Электрификация

Справочник домашнего мастера

12 импульсный трансформатор

Содержание

Расчет и намотка импульсного трансформатора

Сегодня я расскажу о процедуре расчета и намотки импульсного трансформатора, для блока питания на ir2153.

Моя задача стоит в следующем, нужен трансформатор c двумя вторичными обмотками, каждая из которых должна иметь отвод от середины. Значение напряжения на вторичных обмотках должно составить +-50В. Ток протекать будет 3А, что составит 300Вт.

Расчет импульсного трансформатора.

Для начала загружаем себе программу расчета импульсного трансформатора Lite-CalcIT и запускаем её.

Выбираем схему преобразования – полумостовая. Зависит от вашей схемы импульсного источника питания. В статье “Импульсный блок питания для усилителя НЧ на ir2153 мощностью 300Вт” схема преобразования –полумостовая.

Напряжение питания указываем постоянное. Минимальное = 266 Вольт, номинальное = 295 Вольт, максимальное = 325 Вольт.

Тип контроллера указываем ir2153, частоту генерации 50кГц.

Стабилизации выходов – нет.Принудительное охлаждение – нет.

Диаметр провода, указываем тот, который есть в наличии. У меня 0,85мм. Заметьте, указываем не сечение, а диаметр провода.

Указываем мощность каждой из вторичных обмоток, а также напряжение на них.Я указал 50В и мощность 150Вт в двух обмотках.

Схема выпрямления – двухполярная со средней точкой.

Указанные мною напряжения (50 Вольт) означают, что две вторичных обмотки, каждая из которых имеет отвод от середины, и после выпрямления, будет иметь +-50В относительно средней точки. Многие подумали бы, что указали 50В, значит, относительно ноля будет 25В в каждом плече, нет! Мы получим 50В вкаждом плече относительно среднего провода.

Далее выбираем параметры сердечника, в моем случае это “R” – тороидальный сердечник, с размерами 40-24-20 мм.

Нажимаем кнопочку “Рассчитать!”. В результате получаем количество витков и количество жил первичной и вторичной обмоток.

Намотка импульсного трансформатора.

Итак, вот мое колечко с размерами 40-24-20 мм.

Теперь его нужно изолировать каким-либо диэлектриком. Каждый выбирает свой диэлектрик, это может быть лакоткань, тряпочная изолента, стеклоткань и даже скотч, что лучше не использовать для намотки трансформаторов. Говорят скотч, разъедает эмаль провода, не могу подтвердить данный факт, но я нашел другой минус скотча. В случае перемотки, трансформатор тяжело разбирать, и весь провод становится в клею от скотча.

Я использую лавсановую ленту, которая не плавится как полиэтилен при высоких температурах. А где взять эту лавсановую ленту? Все просто, если есть обрубки экранированной витой пары, то разобрав её вы получите лавсановую пленочку шириной примерно 1,5см. Это самый идеальный вариант, диэлектрик получается красивым и качественным.

Скотчем подклеиваем лавсаночку к сердечнику и начинаем обматывать колечко, в пару слоев.

Далее мотаем первичку, в моем случае 33 витка проводом диаметра 0,85мм двумя жилами (это я перестраховался). Мотайте по часовой стрелке, как показано на картинке ниже.

Выводы первичной обмотки скручиваем и залуживаем.

Далее надеваем сверху несколько сантиметров термоусадки и подогреваем.

Следующим шагом вновь изолируем диэлектриком еще пару слоев.

Теперь начинаются самые «непонятки» и множество вопросов. Как мотать? Одним проводом или двумя? В один слой или в два слоя класть обмотку?

В ходе моего расчета я получил две вторичных обмотки с отводом от середины. Каждая обмотка содержит 13+13 витков.

Мотаем двумя жилами, в ту же сторону, как и первичную обмотку. В итоге получилось 4 вывода, два уходящих и два приходящих.

Теперь один из уходящих выводов соединяем с одним из приходящих выводов. Главное не запутаться, иначе получится, что вы соедините один и тот же провод, то есть замкнете одну из обмоток. И при запуске ваш импульсный источник питания сгорит.

Соединили начало одного провода с концом другого. Залудили. Надели термоусадку. Далее вновь обмотаем лавсановой пленкой.

Напомню, что мне нужно было две вторичных обмотки, если вам нужен трансформатор с одной вторичной обмоткой, то на этом этапе финиш. Вторую вторичную обмотку мотаем аналогично.

После чего сверху опять обматываем лавсановой пленкой, чтобы крайняя обмотка плотно прилегала и не разматывалась.

В результате получили вот такой аккуратный бублик.

Таким образом, можно рассчитать и намотать любой трансформатор, с двумя или одной вторичной обмоткой, с отводом или без отвода от середины.

Программа расчета импульсного трансформатора Lite-CalcIT

Статья по перемотке импульсного трансформатора из БП ПК .

Надежность импульсного лабораторного блока питания во многом зависит от того, насколько правильно выполнен расчет импульсного трансформатора. Небольшое отклонение его параметров от оптимальных для конкретного источника питания приводит к снижению КПД и ухудшению характеристик.

Порядок расчета импульсного трансформатора

Рисп = 1,3 Рн (Рн — мощность, потребляемая нагрузкой). Далее, задавшись габаритной мощностью Ргаб, которая должная удовлетворять условию Ргаб ≥ Рисп, необходимо подобрать подходящий тороидальный ферритовый магнитопровод. Параметры магнитопровода связаны с Ргаб соотношением Ргаб = ScS0fBmax/150, Вт.

