квартиру. Основной недостаток этой установки заключается в её недолговечности – она быстро перегорает от резкого скачка электричества.

Именно поэтому в многоэтажных домах перешли на другой вид конструкции такой как двухполюсные полуавтоматы. В последнее время пакетники применяют для бытовых нужд в повседневной жизни. Какой принцип работы пакетного выключателя? Ответ на данный вопрос вы найдете в нашем материале.

Краткое содержимое статьи:

  • Конструкция устройства
  • Принцип работы устройства
  • Виды пакетных выключателей
  • Подключение прибора к электрической сети
  • Фото пакетных выключателей

Конструкция устройства

Эта конструкция получила такое название благодаря своему строению. Одинаковые детали коммуникационных элементов собраны на одной длинной оси. На фото пакетного выключателя изображено подробное устройство данной установки.

Корпус изготовлен из качественного изоляционного материала. На поверхности имеются дополнительные отверстия для электрических контактов. Здесь имеются камеры дугогашения. По центру расположена подвижная шайба, которая также выполнена из качественной изоляции. На ней имеются ножки из электродов. Привести механизм в действие помогают эти несколько элементов, которые располагаются на длинной оси.

Галетный пакетник состоит из изоляционного корпуса. На его поверхности располагаются подвижные и неподвижные части контактов. Дополнительные пружины на изоляции упираются в центр фигурной шайбы.

Принцип работы устройства

Как работает данный механизм? Первым делом, оператор при помощи рукоятки начинает запускать механизм подвижных шайб. Они передают свое движение в район контактной группы. В результате этого наблюдается быстрое размыкание и замыкание контактов проводников в зависимости от выбранного режима пакетного выключателя.

Это устройство оснащено двумя положениями рукоятки, которые помогают включить и выключить прибор. При резком движении может произойти резкий скачок электричества, что спровоцирует сгорание контактов. Если в строении механизма имеется кулачковый переключатель, то его можно «запрограммировать» на нужное переключение контактной группы.

Прибор применяют на линиях с небольшим напряжением переменного тока до 360 вт и постоянного до 220 Вт. Рабочее состояние выключателя составляет 60Гц. Эти устройства не гарантируют эффективную защиту. Низкая стоимость прибора делает его популярным среди потенциальных потребителей.

Современные модели имеют полюса и направления выключателей. Они отвечают за включение определенного количества коммуникационных пакетов, каждый из которых оснащен стационарными и двигающимися контактами. Стационарный вид контактов делают в виде ножей и фиксируют в пластиковом корпусе шайбы.

Подвижные контакты зафиксированы в изолированных поворотных штырях. При внешнем осмотре прибор имеет овальную форму с дополнительными разъемами для фиксации проводников. На поверхности крышки имеются дополнительные фиксаторы, которые помогают установить нужный режим устройства.

Виды пакетных выключателей

На сегодняшний день известно несколько видов пакетных выключателей. Между собой они различаются по степени защиты. Они делятся на:

  • открытые;
  • закрытые;
  • герметичные.

По принципу действия их можно разделить на:

Устройство защитного отключения. Этот тип помогает защитить жилое пространство от любых утечек электрической энергии. Оно быстро срабатывает если в сети появится дифференциальный ток. Он становится главной причиной возникновения пожаров и возгорания электропроводки.

Автоматический выключатель. С ним соединяют устройство защитного тока. Этот аппарат позволяет регулировать резкие скачки электричества внутри сети. Повышенный уровень, сопровождается отключением устройства.

Главное преимущество данного прибора заключается в его многократном использовании. Он предотвращает плавление и возгорание электрической проводки за короткий промежуток времени. Этот механизм имеет несколько полюсов. Различная конструкция корпуса, позволяет подобрать оптимальный вариант.

Дифференциальный автомат. Данное устройство представляет собой комбинированный прибор, который оснащен дополнительной защитой тока и автоматического выключателя. Простым языком – это модернизированная версия механизма.

