Электрификация

Справочник домашнего мастера

Алюминий с водородом

Реакции алюминия с водородом и другими веществами

Образование в алюминии пузырей водорода непосредственно зависит от скорости охлаждения и затвердевания, а также от наличия центров зарождения для выделения водорода — захваченных внутрь расплава оксидов. Для образования пористости алюминия необходимо значительное превышение содержания растворенного водорода по сравнению с растворимостью водорода в твердом алюминии. При отсутствии центров зарождения для выделения водорода требуется относительно высокая концентрация вещества.

Расположение водорода в затвердевшем алюминии зависит от уровня его содержания в жидком алюминии и условий, при которых происходило затвердевание. Так как водородная пористость — это результат механизмов зарождения и роста, контролируемых диффузией, то такие процессы, как снижение концентрации водорода и увеличение скорости затвердевания, подавляют зарождение и рост пор. Из-за этого выполненные методом литья в разъемный кокиль отливки металла более подвержены дефектам, связанным с водородом, чем отливки, изготовленные методом литья под давлением.

Есть разные источники попадания водорода в алюминий.

(лом, слитки, литейный возврат, оксиды, песок и смазки, применяющиеся при механической обработке). Эти загрязнители — потенциальные источники водорода, образовавшегося при химическом разложении паров воды или восстановлении органических веществ.

Плавильные инструменты. Скребки, пики, лопаты являются источником водорода. Оксиды и остатки флюсов на инструментах впитывают влагу из окружающего воздуха. Печные огнеупоры, распределительные каналы, ковши для отбора проб, известковые желоба и цементные растворы — потенциальные источники водорода.

Атмосфера печи. Если плавильная печь работает на мазуте или на природном газе, возможно неполное сгорание топлива с образованием свободного водорода.

Флюсы (гигроскопичные соли, готовые мгновенно впитывать воду). По этой причине влажный флюс неизбежно вносит в расплав водород, образовавшийся при химическом разложении воды.

Литейные формы. В процессе заполнения литейной формы жидкий алюминий течет турбулентно и захватывает воздух во внутренний объем. Если воздух не успеет выйти из формы до начала затвердевания алюминия, то водовод проникнет в металл.

CHEMEGE.RU

1. Положение алюминия в периодической системе химических элементов
2. Электронное строение алюминия
3. Физические свойства
4. Нахождение в природе
5. Способы получения
6. Качественные реакции
7. Химические свойства
7.1. Взаимодействие с простыми веществами
7.1.1. Взаимодействие с галогенами
7.1.2. Взаимодействие с серой и фосфором
7.1.3. Взаимодействие с водородом
7.1.4. Взаимодействие с азотом
7.1.5. Взаимодействие с углеродом
7.1.6. Горение
7.2. Взаимодействие со сложными веществами
7.2.1. Взаимодействие с водой
7.2.2. Взаимодействие с минеральными кислотами
7.2.3. Взаимодействие с серной кислотой
7.2.4. Взаимодействие с азотной кислотой
7.2.5. Взаимодействие с щелочами
7.2.6. Взаимодействие с окислителями

Оксид алюминия
1. Способы получения
2. Химические свойства
2.1. Взаимодействие с основными оксидами
2.2. Взаимодействие с основаниями
2.3. Взаимодействие с водой
2.4. Взаимодействие с кислотными оксидами
2.5. Взаимодействие с кислотами
2.6. Взаимодействие с восстановителями
2.7. Вытеснение более летучих оксидов из солей

Гидроксид алюминия
1. Способы получения
2. Химические свойства
2.1. Взаимодействие с кислотами
2.2. Взаимодействие с кислотными оксидами
2.3. Взаимодействие с щелочами
2.4. Разложение при нагревании

Соли алюминия

Бинарные соединения алюминия

Алюминий

Положение в периодической системе химических элементов

Алюминий расположены в главной подгруппе III группы (или в 13 группе в современной форме ПСХЭ) и в третьем периоде периодической системы химических элементов Д.И. Менделеева.

Электронное строение алюминия и свойства

Электронная конфигурация алюминия в основном состоянии:

+13Al 1s22s22p63s23p1 1s 2s 2p 3s 3p

Электронная конфигурация алюминия в возбужденном состоянии:

+13Al* 1s22s22p63s13p2 1s 2s 2p 3s 3p

Алюминий проявляет парамагнитные свойства. Алюминий на воздухе быстро образует прочные оксидные плёнки, защищающие поверхность от дальнейшего взаимодействия, поэтому устойчив к коррозии.