Здесь f — частота преобразования напряжения, Гц; Sc = (D-d)h/2 — площадь сечения магнитопровода, см2 (D и d — соответственно наружный и внутренний диаметры, h — высота кольца, см); S0 = p d2/4 — площадь окна магнитопровода, см2; Bmax — максимальное значение индукции (в тесла), которое зависит от марки феррита и может быть определено по справочнику, содержащему сведения о ферромагнитных материалах.

После этого зная напряжение на первичной обмотке трансформатора U1, находят число витков w1=0,25x104U1/fBmaxSc.

Для преобразователя (см. рисунок) U1 = Uпит/2- Uкэ нас, где Uпит — напряжение питания преобразователя, а Uкэ нас — напряжение насыщения коллектор — эмиттер транзисторов VT1, VT2.

Рассчитанное значение w1 нужно округлить в большую сторону (во избежание насыщения магнитопровода).

Далее необходимо определить максимальный ток (в амперах) первичной обмотки: I1 max = Pн/h U1 (h — КПД преобразователя, обычно 0,8) и диаметр (в миллиметрах ее провода: d1 = 0,6√I 1 max.

Затем находят число витков вторичной обмотки трансформатора: w2 = w1U2/U1 и диаметр провода: d2 = 0,6√I2 (U2 и I2 — соответственно напряжение и ток вторичной обмотки).

Теперь для закрепления пройденного материала рассмотрим расчет трансформатора для импульсного блока питания на конкретном примере.

  • Рассчитаем высокочастотный трансформатор блока питания стереофонического усилителя , имеющего следующие выходные напряжения и токи:
  • U2 = (25+25) В
  • I2 = 3 A
  • U3 = 20 В
  • I3 = 1 A
  • U4 = 10 В
  • I4 = 3 А

Мощность нагрузки Pн = 200 Вт. Используемая мощность этого трансформатора Рисп = 1,3 · 200 = 260 Вт.

Частоту преобразования f выберем равной 105 Гц. В качестве магнитопровода используем кольцо типоразмера К38х24х7 из феррита марки 2000НН (Вmax = 0.25 T ).

Теперь определим напряжение на первичной обмотке трансформатора и число витков:

U1 = (285/2) — 1,6 = 141 В; w1 = (0,25 ∙104 ∙ 141) ÷ (105 ∙ 0,25 ∙ 0,49) ≈ 29.

Для исключения насыщения магнитопровода выбираем w1 = 30.

Далее рассчитаем максимальный ток в первичной обмотке и диаметр провода:

Теория  >>  Слово о трансформаторе

О трансформаторе замолвим слово

С чего начать?
Процесс выбора трансформатора
На что он способен?
Нужен ли зазор в сердечнике?

Для новичка в силовой электронике трансформатор является одним из наиболее непонятных предметов.
— Непонятно, почему в китайском сварочном аппарате стоит маленький трансформатор на сердечнике Е55, выдаёт ток 160 А и прекрасно себя чувствует. А в других аппаратах стоит в два раза больше на тот же ток и безумно греется.
— Непонятно: надо ли делать зазор в сердечнике трансформатора? Одни говорят, что это полезно, другие считают, что зазор вреден.
А какое число витков считать оптимальным? Какую индукцию в сердечнике можно считать допустимой? И многое другое тоже не совсем понятно.

В этой статье я попытаюсь внести ясность в часто возникающие вопросы, причём целью статьи является не получение красивой и непонятной методики расчёта, а более полное ознакомление читателя с предметом обсуждения, чтобы после прочтения статьи он лучше представлял себе, чего можно ожидать от трансформатора, и на что обратить внимание при его выборе и расчёте. А как это получится, судить читателю.

С чего начать?

Процесс выбора трансформатора
На что он способен?
Нужен ли зазор в сердечнике?

Обычно начинают с выбора сердечника для решения конкретной поставленной задачи.
Для этого необходимо что-нибудь знать о материале, из которого сердечник изготавливается, о характеристиках изготовленных из этого материала сердечников различных типов, и чем больше, тем лучше. Ну и, конечно, надо представлять себе требования к трансформатору: для чего он будет использоваться, на какой частоте, какую мощность должен отдать в нагрузку, условия охлаждения, и, возможно, что-нибудь специфическое.
Ещё лет десять тому назад, для получения приемлемых результатов надо было иметь много формул и проводить сложные расчёты. Не всем хотелось заниматься рутинной работой, и проектирование трансформатора чаще всего проводилось по упрощённой методике, иногда наугад, и, как правило, с некоторым запасом, которому даже придумали название, хорошо отражающее ситуацию — «коэффициент испуга». Ну и, конечно, этот коэффициент заложен во многих рекомендациях и упрощённых формулах расчёта.
Сегодня ситуация намного проще. Все рутинные расчёты заложены в программы с удобным интерфейсом, Производители ферритовых материалов и сердечников из них выкладывают подробные характеристики своих изделий и предлагают программные средства для выбора и расчёта трансформаторов. Это позволяет полностью использовать возможности трансформатора и применять сердечник именно такого габарита, который обеспечит необходимую мощность, без упомянутого выше коэффициента.
И начинать надо с моделирования схемы, в которой этот трансформатор используется. Из модели можно взять практически все исходные данные для расчёта трансформатора. Затем необходимо определиться с производителем сердечников для трансформатора и получить в полном объёме информацию о его продукции.
В статье в качестве примера будет использоваться моделирование в свободно доступной программе SWCad III и её обновлении LTspice IV, а в качестве производителя сердечников — известная в России фирма EPCOS, предлагающая для выбора и расчёта своих сердечников программу «Ferrite Magnetic Design Tool»

Процесс выбора трансформатора

С чего начать?
На что он способен?
Нужен ли зазор в сердечнике?