Подключение прибора к электрической сети

Как подключить пакетный выключатель? Современные модели приборов имеют компактные размеры, которые позволяют установить его в электрический щиток. Монтирование прибора будет осуществляться при помощи специальных саморезов.

На схеме представлено подключение устройства к однофазному счетчику. От него отходят провода: фаза и ноль. Здесь необходимо использовать специальные клемы и подключить эти провода. Боле усовершенствованные модели счетчиков имеют другие цветовые обозначения, поэтому необходимо быть особо аккуратными.

Для каждого типа электрической сети разработаны определенные схемы подключения пакетного выключателя. Здесь важно соблюдать строгую очередность действий. Если перед нами трехфазная электросеть, то все провода подключают в зависимости от полярности.

Другую сторону прибора начинают фиксировать с провода нагрузки с соблюдением диаметральной противоположности. Здесь выключатель оснащен двумя положениями, в которых фазы разъединены или замкнуты.

Для трехфазной сети применяют только два контакта из имеющихся трех. Установка пакетного выключателя происходит немного проще. Это количество используют для однофазных линий электропроводки. Здесь выполняют подсоединение фазы и нуля к соответствующим разъемам. В процессе фиксации необходимо правильно закрепить контакты с электрической сетью. Устройство будет работать только при включении и выключении прибора.

Если имеется заземление внутри корпуса, то выполняют заземление или зануление контакта при помощи отдельного провода, который не является рабочим контактом. Довольно часто прибор помещают в распределительный электрический щит на специальную рейку. В процессе фиксации необходимо сделать надежное крепление всех элементов. Правильный монтаж оборудования, является гарантией вашей безопасности.

Фото пакетных выключателей

Способы защиты электрической сети квартиры или дома от скачков напряжения

Перепады напряжения и прочие неполадки в электросетях отнюдь не редкость. Они могут привести к выходу из строя дорогостоящей техники и даже угрожать жизни и здоровью людей. Для предотвращения подобных последствий на рынке имеются различные устройства защиты электрической сети, применяемые в зависимости от характера неполадок.

В этой статье вы узнаете: что собой представляют перепады напряжения и каковы их причины; Какие существуют устройства защиты сети и в каких случаях используются.

В России и на пост-советском пространстве стандартным напряжением является 220 вольт (для рядовых потребителей электроэнергии). При этом в реальности напряжение колеблется в определенных рамках от данного номинала. Допустимая амплитуда отклонения от нормы устанавливается нормами и актами, регулирующими предоставление данной услуги потребителю. При 220В минимальное допустимое значение составляет 198В, а максимальное — 242В.

Долгое время в домах использовались «пробки»: плавкие предохранители, защищающие от скачков напряжения. На смену им пришли современные и более удобные автоматы (автоматические выключатели). На сегодняшний день в большинстве квартир это единственные средства защиты от неполадок в сети.

Пробки и автоматические выключатели позволяют защититься от короткого замыкания, перегрева проводки и возгорания при перегрузке. Однако мощный электрический импульс может успеть пройти через автомат и вывести технику из строя. Такое случается, например, в следствие удара молнии. То есть обычные пробки не могут обеспечить полноценную защиту от перепадов напряжения.

Основные причины возникновения скачков напряжения в сети

Скачки напряжения могут отличаться по величине отклонения от нормы, по своей продолжительности и динамике возрастания/убывания в зависимости от причин их возникновения:

  • Большая нагрузка на сеть. Одновременное подключение большого числа электроприборов при недостаточной мощности сети приводит к нестабильности напряжения. Это может быть заметно, например, как мерцание лампочек или внезапное выключение электроприборов. Данное явление встречается часто, особенно по вечерам;
  • Мощный потребитель по соседству. Случается, если рядом находятся промышленные объекты, торговые центры, офисные здания с мощной вентиляционной системой и так далее.
  • Обрыв нулевого провода. Нулевой провод выравнивает напряжение у потребителей электроэнергии. При его обрыве (сгорании, окислении) часть потребителей получат повышенное напряжение (а другие заниженное), что с высокой вероятностью приведет к выходу из строя незащищенной электротехники.
  • Ошибки при подключении. Например, если были перепутаны нулевой и фазный провода;
  • Плохая проводка. Сбои возникают из-за изношенности проводки, использования некачественных материалов и неправильно выполненных монтажных работ.
  • Удар молнии. Попадание молнии в линии электропередачи может вызывать стремительный скачек напряжения в тысячи вольт. Представляет особую опасность, так как средства защиты не всегда успевают сработать.