Физические свойства

Алюминий – лёгкий металл серебристо-белого цвета, легко поддающийся формовке, литью, механической обработке. Обладает высокой тепло- и электропроводностью.

Температура плавления 660оС, температура кипения 1450оС, плотность алюминия 2,7 г/см3.

Нахождение в природе

Алюминий — самый распространенный металл в природе, и 3-й по распространенности среди всех элементов (после кислорода и кремния). Содержание в земной коре — около 8%.

В природе алюминий встречается в виде соединений:

Бокситы Al2O3 · H2O (с примесями SiO2, Fe2O3, CaCO3) — гидрат оксида алюминия

Корунд Al2O3. Красный корунд называют рубином, синий корунд называют сапфиром.

Способы получения

Алюминий образует прочную химическую связь с кислородом. Поэтому традиционные способы получения алюминия восстановлением из оксида протекают требуют больших затрат энергии. Для промышленного получения алюминия используют процесс Холла-Эру. Для понижения температуры плавления оксид алюминия растворяют в расплавленном криолите (при температуре 960-970оС) Na3AlF6, а затем подвергуют электролизу с углеродными электродами. При растворении в расплаве криолита оксид алюминия распадается на ионы:

Al2O3 → Al3+ + AlO33-

На катоде происходит восстановление ионов алюминия:

К: Al3+ +3e → Al0

На аноде происходит окисление алюминат-ионов:

А: 4AlO33- — 12e → 2Al2O3 + 3O2

Суммарное уравнение электролиза расплава оксида алюминия:

2Al2O3 → 4Al + 3O2

Лабораторный способ получения алюминия заключается в восстановлении алюминия из безводного хлорида алюминия металлическим калием:

AlCl3 + 3K → 4Al + 3KCl

Качественные реакции

Качественная реакция на ионы алюминия — взаимодействие избытка солей алюминия с щелочами. При этом образуется белый аморфный осадок гидроксида алюминия.

Например, хлорид алюминия взаимодействует с гидроксидом натрия:

AlCl3 + 3NaOH → Al(OH)3 + 3NaCl

При дальнейшем добавлении щелочи амфотерный гидроксид алюминия растворяется с образованием тетрагидроксоалюмината:

Al(OH)3 + NaOH = Na

Обратите внимание, если мы поместим соль алюминия в избыток раствора щелочи, то белый осадок гидроксида алюминия не образуется, т.к. в избытке щелочи соединения алюминия сразу переходят в комплекс:

AlCl3 + 4NaOH = Na

Соли алюминия можно обнаружить с помощью водного раствора аммиака. При взаимодействии растворимых солей алюминия с водным раствором аммиака также выпадает полупрозрачный студенистый осадок гидроксида алюминия.

AlCl3 + 3NH3 · H2O = Al(OH)3 ↓ + 3 NH4Cl

Al3+ + 3NH3 · H2O = Al(OH)3 ↓ + 3 NH4+

Видеоопыт взаимодействия раствора хлорида алюминия с раствором аммиака можно посмотреть

Химические свойства

1. Алюминий – сильный восстановитель. Поэтому он реагирует со многими неметаллами.

1.1. Алюминий реагируют с галогенами с образованием галогенидов:

2Al + 3I2 → 2AlI3

1.2. Алюминий реагирует с серой с образованием сульфидов:

2Al + 3S → Al2S3

1.3. Алюминий реагируют с фосфором . При этом образуются бинарные соединения — фосфиды:

Al + P → AlP

Алюминий не реагирует с водородом.

1.4. С азотом алюминий реагирует при нагревании до 1000оС с образованием нитрида:

2Al +N2 → 2AlN

1.5. Алюминий реагирует с углеродом с образованием карбида алюминия:

4Al + 3C → Al4C3

1.6. Алюминий взаимодействует с кислородом с образованием оксида:

4Al + 3O2 → 2Al2O3

Видеоопыт взаимодействия алюминия с кислородом воздуха (горение алюминия на воздухе) можно посмотреть .