Выбор и расчёт трансформатора проведём на примере использования его в сварочном источнике тока для полуавтомата, рассчитанного на ток 150 А при напряжении 40 В, с питанием от трёхфазной сети.
Произведение выходного тока 150 А на выходное напряжение 40 В даёт выходную мощность устройства Рвых = 6000 Вт. Коэффициент полезного действия выходной части схемы (от транзисторов до выхода) можно принять равным КПДвых = 0,98. Тогда максимальная мощность, поступающая на трансформатор равна
Ртрмах = Рвых / КПДвых = 6000 Вт / 0,98 = 6122 Вт.
Частоту переключения транзисторов выберем равной 40 — 50 КГц. В данном конкретном случае она является оптимальной. Для уменьшения габаритов трансформатора частоту необходимо повышать. Но дальнейшее повышение частоты приводит к увеличению потерь в элементах схемы и при питании от трёхфазной сети может привести к электрическому пробою изоляции в непредсказуемом месте..
В России наиболее доступны ферриты типа Е из материала N87 фирмы EPCOS.
Воспользовавшись программой «Ferrite Magnetic Design Tool», определим подходящий для нашего случая сердечник:

Сразу заметим, что определение получится оценочным, поскольку программа предполагает мостовую схему выпрямления с одной выходной обмоткой, а в нашем случае выпрямитель со средней точкой и две выходные обмотки. В результате следует ожидать некоторого повышения плотности тока по сравнения с заложенной нами в программу.
Наиболее подходит сердечник E70/33/32 из материала N87. Но для того, чтобы он передал мощность 6 КВт, необходимо увеличить плотность тока в обмотках до J = 4 А/мм2, допустив больший перегрев по меди dTCu и поставить трансформатор в обдув, для снижения теплового сопротивления Rth до Rth = 4,5 °C/W.
Для правильного использования сердечника, необходимо ознакомиться со свойствами материала N87.
Из графика зависимости проницаемости от температуры:

следует, что магнитная проницаемость сначала растёт до температуры 100 °С, после чего до температуры 160 °С не увеличивается. В диапазоне температур от 90 °С до 160 °С изменяется не более, чем на 3 %. То есть, параметры трансформатора, зависящие от магнитной проницаемости в этом диапазоне температур наиболее стабильны.

Из графиков гистерезиса при температурах 25 °С и 100 °С:

видно, что размах индукции при температуре 100 °С меньше, чем при температуре 25 °С. Его и следует принимать в расчёт, как наиболее неблагоприятный случай.
Из графика зависимости потерь от температуры:

следует, что при температуре 100 °С потери в сердечнике минимальны. Сердечник адаптирован для работы при температуре 100 °С. Это подтверждает необходимость использовать при моделировании свойства сердечника при температуре 100 °С.

Свойства сердечника E70/33/32 и материала N87 при температуре 100 °С приведены на вкладке:

Используем эти данные при создании модели силовой части источника сварочного тока.

Файл модели: HB150A40Bl1.asc

Рисунок;

На рисунке представлена модель силовой части Полумостовой схемы источника питания сварочного полуавтомата, рассчитанного на ток 150 А при напряжении 40 В с питанием от трёхфазной сети.
Нижняя часть рисунка представляет собой модель «Схемы защиты двухтактного преобразователя от превышения установленных значений тока в первичной обмотке трансформатора и тока намагничивания». (Здесь описание работы схемы защиты в формате .doc). Резисторы R53 — R45 — модель переменного резистора RP2 установки тока поцикловой защиты, а резистор R56 соответствует резистору RP1 установки предельного тока намагничивания.
Элемент U5 с названием G_Loop — полезное дополнение к LTspice IV от Валентина Володина, позволяющее смотреть петлю гистерезиса трансформатора непосредственно в модели.
Исходные данные для расчёта трансформатора получим в самом тяжёлом для него режиме — при минимально допустимом напряжении питания и максимальном заполнении ШИМ.
На рисунке ниже представлены осциллограммы: Красным цветом- выходное напряжение, синим — выходной ток, зелёным — ток в первичной обмотке трансформатора.

Ещё необходимо знать среднеквадратичные (RMS) токи в первичной и вторичной обмотках. Для этого опять воспользуемся моделью. Выберем графики токов в первичной и вторичной обмотках в установившемся режиме:

Поочерёдно наводим курсор на надписи вверху I(L5) и I(L7) и при нажатой клавише «Ctrl» щёлкаем левой кнопкой мыши. В появившемся окне читаем: ток RMS в первичной обмотке равен (округлённо)
Irms1 = 34 А,
а во вторичной —
Irms2 = 102 А.
Просмотрим теперь петлю гистерезиса в установившемся режиме. Для этого Щёлкаем левой кнопкой мыши в области надписей на горизонтальной оси. Появляется вставка:

Вместо слова «time» в верхнем окне пишем V(h):

и кликаем «ОК».
Теперь на схеме модели кликаем по выводу «B» элемента U5 и наблюдаем петлю гистерезиса:

На вертикальной оси одному вольту соответствует индукция в 1Т, на горизонтальной оси одному вольту соответствует напряжённость поля в 1 А/м.
Из этого графика нам надо взять размах индукции, который, как видим, равен
dB = 400 мТ = 0,4 Т (от — 200 мТ до +200 мТ).
Вернёмся к программе Ferrite Magnetic Design Tool, и на вкладке «Pv vs. f,B,T» посмотрим зависимость потерь в сердечнике от размаха индукции В:

Заметим, что при 100 Мт потери составляют 14 кВт/м3, при 150 мТ — 60 кВт/м3, при 200 мТ — 143 кВт/м3, при 300 мТ — 443 кВт/м3. То есть, имеем почти кубическую зависимость потерь в сердечнике от размаха индукции. Для величины 400 мТ потери даже не приводятся, но зная зависимость можно прикинуть, что они составят более 1000 кВт/.м3. Понятно, что такой трансформатор долго не проработает. Для снижения размаха индукции необходимо либо увеличивать число витков в обмотках трансформатора, либо повышать частоту преобразования. Существенное увеличение частоты преобразования в нашем случае нежелательно. Увеличение числа витков приведёт к повышению плотности тока и соответствующих потерь — по линейной зависимости от числа витков, размах индукции тоже снижается по линейной зависимости, но зато снижение потерь вследствие снижения размаха индукции — по кубической зависимости. То есть, в случае, когда потери в сердечнике существенно больше потерь в проводах, увеличение числа витков даёт большой эффект в снижении общих потерь.
Изменим количество витков в обмотках трансформатора в модели:

Файл модели: HB150A40Bl2.asc

Рисунок;

Петля гистерезиса в этом случае выглядит более обнадёживающе:

Размах индукции составляет 280 мТ Можно пойти ещё дальше. Увеличим частоту преобразования с 40 кГц до 50 кГц:

Файл модели: HB150A40Bl3.asc

Рисунок;

И петля гистерезиса:

Задаём теперь в модели достаточно большое время симулирования, для приближения её состояния к установившемуся режиму, и опять определяем среднеквадратичные значения токов в первичной и вторичной обмотках трансформатора:
Irms1 = 34 А,
а во вторичной —
Irms2 = 100 А.
Берём из модели количества витков в первичной и вторичных обмотках трансформатора:
N1 = 12 витков,
N2 = 3 витка,
и определяем общее количество ампервитков в обмотках трансформатора:
NI = N1 * Irms1 + 2 * N2 * Irms2 = 12 вит * 34 А + 2 * 3 вит * 100 А = 1008 A*вит.
На самом верхнем рисунке, на вкладке Ptrans, в левом нижнем углу в прямоугольнике приведено рекомендуемое для данного сердечника значение коэффициента заполнения окна сердечника медью:
fCu = 0,4.
Это означает, что при таком коэффициенте заполнения обмотка должна разместиться в окне сердечника, с учётом каркаса. Примем это значение, как руководство к действию.
Взяв сечение окна из вкладки свойств сердечника An = 445 мм2, определим общее допустимое сечение всех проводников в окне каркаса:
SCu = fCu*An
и определим, какую плотность тока в проводниках для этого необходимо допустить:
J = NI / SCu = NI / fCu * An = 1008 A*вит / 0,4 * 445 мм2 = 5,7 A*вит/мм2.
Размерность означает, что независимо от количества витков в обмотке, на каждый квадратный миллиметр меди должно приходиться 5,7 А тока.

Теперь можно переходить к конструкции трансформатора.
Вернёмся к самому первому рисунку — вкладке Ptrans, по которой мы прикидывали мощность будущего трансформатора. На ней есть параметр Rdc/Rac, который установлен в 1. Этот параметр учитывает способ намотки обмоток. Если обмотки намотаны неправильно, его величина возрастает, и мощность трансформатора падает. Исследования того, как правильно мотать трансформатор проводились многими авторами, я приведу только выводы из этих работ.
Первое — вместо одного толстого провода для намотки высокочастотного трансформатора необходимо использовать жгут из тонких проводов. Поскольку рабочая температура предполагается в районе 100 °С, провод для жгута должен быть теплостойким, например, ПЭТ-155. Жгут должен быть немного скручен, а в идеале должна быть скрутка типа ЛИТЦЕНДРАТ. Практически достаточно скрутки 10 оборотов на метр длины.
Второе — рядом с каждым слоем первичной обмотки должен располагаться слой вторичной. При таком расположении обмоток токи в соседних слоях текут в противоположных направлениях и магнитные поля, создаваемые ими, вычитаются. Соответственно, ослабляется суммарное поле и вызываемые им вредные эффекты.
Опыт показывает, что если эти условия выполнены, на частотах до 50 КГц параметр Rdc/Rac можно считать равным 1.