Производители электрической техники учитывают нестабильный характер напряжения и возможность его скачков и падений. Например, прибор с номинальным напряжением 220 вольт может работать при 200В и выдерживать скачки до 240В. При этом регулярная работа аппаратуры при больших отклонения от нормы сокращает срок ее эксплуатации. Сильные скачки напряжения могут вывести технику из строя, и даже нанести ущерб имуществу и здоровью, например, вызвав пожар.

Справка. Поломки электрических приборов в результате скачков напряжения не покрываются договорами о гарантийном обслуживании, то есть бремя расходов на ремонт и замену ложится на владельца, что может стать серьезным ударом по семейному бюджету. В некоторых случаях существует возможность предъявления иска к поставщику электроэнергии, однако это долго, сложно и дорого, а также не гарантирует успеха. Проще заранее предусмотреть защиту своего дома от подобных неприятностей.

Способы защиты от скачков напряжения

В зависимости от характеристик скачка напряжения и природы его возникновения используются различные устройства защиты. Рассмотрим основные из них:

Простое и доступное решение для защиты маломощного оборудования. Обычно представляет собой удлинитель или моноблок с вилкой, розеткой (или розетками) и выключателем с индикацией подачи питания. Следует отличать сетевые фильтры от обычных удлинителей, которые не имеют защиты, но очень похожи по виду. Защищает от скачков до 400 — 500 вольт, а ток нагрузки не может превышает 5 — 15 А.

Справка. С технической стороны сетевой фильтр представляет собой нехитрую систему из нескольких конденсаторов и катушек индуктивности. При этом блоки питания большинства современных электроприборов уже имеют в своем составе схемы, выполняющие аналогичную функцию. То есть на практике сетевые фильтры часто выполняют роль простого удлинителя с дополнительной защитой от скачков в сети.

Реле защиты РКН и УЗМ

Устройство прерывает подачу электроэнергии, если напряжение выходит за пределы допустимых значений. После возвращения напряжения в установленные рамки подача восстанавливается (автоматически или в ручную в зависимости от модели). Устройство подключается после входного автомата.

Основные достоинства РКН и УЗМ:

  • Скорость срабатывания в несколько миллисекунд;
  • Выдерживает нагрузку от 25 до 60 А;
  • Небольшие размеры и удобный монтаж;
  • Достаточные диапазоны максимального и минимального напряжения;
  • Отображение показателей электрического тока в реальном времени;

Прибор эффективен для защиты от разрыва нулевого провода и умеренных скачков напряжения. Однако реле не могут обеспечить стабильное напряжение и защитить от импульсного скачка, вызванного ударом молнии.

Расцепитель минимального-максимального напряжения (РММ)

Устройство защищает от высокого и низкого напряжения. Эффективен в случае разрыва нулевого провода и перекоса фаз в трехфазной сети, но не защищает от высоковольтных импульсов.

Прибор отличается небольшими размерами, простотой установки и доступной ценой.

Обратите внимание. РММ не оснащен функцией автоматического включения, что может привести к порче продуктов в холодильнике, остановке отопления помещений в зимний период и подобным проблемам.

Приборы используются для «сглаживания» подачи электроэнергии в сетях, склонных к нестабильной работе. Эффективны в случае падения мощности, но могут не справиться с высоким напряжением.

К достоинствам прибора относятся: длительный срок эксплуатации; быстрое срабатывание; поддержание напряжения на стабильном уровне. Главным недостатком стабилизаторов является высокая цена.