2. Алюминий взаимодействует со сложными веществами:

2.1. Реагирует ли алюминий с водой? Ответ на этот вопрос вы без труда найдете, если покопаетесь немного в своей памяти. Наверняка хотя бы раз в жизни вы встречались с алюминиевыми кастрюлями или алюминиевыми столовыми приборами. Такой вопрос я любил задавать студентам на экзаменах. Что самое удивительное, ответы я получал разные — у кого-то алюминий таки реагировал с водой. И очень, очень многие сдавались после вопроса: «Может быть, алюминий реагирует с водой при нагревании?» При нагревании алюминий реагировал с водой уже у половины респондентов))

Тем не менее, несложно понять, что алюминий все-таки с водой в обычных условиях (да и при нагревании) не взаимодействует. И мы уже упоминали, почему: из-за образования оксидной пленки. А вот если алюминий очистить от оксидной пленки (например, амальгамировать), то он будет взаимодействовать с водой очень активно с образованием гидроксида алюминия и водорода:

2Al0 + 6H2+O → 2Al+3(OH)3 + 3H20

Амальгаму алюминия можно получить, выдержав кусочки алюминия в растворе хлорида ртути (II):

3HgCl2 + 2Al → 2AlCl3 + 3Hg

Видеоопыт взаимодействия амальгамы алюминия с водой можно посмотреть .

2.2. Алюминий взаимодействуют с минеральными кислотами (с соляной, фосфорной и разбавленной серной кислотой) со взрывом. При этом образуются соль и водород.

Например, алюминий бурно реагирует с соляной кислотой:

2Al + 6HCl = 2AlCl3 + 3H2

2.3. При обычных условиях алюминий не реагирует с концентрированной серной кислотой из-за пассивации – образования плотной оксидной пленки. При нагревании реакция идет, образуются оксид серы (IV), сульфат алюминия и вода:

2Al + 6H2SO4(конц.) → Al2(SO4)3 + 3SO2 + 6H2O

2.4. Алюминий не реагирует с концентрированной азотной кислотой также из-за пассивации.

С разбавленной азотной кислотой алюминий реагирует с образованием молекулярного азота:

10Al + 36HNO3 (разб) → 3N2 + 10Al(NO3)3 + 18H2O

При взаимодействии алюминия в виде порошка с очень разбавленной азотной кислотой может образоваться нитрат аммония:

8Al + 30HNO3(оч.разб.) → 8Al(NO3)3 + 3NH4NO3 + 9H2O

2.5. Алюминий – амфотерный металл, поэтому он взаимодействует с щелочами. При взаимодействии алюминия с раствором щелочи образуется тетрагидроксоалюминат и водород:

2Al + 2NaOH + 6H2O → 2Na + 3H2

Видеоопыт взаимодействия алюминия со щелочью и водой можно посмотреть .

Алюминий реагирует с расплавом щелочи с образованием алюмината и водорода:

2Al + 6NaOH → 2Na3AlO3 + 3H2

Эту же реакцию можно записать в другом виде (в ЕГЭ рекомендую записывать реакцию именно в таком виде):

2Al + 6NaOH → NaAlO2 + 3H2 + Na2O

2.6. Алюминий восстанавливает менее активные металлы из оксидов. Процесс восстановления металлов из оксидов называется алюмотермия.

Например, алюминий вытесняет медь из оксида меди (II). Реакция очень экзотермическая:

2Al + 3CuO → 3Cu + Al2O3

Еще пример: алюминий восстанавливает железо из железной окалины, оксида железа (II, III):

8Al + 3Fe3O4 → 4Al2O3 + 9Fe

Восстановительные свойства алюминия также проявляются при взаимодействии его с сильными окислителями: пероксидом натрия, нитратами и нитритами в щелочной среде, перманганатами, соединениями хрома (VI):

2Al + 3Na2O2 → 2NaAlO2 + 2Na2O

8Al + 3KNO3 + 5KOH + 18H2O → 8K + 3NH3

10Al + 6KMnO4 + 24H2SO4 → 5Al2(SO4)3 + 6MnSO4 + 3K2SO4 + 24H2O

2Al + NaNO2 + NaOH + 5H2O → 2Na + NH3

Al + 3KMnO4 + 4KOH → 3K2MnO4 + K

4Al + K2Cr2O7 → 2Cr + 2KAlO2 + Al2O3

Алюминий – ценный промышленный металл, который опдвергается вторичной переработке. Узнать подробнее о приеме алюминия на переработку, а также об актуальных ценах на данный вид металла можно .

Оксид алюминия

Способы получения

Оксид алюминия можно получить различными методами:

1. Горением алюминия на воздухе:

4Al + 3O2 → 2Al2O3

2. Разложением гидроксида алюминия при нагревании:

2Al(OH)3 → Al2O3 + 3H2O

3. Оксид алюминия можно получить разложением нитрата алюминия:

4Al(NO3)3 → 2Al2O3 + 12NO2 + 3O2

Оксид алюминия — типичный амфотерный оксид. Взаимодействует с кислотными и основными оксидами, кислотами, щелочами.