Выберем для формирования жгутов провод ПЭТ-155 диаметром 0,56 мм. Он удобен тем, что имеет сечение 0,25 мм2. Если привести к виткам, каждый виток обмотки из него будет добавлять сечение Sпр = 0,25 мм2/вит. Исходя из полученной допустимой плотности тока J = 5,7 Aвит/мм2, можно рассчитать, какой ток должен приходиться на одну жилу из этого провода:
I1ж = J * Sпр = 5,7 A*вит/мм2 * 0,25 мм2/вит = 1,425 A.
Исходя из значений токов Irms1 = 34 А в первичной обмотке и Irms2 = 100 А во вторичных обмотках, определим количество жил в жгутах:
n1 = Irms1 / I1ж = 34 А / 1,425 A = 24 ,
n2 = Irms2 / I1ж = 100 А / 1,425 A = 70 . ]
Рассчитаем общее количество жил в сечении окна сердечника:
Nж = 12 витков * 24 жилы + 2 * (3 витка * 70 жил) = 288 жил + 420 жил = 708 жил.
Общее сечение провода в окне сердечника:
Sм = 708 жил * 0,25 мм2 = 177 мм2
Коэффициент заполнения окна сердечника медью найдём, взяв сечение окна из вкладки свойств An = 445 мм2;
fCu = Sм / An = 177 мм2 / 445 мм2 = 0,4 — величина, из которой мы исходили.
Приняв среднюю длину витка для каркаса Е70 равной lв = 0,16 м,, определим общюю длину проводи в пересчёте на одну жилу:
lпр =lв * Nж,
и, зная удельную проводимость меди при температуре 100 °С, р = 0,025 Ом*мм2/ м, определим общее сопротивление одножильного провода:
Rпр = р * lпр / Sпр = р * lв * Nж/Sпр = 0,025 Ом*мм2/ м * 0,16 м * 708 жил / 0,25 мм2 = 11 Ом.
Исходя из того, что максимальный ток в одной жиле равен I1ж = 1,425 A, определим максимальную мощность потерь в обмотке трансформатора:
Pобм = I21ж* Rпр = (1,425 A)2 * 11 Ом = 22 .
Добавив к этим потерям вычисленную ранее мощность магнитных потерь Pm = 18,4 Вт, получим суммарную мощность потерь в трансформаторе:
Pсум = Pm + Pобм = 18,4 Вт + 22 Вт = 40,4 Вт.
Сварочный аппарат не может работать непрерывно. В процессе сварки случаются паузы, во время которых аппарат «отдыхает». Этот момент учитывается параметром, называемым ПН — процент нагрузки — отношение общего времени сварки за некоторый промежуток времени к длительности этого промежутка. Обычно для промышленных сварочных аппаратов принимается Пн = 0,6. С учётом Пн, средняя мощность потерь в трансформаторе будет равна:
Ртр = Pсум * ПН = 40,4 Вт * 0,6 = 24 Вт.
Если трансформатор не обдувается, то, приняв тепловое сопротивление Rth = 5,6 °C/W, как указано на вкладке Ptrans, получим перегрев трансформатора равным:
Tпер = Ртр * Rth = 24 Вт* 5,6 °C/Вт = 134 °C.
Это много, необходимо использовать принудительный обдув трансформатора. Обобщение данных из Интернета по охлаждению изделий из керамики и проводников показывает, что при обдуве их тепловое сопротивление, в зависимости от скорости потока воздуха, сначала резко падает и уже при скорости потока воздуха 2 м/сек составляет 0,4 — 0,5 от состояния покоя, затем скорость падения уменьшается, и скорость потока более 6 м/сек нецелесообразна. Примем коэффициент снижения равным Kобд = 0,5, что вполне достижимо при использовании компьютерного вентилятора, и тогда ожидаемый перегрев трансформатора составит:
Tперобд = Ртр * Rth * Kобд= 32 Вт * 5,6 °C/Вт * 0,5 = 67 °C.
Это означает, что при максимальной допустимой температуре окружающей среды Токрмакс = 40 °C и при полной нагрузке сварочного аппарата температура нагрева трансформатора может достигнуть величины:
Ттрмакс = Токрмакс + Tпер = 40 °C + 67 °C = 107 °C.
Такое сочетание условий маловероятно, но исключать его нельзя. Самым разумным будет установить на трансформаторе датчик температуры, который будет отключать аппарат при достижении трансформатором температуры 100 °C и опять включать его при охлаждении трансформатора до температуры 90 °C. Такой датчик защитит трансформатор и при нарушении системы обдува.
Следует обратить внимание на тот факт, что вышеизложенные расчёты сделаны из предположения, что в перерывах между сваркой трансформатор не нагревается, а только остывает. Но если не приняты специальные меры по снижению длительности импульса в режиме холостого хода, то и в отсутствие процесса сварки трансформатор будет разогреваться магнитными потерями в сердечнике. В рассматриваемом случае температура перегрева составит, при отсутствии обдува:
Tперхх = Pm * Rth = 18,4 Вт * 5,6 °C/Вт * 0,5 = 103 °C,
а при обдуве:
Tперххобд = Pm * Rth * Kобд = 18,4 Вт * 5,6 °C/Вт * 0,5 = 57 °C.
В этом случае расчёт следует проводить исходя из того, что магнитные потери происходят всё время, а к ним в процессе сварки добавляются потери в проводах обмотки:
Pсум1 = Pm + Pобм * ПН = 18,4 Вт + 22 Вт * 0,6 = 31,6 Вт.
Температура перегрева трансформатора без обдува будет равна
Tпер1 = Pсум1 * Rth = 31,6 Вт * 5,6 °C/Вт = 177 °C,
а при обдуве:
Tпер1обд = Pсум1 * Rth * Kобд = 31,6 Вт * 5,6 °C/Вт = 88 °C.

Итак, если мы хотим сэкономить на трансформаторе и, соответственно, габаритах аппарата, для нормальной его работы необходимо усложнять схему управления

Такой подход правомерен к сварочному аппарату, где предельные режимы возникают не часто, и отключение источника не приводит к фатальным последствиям. При проектировании источника питания, который может работать круглые сутки во всём диапазоне нагрузок, было бы правильнее применить трансформатор на сдвоенном сердечнике.

На что он способен?

С чего начать?
Процесс выбора трансформатора
Нужен ли зазор в сердечнике?