Используются для защиты от быстрых мощных скачков напряжения, как правило вызываемых ударом молнии в линию электропередач. Выделяют два вида подобных устройств:

  • Вентильные и искровые разрядники. Устанавливаются в сетях высокого напряжения. В случае импульсного перенапряжения в устройстве происходит пробой воздушного зазора, фаза замыкается на заземление, разряд уходит в землю;
  • Ограничители перенапряжения (ОПН). В отличие от разрядников имеют небольшой размер и используются в частных домах. Внутри установлен варистор. При обычном напряжении ток через него не течет, но в случае скачка происходит возрастание тока, что позволяет снизить напряжение до нормальной величины.

Датчик повышенного напряжения (ДПН)

Используется вместе с УЗО (устройство защитного отключения) или дифференциальным автоматом. ДПН определяет превышение установленной нормы напряжения, после чего УЗО размыкает цепь.

Наиболее распространенные средства защиты от скачков напряжения: автоматы и пробки, — эффективны не во всех случаях. В частности они не справляются с мощными скачками напряжения, что ставит под угрозу сохранность электротехники и всего дома в целом. Рынок предлагает разнообразными устройствами защиты электросети, применяемые в зависимости от характера перепадов напряжения и причин их возникновения. Потребителям электроэнергии остается выбрать необходимые приборы и правильно их установить.

Устройство защиты от скачков напряжения 220 вольт для дома и квартиры

Электрическая энергия – неотъемлемая составляющая быта современных людей, где бы они ни проживали – в городе или сельской местности. Трудно представить себе квартиру или дом, где нет ни одного бытового прибора, а для освещения пользуются свечками или лучинами. Однако вся бытовая техника, как и элементы освещения, питание к которым поступает по домашней линии, подвергается опасности, связанной с нестабильностью напряжения. Превышение этим показателем допустимых пределов влечет серьезные проблемы, вплоть до поломки дорогостоящей аппаратуры и выхода линии из строя. Уберечь проводку и приборы поможет защита от скачков напряжения 220В для дома. В этом материале мы расскажем о том, как защититьсвоими рукамитехнику от скачковнапряжения в квартире или в частном доме.

Система электроснабжения в нашем государстве далеко не совершенна. Из-за этого положенная величина напряжения 220В, с расчетом на которую изготавливают всю бытовую технику, выдерживается далеко не всегда. В зависимости от того, какая нагрузка в конкретный момент приходится на сеть, напряжение в ней может колебаться в значительных пределах.

Скачки напряжения в наших сетях не являются редкостью из-за того, что подавляющее большинство всех элементов энергоснабжающей системы разрабатывалось несколько десятилетий назад и не рассчитывалось на современную нагрузку. Ведь практически в любой современной квартире имеется множество домашних энергопотребителей. Конечно, это делает проживание более комфортным, но вместе с тем значительно увеличивает потребление электричества. Линия далеко не всегда может справиться с такими нагрузками, следствием чего становятся частые перепады напряжения.

Один из способов защиты от перенапряжения сети на видео:

Надеяться на то, что вскоре старая система будет полностью переделана с учетом современных требований, не стоит. Поэтому защита от скачков напряжения электролинии и подключенных к ней аппаратов – это та задача, при решении которой хозяевам приходится думать собственной головой и работать своими руками.

Теперь поговорим о причинах, из-за которых возникают скачки напряжения, более подробно. Обычно изменения разности потенциалов происходят без резких бросков, и современная техника, рассчитанная на работу в пределах от 198 до 242В, способна справиться с ними без ущерба для себя.

Речь пойдет о тех случаях, когда напряжение в течение долей секунды повышается в разы, а затем столь же быстро снижается. Это и есть то явление, которое называется – скачок напряжения. Вот каковы причины, по которым оно чаще всего происходит:

  • Одновременное включение (или, наоборот, отключение) нескольких приборов.
  • Обрыв нулевого проводника.
  • Удар молнии в линию электропередачи.
  • Разрыв жил внутри провода из-за падения на ЛЭП дерева
  • Неправильное подключение кабелей в общем электрощите.