1. При взаимодествии оксида алюминия с основными оксидами образуются соли-алюминаты.

Например, оксид алюминия взаимодействует с оксидом натрия:

Na2O + Al2O3 → 2NaAlO2

2. Оксид алюминия взаимодействует с растворимыми основаниями (щелочами). При этом в расплаве образуются соли—алюминаты, а в растворе – комплексные соли. При этом оксид алюминия проявляет кислотные свойства.

Например, оксид алюминия взаимодействует с гидроксидом натрия в расплаве с образованием алюмината натрия и воды:

2NaOH + Al2O3 → 2NaAlO2 + H2O

Оксид алюминия растворяется в избытке щелочи с образованием тетрагидроксоалюмината:

Al2O3 + 2NaOH + 3H2O → 2Na

3. Оксид алюминия не взаимодействует с водой.

4. Оксид алюминия взаимодействует с кислотными оксидами (сильных кислот). При этом образуются соли алюминия. При этом оксид алюминия проявляет основные свойства.

Например, оксид алюминия взаимодействует с оксидом серы (VI) с образованием сульфата алюминия:

Al2O3 + 3SO3 → Al2(SO4)3

5. Оксид алюминия взаимодействует с растворимыми кислотами с образованием средних и кислых солей.

Например, оксид алюминия реагирует с серной кислотой:

Al2O3 + 3H2SO4 → Al2(SO4)3 + 3H2O

6. Оксид алюминия проявляет слабые окислительные свойства.

Например, оксид алюминия реагирует с гидридом кальция с образованием алюминия, водорода и оксида кальция:

Al2O3 + 3CaH2 → 3CaO + 2Al + 3H2

Электрический ток восстанавливает алюминий из оксида (производство алюминия):

2Al2O3 → 4Al + 3O2

7. Оксид алюминия — твердый, нелетучий. А следовательно, он вытесняет более летучие оксиды (как правило, углекислый газ) из солей при сплавлении.

Например, из карбоната натрия:

Al2O3 + Na2CO3 → 2NaAlO2 + CO2

Гидроксид алюминия

1. Гидроксид алюминия можно получить действием раствора аммиака на соли алюминия.

Например, хлорид алюминия реагирует с водным раствором аммиака с образованием гидроксида алюминия и хлорида аммония:

AlCl3 + 3NH3 + 3H2O = Al(OH)3 + 3NH4Cl

2. Пропусканием углекислого газа, сернистого газа или сероводорода через раствор тетрагидроксоалюмината натрия:

Na + СО2 = Al(OH)3 + NaНCO3

Чтобы понять, как протекает эта реакция, можно использовать несложный прием: мысленно разбить сложное вещество Na на составные части: NaOH и Al(OH)3. Далее мы определяем, как реагирует углекислый газ с каждым из этих веществ, и записываем продукты их взаимодействия. Т.к. Al(OH)3 не реагирует с СО2, то мы записываем справа Al(OH)3 без изменения.

3. Гидроксид алюминия можно получить действием недостатка щелочи на избыток соли алюминия.

Например, хлорид алюминия реагирует с недостатком гидроксида калия с образованием гидроксида алюминия и хлорида калия:

AlCl3 + 3KOH(недост) = Al(OH)3↓+ 3KCl

4. Также гидроксид алюминия образуется при взаимодействии растворимых солей алюминия с растворимыми карбонатами, сульфитами и сульфидами. Сульфиды, карбонаты и сульфиты алюминия необратимо гидролизуются в водном растворе.

Например: бромид алюминия реагирует с карбонатом натрия. При этом выпадает осадок гидроксида алюминия, выделяется углекислый газ и образуется бромид натрия:

2AlBr3 + 3Na2CO3 + 3H2O = 2Al(OH)3↓ + CO2 + 6NaBr

Хлорид алюминия реагирует с сульфидом натрия с образованием гидроксида алюминия, сероводорода и хлорида натрия:

2AlCl3 + 3Na2S + 6H2O = 2Al(OH)3 + 3H2S + 6NaCl

1. Гидроксид алюминия реагирует с растворимыми кислотами. При этом образуются средние или кислые соли, в зависимости от соотношения реагентов и типа соли.

Например, гидроксид алюминия взаимодействует с азотной кислотой с образованием нитрата алюминия:

Al(OH)3 + 3HNO3 → Al(NO3)3 + 3H2O

Al(OH)3 + 3HCl → AlCl3 + 3H2O

2Al(OH)3 + 3H2SO4 → Al2(SO4)3 + 6H2O

Al(OH)3 + 3HBr → AlBr3 + 3H2O

2. Гидроксид алюминия взаимодействует с кислотными оксидами сильных кислот.