На первый взгляд непонятно, что это за режим сварки 150 А при 40 В? — А и нет такого режима. Это просто возможности источника при минимальном напряжении питания и максимальном заполнении ШИМ. Для того, чтобы установить, какую максимальную мощность он может обеспечить. Увидели, что 6000 Вт может. Возникает вопрос: — А в реальном режиме сварки мы сможем получить такую мощность? — Сейчас проверим. Установим в модели параметры и сопротивление нагрузки так, чтобы получился режим резки металла 200 А при 30 В — те же 6000 Вт:

Файл модели: HB150A40Bl4.asc

Рисунок;

Сопротивление нагрузки, согласно закону Ома, установили 0,15 Ом и для уменьшения выходного напряжения уменьшили длительность импульса до 7,0 мкс. Получили на выходе ток 200 А при напряжении 30 В:

Нужен ли зазор в сердечнике?

С чего начать?
Процесс выбора трансформатора
На что он способен?

В рекомендациях по использованию сердечников я не встречал использование зазора в трансформаторах. То есть, теоретически он вроде как не нужен. Но практика показала, что при склейке трансформатора в зазор часто попадают мелкие частицы пыли, а чаще всего частицы того же феррита. В результате всё равно получается небольшой зазор, причём разный. Если сердечник не склеивать, а сжимать, что не рекомендуется, поскольку сжатие влияет на характеристики сердечника, при попадании в зазор твердых частиц, трансформатор начинает пищать. Лично для себя я пришёл к выводу, что результаты получаются более стабильными, если зазор делать из газетной бумаги. Она достаточно мягкая, чтобы твёрдые частицы пыли погрузились в неё, кроме того, она впитывает клей и он не вытесняется наружу.

Современные бытовые приборы используют трансформаторное преобразование электроэнергии в блоках питания. Домашнему мастеру приходится их периодически ремонтировать или переделывать.

На основе личного опыта электрика объясняю, как перемотать трансформатор своими руками в домашних условиях, имея минимум необходимого инструмента для работы.

Рассчитываю, что статья будет полезна в первую очередь начинающим электрикам, как полезная инструкция для работы с трансформаторными устройствами с частотой сигнала до 400 герц.

Перемотка трансформатора требует точного соблюдения технологии и правильного расчета его конструкции. При этом могут возникнуть различные ситуации.

Самый простой случай произошел весной прошлого года, когда ко мне обратился сосед, работающий в авторазборке. У них отказал сварочный трансформатор.

Я определил межвитковое замыкание и порекомендовал им самостоятельно размотать обмотку, улучшить ее изоляцию и снова намотать на катушку. Сам процесс разборки поэтапно фотографировать. По этим фото проще собрать сварочник без ошибок.

К концу дня они с этой задачей справились. В качестве изоляции использовали офисную бумагу: нарезали ее на полоски и оборачивали каждый виток. Таким простым способом работоспособность была восстановлена. А сварочником они сейчас работают только под навесом.

Однако это частный случай. В большинстве ситуаций вам потребуются специальные методики, обеспечивающие оптимальный выбор соотношения параметров конструкции и выходных характеристик.

3 способа рассчитать характеристики трансформатора под конкретные нужды

Ниже привожу три методики расчета, любая из которых подойдет для ваших целей. Это:

  1. Расчет конструкции трансформатора по электротехническим формулам;
  2. Использование онлайн-расчета;
  3. Скачивание и применение компьютерной программы

Ручной расчет по формулам за 4 шага

Шаг №1: выбор мощности или магнитопровода

Трансформатор преобразует электрическую мощность первичной цепи во вторичную с какими-то потерями. При этом входная энергия передается магнитным потоком через сердечник, обладающий определенными магнитными свойствами.

Его пропускные характеристики ограничены, их следует оптимально подбирать под конкретные условия работы с учетом конструкции сердечника.

Магнитопровод может быть изготовлен из штампованных пластин или броневых лент. Его замкнутую форму делают в виде кольца или прямоугольника (может быть с закругленными углами) либо сдвоенной фигурой из них с двумя окнами просвета.

Поперечное сечение сердечника по всему периметру делается одинаковым для создания равномерных условий прохождения магнитного потока. Исключением является сдвоенный магнитопровод, собираемый из Ш-образных пластин или созданный приложением двух прямоугольных сердечников из лент.

У него на удвоенную по площади среднюю часть монтируются обмотки, а магнитные потоки равномерно распределяются по боковым ответвлениям.

Выходная электрическая мощность и пропускные характеристики магнитного потока являются связанными величинами, влияют друг на друга. Поэтому выбор и расчет трансформатора при перемотке проводят по одному из двух вариантов:

  1. имея готовый магнитопровод, рассчитывают по нему вначале электрическую мощность, а затем остальную конструкцию;
  2. задавшись требуемой электрической мощностью и напряжением, подбирают под нее форму и поперечное сечение сердечника.

Для расчета связи между поперечным сечением магнитопровода Q (см кв) и входной мощностью трансформатора S (вт) применяются две эмпирические формулы, учитывающие его конфигурацию:

  1. Q=√S для кольцевых сердечников;
  2. Q=0,7√S для сдвоенных конструкций.

При этих вычислениях используются усредненные параметры электротехнической стали, позволяющие сделать трансформатор для бытовых целей.

Разницу между этими двумя формулами позволяет хорошо понять простой пример. Допустим, у нас есть железо от двух одинаковых сердечников прямоугольного сечения 0,8х2,5 см.

Если наложить их друг на друга и намотать обмотки, то поперечное сечение будет 2,5х1,6=4,0 см кв.