Как видим, скачок напряжения может произойти по разным причинам. Предугадать, когда он произойдет, попросту нереально, а значит, подумать о защите от перепадов напряжения следует заблаговременно.

Пример монтажа реле напряжения на видео:

Как защитить технику от перенапряжений?

Конечно, оптимальный вариант защиты от повышенного напряжения домашней сети и включенных в нее приборов – это полная реконструкция системы энергоснабжения с последующим ее обслуживанием опытными специалистами. Но если целиком заменить проводку в частном доме еще можно, то в многоквартирных зданиях это нереально. Практика показывает, что несколько десятков жильцов практически никогда не смогут договориться о совместной оплате подобных работ.

Вряд ли будут этим заниматься и управляющие компании. А менять электропроводку в отдельно взятой квартире бесполезно – скачки напряжения от этого никуда не денутся, поскольку возникают они, как правило, из-за общего оборудования.

Что делать, чтобы скачки напряжения не стали причиной серьезного ущерба? Не ждать же, пока у коммунальщиков и всех соседей по дому возникнет желание заменить общую электропроводку в здании? Ответ один – подобрать надежное устройство для защиты домашней сети от скачков напряжения.

Сегодня используются следующие приборы, повышающие безопасность домашней аппаратуры и позволяющие свести к минимуму вероятность ее повреждения из-за перенапряжений:

  • Реле контроля напряжения (РКН).
  • Датчик повышенного напряжения (ДПН).
  • Стабилизатор.

Отдельно следует назвать источники бесперебойного питания. Они близки к перечисленным устройствам, но назвать их полноценными аппаратами для защиты линии от перепадов разности потенциалов нельзя. Более подробно о них расскажем ниже.

Реле контроля напряжения

Когда скачки напряжения в квартире случаются нечасто и в постоянной защите от них нужды не имеется, достаточно подключить к сети специальное реле.

Что представляет собой этот элемент? РКН – это небольшой прибор, задача которого состоит в отключении цепи при перепаде разности потенциалов и возобновлении подачи электричества после того, как сетевые параметры придут в норму. Само по себе реле никак не влияет на величину и стабильность напряжения, а только фиксирует данные. Эти устройства бывают двух типов:

  • Общий блок, который устанавливается в распределительном щите и защищает от перенапряжения всю квартиру.
  • Устройство, по внешнему виду напоминающее удлинитель с гнездами электророзеток, в которые включаются отдельные приборы.

Наглядно перо принцип работы реле напряжения на видео:

Приобретая реле, важно не ошибиться в расчете его мощности. Она должна несколько превышать суммарную мощность подключенных к устройству приборов. Индивидуальные РКН, которые включаются в общую сеть, подобрать несложно – надо просто купить элемент с нужным количеством розеток.

Эти устройства удобны, имеют невысокую стоимость, но пользоваться ими имеет смысл лишь тогда, когда сеть стабильна. Если же скачки напряжения в ней происходят постоянно, такой вариант не подойдет – ведь мало кому из хозяев понравится непрерывное включение-отключение всей сети или отдельных приборов.

Датчик перепадов напряжения

Этот датчик, как и РКН, фиксирует информацию о величине разности потенциалов, отключая сеть при перенапряжениях. Однако функционирует он по другому принципу. Такой прибор нужно устанавливать в сеть вместе с устройством защитного отключения. Когда аппарат обнаружит нарушение сетевых параметров, он вызовет утечку тока, обнаружив которую, автомат защиты (УЗО) обесточит сеть.

Стабилизатор напряжения

В тех линиях, которым нужна постоянная защита от перепадов напряжения, необходимо устанавливать стабилизатор сети. Эти устройства, будучи включенными в линию, вне зависимости от подающейся на них разности потенциалов, на выходе нормализуют параметры до нужной величины. Поэтому, если скачки напряжения в вашей домашней сети происходят часто, стабилизатор будет для вас оптимальным решением.