Например, гидроксид алюминия взаимодействует с оксидом серы (VI) с образованием сульфата алюминия:

2Al(OH)3 + 3SO3 → Al2(SO4)3 + 3H2O

3. Гидроксид алюминия взаимодействует с растворимыми основаниями (щелочами). При этом в расплаве образуются соли—алюминаты, а в растворе – комплексные соли. При этом гидроксид алюминия проявляет кислотные свойства.

Например, гидроксид алюминия взаимодействует с гидроксидом калия в расплаве с образованием алюмината калия и воды:

2KOH + Al(OH)3 → 2KAlO2 + 2H2O

Гидроксид алюминия растворяется в избытке щелочи с образованием тетрагидроксоалюмината:

Al(OH)3 + KOH → K

4. Гидроксид алюминия разлагается при нагревании:

2Al(OH)3 → Al2O3 + 3H2O

Видеоопыт взаимодействия гидроксида алюминия с соляной кислотой и щелочами (амфотерные свойства гидроксида алюминия) можно посмотреть .

Соли алюминия

Нитрат и сульфат алюминия

Нитрат алюминия при нагревании разлагается на оксид алюминия, оксид азота (IV) и кислород:

4Al(NO3)3 → 2Al2O3 + 12NO2 + 3O2

Сульфат алюминия при сильном нагревании разлагается аналогично — на оксид алюминия, сернистый газ и кислород:

2Al2(SO4)3 → 2Al2O3 + 6SO2 + 3O2

Комплексные соли алюминия

Для описания свойств комплексных солей алюминия — гидроксоалюминатов, удобно использоваться следующий прием: мысленно разбейте тетрагидроксоалюминат на две отдельные молекулы — гидроксид алюминия и гидроксид щелочного металла.

Например, тетрагидроксоалюминат натрия разбиваем на гидроксид алюминия и гидроксид натрия:

Na разбиваем на NaOH и Al(OH)3

Свойства всего комплекса можно определять, как свойства этих отдельных соединений.

Таким образом, гидроксокомплексы алюминия реагируют с кислотными оксидами.

Например, гидроксокомплекс разрушается под действием избытка углекислого газа. При этом с СО2 реагирует NaOH с образованием кислой соли (при избытке СО2), а амфотерный гидроксид алюминия не реагирует с углекислым газом, следовательно, просто выпадает в осадок:

Na + CO2 → Al(OH)3↓ + NaHCO3

Аналогично тетрагидроксоалюминат калия реагирует с углекислым газом:

K + CO2 → Al(OH)3 + KHCO3

По такому же принципу тетрагидроксоалюминаты реагирует с сернистым газом SO2:

Na + SO2 → Al(OH)3↓ + NaHSO3

K + SO2 → Al(OH)3 + KHSO3

А вот под действием избытка сильной кислоты осадок не выпадает, т.к. амфотерный гидроксид алюминия реагирует с сильными кислотами.

Например, с соляной кислотой:

Na + 4HCl(избыток) → NaCl + AlCl3 + 4H2O

Правда, под действием небольшого количества (недостатка) сильной кислоты осадок все-таки выпадет, для растворения гидроксида алюминия кислоты не будет хватать:

Na + НCl(недостаток) → Al(OH)3↓ + NaCl + H2O

Аналогично с недостатком азотной кислоты выпадает гидроксид алюминия:

Na + HNO3(недостаток) → Al(OH)3↓ + NaNO3 + H2O

Комлекс разрушается при взамодействии с хлорной водой (водным раствором хлора) Cl2:

2Na + Cl2 → 2Al(OH)3↓ + NaCl + NaClO

При этом хлор диспропорционирует.

Также комплекс может прореагировать с избытком хлорида алюминия. При этом выпадает осадок гидроксида алюминия:

AlCl3 + 3Na → 4Al(OH)3↓ + 3NaCl

Если выпарить воду из раствора комплексной соли и нагреть образующееся вещество, то останется обычная соль-алюминат:

Na → NaAlO2 + 2H2O

K → KAlO2 + 2H2O

Гидролиз солей алюминия

Растворимые соли алюминия и сильных кислот гидролизуются по катиону. Гидролиз протекает ступенчато и обратимо, т.е. чуть-чуть:

I ступень: Al3+ + H2O = AlOH2+ + H+

II ступень: AlOH2+ + H2O = Al(OH)2+ + H+

III ступень: Al(OH)2+ + H2O = Al(OH)3 + H+

Однако сульфиды, сульфиты, карбонаты алюминия и их кислые соли гидролизуются необратимо, полностью, т.е. в водном растворе не существуют, а разлагаются водой:

Al2(SO4)3 + 6NaHSO3 → 2Al(OH)3 + 6SO2 + 3Na2SO4

2AlBr3 + 3Na2CO3 + 3H2O → 2Al(OH)3↓ + CO2 + 6NaBr

2Al(NO3)3 + 3Na2CO3 + 3H2O → 2Al(OH)3↓ + 6NaNO3 + 3CO2

2AlCl3 + 3Na2CO3 + 3H2O → 2Al(OH)3↓ + 6NaCl + 3CO2

Al2(SO4)3 + 3K2CO3 + 3H2O → 2Al(OH)3↓ + 3CO2 + 3K2SO4

2AlCl3 + 3Na2S + 6H2O → 2Al(OH)3 + 3H2S + 6NaCl

Более подробно про гидролиз можно прочитать в соответствующей статье.

Алюминаты

Соли, в которых алюминий является кислотным остатком (алюминаты) — образуются из оксида алюминия при сплавлении с щелочами и основными оксидами:

Al2O3 + Na2O → 2NaAlO2

Для понимания свойств алюминатов их также очень удобно разбить на два отдельных вещества.

Например, алюминат натрия мы раделим мысленно на два вещества: оксид алюминия и оксид натрия.

NaAlO2 разбиваем на Na2O и Al2O3

Тогда нам станет очевидно, что алюминаты реагируют с кислотами с образованием солей алюминия:

KAlO2 + 4HCl → KCl + AlCl3 + 2H2O

NaAlO2 + 4HCl → AlCl3 + NaCl + 2H2O

NaAlO2 + 4HNO3 → Al(NO3)3 + NaNO3 + 2H2O

2NaAlO2 + 4H2SO4 → Al2(SO4)3 + Na2SO4 + 4H2O

Под действием избытка воды алюминаты переходят в комплесные соли:

KAlO2 + H2O = K

NaAlO2 + 2H2O = Na

Бинарные соединения

Сульфид алюминия под действием азотной кислоты окисляется до сульфата:

Al2 S3 + 8HNO3 → Al2(SO4)3 + 8NO2 + 4H2O

либо до серной кислоты (под действием горячей концентированной кислоты):

Al2 S3 + 30HNO3(конц. гор.) → 2Al(NO3)3 + 24NO2 + 3H2SO4 + 12H2O

Сульфид алюминия разлагается водой:

Делаем «Мистер Фьюжн» (водород из алюминия)



Всем привет, на этот раз мы проведем интересный эксперимент по превращению алюминия в топливо, коим выступает водород. Если вы смотрели вторую часть фильма «Назад, в будущее», то там был один интересный момент, когда доктор Эммет Браун «заправлял» Делореан.

В будущем техника уже давно работает на бытовых отходах, преобразуя всякий хлам в электроэнергию. Таким преобразователем в фильме является установка под названием «Мистер Фьюжн». Док выливает в аппарат остатки напитка, а также закидывает потом туда и алюминиевую банку. Вероятнее всего в качестве напитка там была Кока-кола.

Но как же с научной точки зрения можно получить энергию из таких отходов? Один автор решил повторить этот эксперимент, и у него получилось вполне неплохо. Что же скрывается за всем этим? Все на самом деле очень просто, энергию мы будем получать из алюминия, добывая из него водород. Делать это можно различными способами, алюминий является довольно таки не стойким металлом, если разрушить его оксидную пленку. Он начинает при этом выделять водород, просто контактируя с воздухом. Для разрушения оксидной пленки можно использовать кислоты и другие вещества. К примеру, можно просто поцарапать алюминий иголочкой под капелькой ртути и в этом месте оксидная пленка будет разрушена.