При стыковке по Ш-образному принципу оно не изменится: 5,0х0,8=4,0.

Но, в первом случае получим мощность S=QхQ=4,0х4,0= 16 ватт, а во втором — она возрастет S= QхQ/0.49=16/0,49=32.6 ватта.

Таким образом: только за счет изменения формы магнитопровода можно увеличить входную мощность трансформатора на 49%.

Шаг №2: расчет выходной мощности по входной величине

Опытным путем давно установлена закономерность потерь электрической энергии в конструкциях различных сухих трансформаторов. Она представлена следующей таблицей.

Хорошо просматривается закономерность: с увеличением электрической мощности снижаются общие потери, а КПД возрастает.

Эта таблица позволяет очень просто вычислять выходную мощность по входной величине за счет ее умножения на выбранный КПД.

Шаг №3: выбор напряжений и расчет токов в обмотках

При перемотке трансформатора его создают на конкретные величины напряжений первичной и вторичной цепей. Например: 220/12, 220/24, 220/36 вольт и другие подобные.

Значения мощности на входе и выходе мы уже определили. Теперь можно посчитать рабочие токи, которые будут протекать в каждой обмотке. Для этого достаточно мощность в ваттах поделить на напряжение в вольтах. Вычислим ток в амперах.

Под него требуется подобрать медный провод, который хорошо справится с температурной нагрузкой, вызванной протеканием рабочего тока.

Шаг №4: расчет поперечного сечения провода

Берем за основу соотношение плотности тока в медном проводе катушки, лежащей в пределах 1,8-3 ампера на 1 мм квадратный поперечного сечения. Ему соответствует эмпирическое выражение D=0,8√I.

В шаге №3 токи нами рассчитаны, остается по приведенной формуле рассчитать диаметр медной проволоки. Ее можно немного увеличить или уменьшить.

Но, при уменьшении сечения станет возрастать нагрев трансформатора при работе. Тогда потребуется применять меры к его охлаждению или делать частые перерывы.

Увеличенный же диаметр может создать ситуацию, когда площади свободного окна в сердечнике для укладки всех витков провода банально не хватит. Этот вариант стоит просчитать заранее.

Шаг №5: как рассчитать количество витков каждой обмотки

Если приложить напряжение к отрезку выпрямленной проволоки, то маленькая величина активного сопротивления создаст аварийный режим: огромный ток короткого замыкания.

Когда провод намотан вокруг сердечника, то катушка создает индуктивное сопротивление для переменного тока, которое увеличивается с повышением числа витков.

Эту зависимость принято учитывать вольтамперной характеристикой обмотки. Рабочая зона выбирается на верхнем участке, но до начала точки перегиба ВАХ, когда даже незначительное прибавление напряжения вызывает резкое повышение тока, что в большинстве случаев недопустимо.

На этапе расчета нам достаточно воспользоваться опять же эмпирическим коэффициентом ω’, выражающим соотношение между количеством намотанных витков и приложенных к ним вольт.

Этот показатель зависит от магнитного сопротивления сердечника и его поперечного сечения.

Для неизвестной марки электротехнической стали рекомендую использовать отношение 45/Q, где поперечное сечение магнитопровода Q берется в сантиметрах квадратных.

Дальше просто коэффициент ω’ умножаем на выбранное количество вольт и получаем число витков, которые нужно намотать.

Шаг №6: проверка свободного места в окне магнитопровода

Расчет необходим для исключения ошибок при намотке. Он позволяет уточнить емкость окна для монтажа катушки с проводом, наличие резерва пространства и плотность укладки.

Зная диаметр проволоки и количество витков, считают общее пространство, которое они займут при очень плотной укладке. Далее этот показатель следует увеличить на 30-40%. Созданный резерв уйдет на дополнительные слои изоляции и неровности проволоки, «кривые руки».

Онлайн расчет трансформатора: простая методика

Все перечисленные выше данные можно получить проще. Например, достаточно воспользоваться онлайн расчетом.

Один из его вариантов Описание работы приведено прямо в статье.

Компьютерная программа для пересчета трансформатора

В любом поисковике достаточно набрать PowerTrans и нажать кнопку «Найти».

Мой Яндекс показывает ее на первой позиции. Дальше остается скачать программу на свой компьютер и пользоваться ей. Интерфейс простой и понятный.

Я рекомендую при расчете пользоваться всеми тремя методиками, ибо они довольно простые и, к тому же, помогут устранить случайные ошибки.

Как собрать трансформатор: проверенные технологии

Работа состоит из двух отдельных этапов:

  1. монтажа сердечника;
  2. намотки катушки.

Их последовательность меняется в зависимости от конструкции магнитопровода.

Как мотать обмотки проводом: 2 способа

Смонтировать обмотку с проводом вокруг сердечника можно двумя способами:

  1. Намоткой витков прямо на изолированный лентами не разъемный магнитопровод с равномерной укладкой их вручную.
  2. Созданием катушки с обмоткой и вставкой в нее разъемных пластин.

Первый способ более трудоемкий. Им пользуются для тороидальных магнитопроводов, выполненных из сплошных лент электротехнической стали.

Железо сердечника обматывают полосками изоляционного материала, например, лакотканью или бумагой, добиваясь сглаживания острых углов на профиле тора.

Для промышленных целей созданы специальные намоточные станки.

Для домашнего применения это затратный способ. Здесь поступают проще: длинный отрезок толстого провода сворачивают змейкой (порядка метра) и, продевая его через внутреннее окно сердечника, укладывают витки руками.