Эти приборы подразделяются по принципу действия. Разберемся, какой из них подойдет для различных случаев:

  • Релейные. Такие аппараты имеют достаточно низкую цену и небольшую мощность. Впрочем, для защиты бытовой аппаратуры они вполне подойдут.
  • Сервоприводные (электромеханические). По своим характеристикам такие приборы мало чем отличаются от релейных, но при этом стоят дороже.
  • Электронные. Эти стабилизаторы собраны на базе тиристоров или симисторов. Они имеют достаточно высокую мощность, точны, долговечны, отличаются хорошим быстродействием и почти всегда гарантируют надежную защиту от перенапряжений. Цена их, естественно, довольно высока.
  • Электронные двойного преобразования. Эти устройства самые дорогие из всех перечисленных, но при этом они обладают наилучшими техническими параметрами и позволяют обеспечить максимальную защиту линии и приборов.

Стабилизаторы бывают однофазными, предназначенными для подключения к домашней линии, и трехфазными, которые устанавливаются в сети крупных объектов. Они также могут быть переносными или стационарными.

Наглядно про стабилизаторы на видео:

Выбирая для себя такой аппарат, предварительно следует рассчитать суммарную мощность энергопотребителей, которые будут к нему подключены, и предельные значения сетевого напряжения. Рекомендуем в этом деле прибегнуть к помощи специалистов – они помогут не запутаться в технических тонкостях и подобрать наилучший вариант для конкретной линии по характеристикам и стоимости.

Источники бесперебойного питания

Теперь поговорим об этих, ранее упомянутых нами, устройствах. Иногда неопытные пользователи путают их со стабилизаторами напряжения, но это совсем не так. Основная задача ИБП – при внезапном отключении электроэнергии обеспечить подсоединенные устройства питанием в течение определенного времени, что позволит плавно завершить работу на них, сохранив имеющуюся информацию. Резерв электроэнергии дают встроенные в аппарат аккумуляторы. Как правило, бесперебойники используются вместе с компьютерами.

В некоторых ИБП, например, с интерактивной схемой или режимом двойного преобразования, имеются встроенные стабилизаторы, которые способны нивелировать небольшие перепады разности потенциалов, но при этом цена их очень высока, и для общей защиты сети они подходят плохо. Поэтому полноценной заменой стабилизатору их считать нельзя. Но для защиты ПК при внезапных отключениях электричества такие аппараты поистине незаменимы.

В этой статье мы разобрались, для чего нужна защита от скачков сетевого напряжения 220В для дома и с помощью каких устройств можно ее обеспечить. Как читатели могли убедиться, надежнее всего убережет бытовую технику от перенапряжений мощный и дорогой стабилизатор.

Однако это не значит, что ничем другим проблему перепадов разности потенциалов не решить. Во многих случаях подойдут и другие перечисленные приборы. Все зависит от параметров сети и ее стабильности.

В современных бытовых приборах используется чувствительная электроника, что делает эти устройства уязвимыми перед перепадами напряжения. Поскольку устранить их не представляется возможным, необходима надежная защита. К сожалению, ее организация не входит в сферу обязанностей службы ЖКХ, поэтому заниматься этим вопросом приходится самостоятельно. Благо защитные устройства приобрести сегодня не проблема. Прежде чем перейти к описанию и принципу действия таких приборов, кратко расскажем о причинах, вызывающих скачки напряжения, и их последствиях.

Что такое перепад напряжения и его природа?

Под этим термином подразумевается краткосрочное изменение амплитуды напряжения электросети, с последующим восстановлением, близким к первоначальному уровню. Как правило, длительность такого импульса исчисляется я миллисекундами. Существует несколько причин для его возникновения:

  1. Атмосферные явления в виде грозовых разрядов, они способны вызвать перенапряжение в несколько киловольт, что не только гарантированно выведет электроприборы из строя, а и может стать причиной пожара. В данном случае жителям многоэтажек проще, поскольку организация защиты от таких предсказуемых явлений входит в обязанности поставщиков электричества. Что касается частных домов (особенно с воздушным вводом), то их жильцы должны самостоятельно заниматься этим вопросом или обращаться к специалистам.
  2. Скачки при коммутационных процессах, когда происходит подключение-отключение мощных потребителей.
  3. Электростатическая индукция.
  4. Подключение определенного оборудования (сварка, коллекторный электродвигатель и т.д.).