Зачем же при эксперименте будет нужна кока-кола, узнаете из статьи 😉
Материалы и инструменты, которые использовал
Список материалов:
— шланги;
— доски;
— пластиковые бутылки;
— двухтактный двигатель;
— двигатель постоянного тока 12В;
— аккумулятор 12В;
— инвертор 12/220В (по желанию);
— пластиковая канистра;
— манометр;
— металлические хомуты;
— кусок металлической трубочки;
— холодная сварка;
— активированный уголь;
— вода;
— тонкая листовая сталь;
— саморезы.
Для химической реакции: алюминий, кока-кола, гидроксид натрия.
Список инструментов:
— ножницы;
— шуруповерт;
— ножовка;
— дрель;
— ключи, отвертки и прочие мелочи.
Приступаем к сборке устройства:
Шаг первый. Теория
Суть в следующем, берем кока-колу и добавляем в нее гидроксид натрия. В кока-коле есть фосфорная кислота, при взаимодействии ее с гидроксидом натрия, получается вещество ортофосфат натрия, а также вода. Так вот, если в ортофосфат натрия добавить алюминий, получается бурная реакция с выделением водорода, который нам и нужен.
Все, что нам останется, это приспособить емкость для проведения реакции, а также установить фильтры и потребитель водорода, коим является ДВС.





Шаг второй. Устанавливаем «реактор»
В качестве основы вам понадобится кусок доски, прикручиваем к ней брусья для удерживания канистры. Канистра у нас работает в качестве реактора. Вокруг канистры намотайте резиновый шланг, он будет работать в качестве конденсатора, чтобы в двигатель не шел водяной пар.
В верхней части канистры устанавливаем манометр, а также штуцер для подключения шланга отвода газа.
Шланг от канистры подключаем к теплообменнику, а к выходу теплообменника подключается тоже кусок шланга с тройником. Один выход тройника задействуется для подключения горелки, в качестве которой выступает кусок металлической трубочки. Перед горелкой должен обязательно стоять кран, так как вы потом не сможете подать газ в двигатель.
Кран автор крепит на горячий клей, сформировав для него посадочное место. Шланги закрепите, используя самодельные хомуты и винты.
Шаг третий. Установка фильтров
Фильтрующая система состоит из двух фильтров. Первый представляет собой бутылку с налитой внутрь водой, в которую опускается шланг от теплообменника. Этот фильтр предназначен для того, чтобы собирать крупные капли влаги, образующиеся в теплообменнике. Также с помощью этого фильтра можно наглядно наблюдать, как активно поступает газ в двигатель. Чтобы закрепить бутылку, отрежьте донышко от еще одной бутылки и закрепите его саморезами на основе. Теперь вставляем фильтр в этот кронштейн.
Что касается второго фильтра, тот тут уже происходит более тонкая очистка. В качестве фильтрующего элемента засыпьте внутрь бутылки активированный уголь. Шланги заводим через отверстия, которые сверлятся в крышках бутылок. Для герметизации можно использовать горячий клей или холодную сварку, как автор.
Шаг четвертый. Устанавливаем двигатель
Питать водородом мы будем двухтактный двигатель внутреннего сгорания. Подойдет мотор от бензокосы, бензопилы или другой подобной техники. Двигатель крепим винтами к бруску, который устанавливается на основу.

Двигатель нужно подготовить к работе на газу. Для этого нам понадобится небольшая пластиковая бутылочка. Вырезаем в крышке отверстия под винты и делаем входящее отверстие под карбюраторное. Крышку крепим к карбюратору. От бутылочки отрежьте донышко, а вместо него наденьте губку или что-то подобное, что подойдет на роль фильтра.
Проделайте у входа в карбюратор отверстие в бутылочке и установите шланг для подвода газа.
Очень важным моментом для работы двухтактного двигателя является система смазки. Тут автор нашел очень интересное решение, подача масла осуществляется в карбюратор, то есть, вместо бензина. При желании вы всегда можете отрегулировать нужное количество масла, которое будет поступать при работе ДВС. Определять, много масла льется или мало, можно по количеству дыма, также первое время нужно следить за тем, чтобы двигатель не перегрелся. Установите стойку, закрепите на ней емкость с маслом и подключите шланг к карбюратору.
В завершении устанавливаем двигатель на 12В, подключаем его к валу ДВС. В итоге у нас получается два в одном, это стартер, которым мы будем заводить движок, а также этот стартер будет работать как генератор электричества! Автор изначально планировал подключить через инвертор к генератору лампу на 110 Вольт, но инвертор оказался неисправным.
Валы генератор и двигателя соединяются с помощью куска резинового шланга. Для надежности вы можете вставить более тонкий шланг в более толстый. Фиксируем все это дело с помощью металлических хомутов.
После этого можно попробовать завести двигатель. Брызните на воздушный фильтр жидкости для запуска двигателя и подайте напряжение на двигатель, чтобы раскрутить ДВС. Не забывайте о зажигании и направлении вращения.
Шаг пятый. Приступаем к тестированию установки!
Сначала нужно заправить «Мистер Фьюжн», заливаем канистру кока-колу, у автора ушло 7 банок. Затем добавьте в колу гидроксид натрия и все перемешайте. Осталось добавить алюминий. Режем алюминиевые банки от колы на мелкие куски и засыпаем в канистру. Тут же начнется мощная реакция с выделением большого количества тепла и водорода. Закрываем крышу и ждем, пока не образуется нужное давление. Оно должно составлять минимум 2PSI (0.13 Атмосфер), чтобы газ можно было использовать. Но избегайте высокого давления, так как газ может запросто детонировать!
В процессе реакции выделяется столько тепла, что вода начинает кипеть. Чтобы этого избежать, автор поливает канистру холодной водой.
Когда нужнее давление будет достигнуто, можно попробовать поджечь газ на горелке. Ну а потом подключаем и двигатель. Возможно, вам придется поэкспериментировать с нужным количеством газа для работы двигателя. Электричество устройство вырабатывает вполне успешно, автор подключает к нему лампу накаливания и электромоторчик для демонстрации. На этом все, надеюсь, проект вам понравился. Удачи и берегите себя!
Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. .