На рисунке ниже наглядно продемонстрирована величина грозового (Uгр) и коммутационного импульса (Uк) по отношению к номинальному напряжению сети (Uн).

Грозовой и коммутационный импульсы перенапряжения

Для полноты картины следует упомянуть и о долгосрочном повышении и понижении напряжения. Причиной первого является авария на линии, в результате которой происходит обрыв нулевого провода, что вызывает повышение до 380 вольт. Нормализовать ситуации никакими приборами не получится, потребуется ждать устранения аварии.

Длительное снижение напряжения можно часто наблюдать в сельской местности или дачных поселках. Это связано с недостаточной мощностью трансформатора на подстанции.

В чем заключается опасность перепадов?

В соответствии с допустимыми нормами, допускается отклонение от номинала в диапазоне от -10% до +10%. При скачках напряжение может существенно выйти за установленные границы. В результате блоки питания бытовой техники подвергаются перегрузке и могут выйти из строя или существенно сократить свой ресурс. При высоких или длительных перепадах велика вероятность возгорания проводки, и, как следствие, пожара.

Пониженное напряжение также грозит неприятностями, особенно к этому критичны компрессоры холодильных установок, а также многие импульсные блоки питания.

Защитные устройства

Существует несколько видов защитных устройств различающихся как по функциональности, так и по стоимости, одни из них обеспечивают защиту только одному бытовому прибору, другие – всем имеющимся в доме. Перечислим хорошо зарекомендовавшие себя и наиболее распространенные защитные устройства.

Наиболее простой и доступный по деньгам вариант защиты маломощного бытового оборудования. Отлично зарекомендовал себя при бросках до 400-450 вольт. На более высокие импульсы устройство не рассчитано (в лучшем случае оно примет удар на себя, спасая дорогостоящую аппаратуру).

Фильтр удлинитель Swen Fort Pro

Основной элемент защиты у такого устройства – варистор (полупроводниковый элемент изменяющий сопротивление в зависимости от приложенного напряжения). Именно он выходит из строя при импульсе более 450 В. Вторая важная функция фильтра – защита от высокочастотных помех (возникают при работе электродвигателя, сварки и т.д.) отрицательно влияющих на электронику. Третьим элементом защиты является плавкий предохранитель, срабатывающий при КЗ.

Не следует путать фильтры с обычными удлинителями, которые не обладают защитными функциями, но похожи по внешнему виду. Чтобы различить их достаточно посмотреть паспорт изделия, где приведены полные характеристики. Отсутствие такового должно само по себе вызывать подозрение.

Стабилизатор

В отличие от предыдущего типа приборы этого класса позволяют нормализовать напряжение в соответствии с номинальным. Например, установив границу в пределах 110-250 В, на выходе устройства будет стабильные 220 В. Если напряжение выйдет за пределы допустимого, прибор отключит питание и возобновит его подачу после нормализации работы электросети.

Стабилизатор EDR-1000 от производителя Luxeon

В некоторых случаях (например, в сельской местности) установка стабилизатора является единственным способом повысить напряжение до необходимой нормы. Бытовые стабилизаторы выпускают двух модификаций:

  • Линейные. Они предназначены для подключения одного или нескольких бытовых приборов.
  • Магистральные, устанавливаются на входе электросети здания или квартиры.

И первые, и вторые следует подбирать исходя из мощности нагрузки.

Основное отличие от предыдущего типа является возможность продолжения подачи питания подключенного устройства после срабатывания защиты или полного отключения электричества. Время работы в таком режиме напрямую зависит от емкости аккумуляторной батареи и мощности нагрузки.

Бесперебойный блок питания APC, модель SC-420

В быту эти устройства в основном используются для подключения стационарных компьютеров, чтобы при проблемах с электросетью не потерять данные. При срабатывании защиты ИБП будет продолжать подачу питания в течение определенного времени, как правило, не более получаса (зависит характеристик устройства). Этого времени вполне достаточно, чтобы сохранить необходимые данные и корректно отключить компьютер.