В данной статье описаны наиболее популярные способы получения дешевого водорода в домашних условиях.

Способ 1. Водород из алюминия и щелочи.

Используемый раствор щелочи – едкого кали (гидроксид калия), либо едкого натра (гидроксид натрия, продается в магазинах, как средство очистки труб «Крот»). Выделяемый водород более чистый, чем при реакции кислот с активными металлами.

Насыпаем в колбу небольшое количество едкого кали либо натра и заливаем 50 -100 мл воды, перемешиваем раствор до полного растворения кристаллов. Далее добавляем несколько кусочков алюминия. Сразу же начнется реакция с выделением водорода и тепла, сначала слабая, но постоянно усиливающаяся.
Дождавшись пока реакция будет происходить более активно, аккуратно добавим еще 10г. щелочи и несколько кусочком алюминия. Так мы значительно усилим процесс.
Закупориваем колбу, пробиркой с трубкой ведущей сосуд для сбора газа. Ждем примерно 3 -5 мин., пока водород вытеснит воздух из сосуда.

Как образуется водород? Оксидная пленка, которая покрывающая поверхность алюминия, при контакте с щелочью разрушается. Так как алюминий является активным металлом, то он начинает реагировать с водой, растворяясь в ней, при этом выделяется водород.

2Al + 2NaOH + 6H2O → 2Na + 3H2

Способ 2. Водород из алюминия, сульфата меди и пищевой соли.

В колбу насыпаем немного сульфата меди (медный купорос, продается в любом магазине для сада), и соли (соли чуть больше). Добавляем воду и перемешиваем до полного растворения. Раствор должен, окрасится в зеленый цвет, если этого не произошло, добавьте еще небольшое количество соли.
Колбу необходимо поставить в чашку наполненной холодной водой, т.к. при реакции, будет выделятся большое количество тепла.
Добавляем в раствор несколько кусочков алюминия. Начнется реакция.

Как происходит выделение водорода? В процессе образуется хлорид меди, смывающий оксидную пленку с метала. Одновременно с восстановлением меди происходит образование газа.

Способ 3. Водород из цинка и соляной кислоты.

Помещаем в пробирку кусочки цинка и заливаем их соляной кислотой.
Являясь активным металлом цинк, взаимодействуя с кислотой, вытесняет из нее водород.

3.

Получение и применение водорода

Получение водорода

  • В лаборатории водород получают взаимодействием кислоты с металлом, стоящим в ряду активности до H2. Обычно используют соляную или разбавленную серную кислоту и металлы средней активности (цинк или железо):

Zn+2HCl=ZnCl2+H2, Fe+H2SO4=FeSO4+H2. Собирают выделяющийся водород вытеснением воздуха или вытеснением воды:

  • В промышленности водород получают конверсией (взаимодействием) водяных паров с углём или метаном:

C+H2O⟶tCO+H2, CH4+H2O⟶tCO+3H2. Применение водорода

  • Из водорода получают важнейшие химические соединения: аммиак, хлороводород.
  • Реакцию горения водорода применяют для резки и сварки металлов.
  • Водород используется в качестве топлива в ракетных двигателях.
  • Водородом можно восстанавливать металлы из их оксидов.
  • С помощью водорода жидкие жиры превращают в твёрдые (растительное масло — в маргарин).
  • Водород применяется для получения многих органических веществ.

Источники: Габриелян О. С. Химия. 9 класс. Учебник для общеобразовательных учреждений. М.: Дрофа, 2013. — 139 с.

admin

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Наверх