Современные модели ИБП могут самостоятельно управлять работой компьютера через USB интерфейс, например, закрыть текстовый редактор (предварительно сохранив открытые документы), после чего произвести отключение. Это довольно полезная функция, если пользователь при срабатывании защиты не находился рядом.

Устройства защиты от импульсных перенапряжений

Все перечисленные выше приборы обладают общим недостатком, у них не реализована действенная защита от импульса высокого напряжения. Если таковой произойдет, он, практически гарантированно выведет такие устройства из строя. Следовательно, защита должна быть организована таким образом, чтобы после срабатывания можно было оперативно привести ее в рабочее состояние. Этому требованию, как нельзя лучше отвечают УЗИП. На их основе организуется многоуровневая система защиты внутренних линий частного дома.

Одна из принятых классификаций таких устройств показана в таблице.

Таблица 1. Классификация УЗИП

Категория Применение
В (I) Обеспечивают защиту при прямом попадании грозового разряда по системе молниезащиты. Место установки – вводно-распределительное устройство или главный распределительный щит. Основная нормирующая характеристика – величина импульсного тока.
С (II) Защищают токораспределительную сеть от коммутационных импульсов, а также играют роль второго защитного уровня при грозовом разряде. Место установки – распределительный щит.
D (III) Обеспечивают последний уровень защиты, при которой к потребителям не допускаются остаточные броски напряжения и дифференциальные перенапряжения. Помимо этого обеспечивается фильтрация высокочастотных помех. Установка производится перед потребителем. Могут быть выполнены в виде модуля под розетку, удлинителя и т.д.

Пример организации трехуровневой защиты продемонстрирован ниже.

Организация трехуровневой защиты от перенапряжения

Конструктивные особенности УЗИП.

Устройство представляет собой платформу (С на рис. 6) со сменным модулем (В), внутри которого находятся варисторы. При их выходе из строя индикатор (А) изменит цвет (в приведенной на рисунке модели на красный).

УЗИП Finder (категория II)

Внешне устройство напоминает автоматический выключатель, крепление – такое же (под DIN рейку).

Особенностью УЗИП является необходимость замены модулей при выходе варисторов из строя (что довольно просто). Конструкция модулей выполнена таким образом, что установить их на платформу с другим номиналом невозможно. Единственный серьезный недостаток связан с характерными особенностями варисторов. Им необходимо время, чтобы остыть, многократное попадание грозового разряда существенно усложняет этот процесс.

Защитное реле

В завершении рассмотрим реле контроля напряжения (РКН), эти устройства способны обеспечить защиту бытовых приборов от коммутационных импульсов, перекоса фаз, а также пониженного напряжения. С грозовыми импульсами они не справятся, поскольку на это не рассчитаны. Их сфера применения – защита внутренней сети квартиры, то есть там, где обеспечение грозозащиты входит в обязанности электрокомпаний.

Приборы могут устанавливаться во входном щитке, непосредственно, после электросчетчика, для этого предусмотрено крепление под DIN рейку.

РКН можно подключать после счетчика

Помимо этого выпускаются модификации приборов в виде удлинителей питания и модулей под розетку.

РКН в виде удлинителя и розеточного модуля

Данные устройства могут произвести только защитное отключение сети, при выходе напряжения за указанные пределы (устанавливается кнопками управления), после нормализации электросети производится ее подключение. Стабилизация и фильтрация не производятся.

Предостережения

Не следует доверять защиту своего дома самодельным конструкциям, в бытовых условиях бывает проблематично настроить собранную схему и протестировать ее работу в критических режимах.

Не имея практического опыта в организации грозозащиты, не стоит пытаться реализовать ее самостоятельно, эту работу лучше доверить профессионалам. Рекомендуем рассматривать эту часть статьи как информационную.

Все манипуляции с электрощитом, приборами и проводкой необходимо проводить только при отключенном электропитании.

admin

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Наверх