Тонкий провод удобнее разместить на челноке из дощечки или толстой проволоки и просовывать его внутрь отверстия.

Каждый слой обмотки покрывают слоем изоляции.

Второй способ применяют для разборных сердечников, собираемых стыковкой отдельных П- или Ш-образных пластин.

Под катушку делают каркас из изоляционного материала. Им может служить картон электротехнический, гетинакс, стеклотекстолит. Одна из форм показана ниже.

Во внутреннюю полость должны свободно входить пластины сердечника, а снаружи каркаса мотается провод. В верхней крышке с каждой стороны делают отверстия для вывода концов.

Мотать витки можно вручную или сделать простейший намоточный станок, значительно облегчающий эту работу.

Показываю два самодельных варианта его исполнения фотографиями ниже.

Такую конструкцию легко собрать из дощечек, придав ей форму перевернутой скамеечки. Счетчик числа оборотов, то есть количества витков, сейчас удобно делать из старого калькулятора.

Для этого вскрывают его корпус и к контактам кнопки «Равно» припаивают аккуратно проводки. Их вторые концы выводят на геркон, который закрепляют на стойке намоточного станка около оси вращения. Против нее на вращающейся части монтируют небольшой магнит.

Каждый оборот вала сопровождается прохождением магнита рядом с герконом и срабатыванием последнего. Замыкание контакта сопровождается показанием очередной цифры на табло.

Витки обмотки необходимо укладывать ровными рядами, как это делали в советское время, ценя качество работы, и прокладывать каждый слой изоляционной бумагой.

Часть самодельщиков практикует намотку «внавал», создавая общую массу без всякой дополнительной изоляции по принципу: и так работает.

Действительно: работает, но не длительное время. На многочисленных перегибах создаются узлы с дополнительными механическими усилиями. Динамические нагрузки от магнитных потоков, нагрев провода ослабляют изоляцию в этих точках.

Она пробивается со временем, создается межвитковое замыкание. Трансформатор утрачивает необходимые рабочие характеристики, выходит из строя.

Очень хорошо в качестве изоляции слоев подходит тонкая бумага для выпечки, выпускаемая для изготовления кулинарных изделий.

Из нее просто вырезают канцелярским ножом полоски по ширине проема катушки и прокладывают ими каждый слой.

Тонкий провод требует очень аккуратного обращения, он может порваться от небольшого случайного рывка. Если витков намотано мало, то его лучше заменить. Но, вполне допустимо зачистить изоляцию, скрутить и пропаять скрутку, а затем повторно ее заизолировать.

Когда место внутри катушки ограничено, то оборванный конец и его продолжение выводят за каркас и там делают соединение. Имеет смысл в этом случае посадить его на индивидуальную клемму: можно будет использовать в качестве отдельной отпайки для снятия части напряжения или проверок.

Силовые обмотки трансформаторов зарядных устройств, сварочных аппаратов могут подвергаться повышенным нагревам. Поэтому их изоляцию полезно усиливать пропиткой жидкого стекла. Это обычный силикатный клей, которым клеят бумагу.

Однако такая технология выполняется долго: каждый слой после пропитки необходимо просушить. Зато работать он будет надежно и долго. Поэтому так поступают только для самых ответственных устройств.

Обмотки, создаваемые по принципу внавал, можно усиливать пропиткой специальным лаком с электроизоляционными свойствами, например, марки МЛ-92. Пропитку наносят периодически в процессе работы на несколько слоев провода и дают ей возможность просохнуть.

Пользоваться нитролаком, клеями, эпоксидными шпаклевками не стоит. Они могут разъесть заводской слой изоляции и не подходят по линейному коэффициенту расширения при нагреве для меди: будут создаваться дополнительные механические нагрузки.

Пропитка витков после окончательной намотки катушки бесполезна: жидкий лак просто не проникнет вглубь обмотки.

Как монтировать пластины магнитопровода: на что обращать особое внимание

Вначале рекомендую взять в руки одну пластину и рассмотреть ее. Вы заметите с двух противоположных сторон разные цветовые оттенки. Это связано с изоляцией железа лаком. Бывает, что его наносят только с одной стороны.

Пластины надо вставлять так, чтобы слои лака постоянно чередовались, а не совпадали по окраске.

Особенности разборки сердечника

Электротехническая сталь мягкая, а в собранном сердечнике она плотно сжата. Часто для крепления используются клинья из стеклотекстолита, уплотняющие свободное пространство. Их при разборке следует вытащить или выбить.

Только после этого извлекают первую пластину. Если она плотно сидит и не достается, то ее вначале отделяют тонким лезвием ножа, а затем выбивают с помощью молотка и металлической плоской планки. Можно воспользоваться лезвием простой отвертки.

Особенности сборки сердечника

Основные пластины поочередно вставляют снизу и сверху катушки до полного заполнения ее внутреннего пространства. Затем к ним добавляют дополнительные вставки и сбивают на плоском твердом предмете легкими ударами молотка.

Необходимо добиться плотного прилегания всех стыков, чтобы исключить потери магнитного потока при его протекании по сердечнику.

В большинстве разборных магнитопроводов их конструкция стягивается крепежными болтами или винтами. Они должны быть надежно изолированы от пластин сердечника.

С этой целью достаточно вырезать из плотного картона плоские шайбы, а сами винты обернуть полосками бумаги.

Даже такая простая изоляция предотвратит потери электроэнергии на создание вихревых токов.

Все винты крепления следует хорошо прожать. Корпус трансформатора при работе подвергается действию динамических сил от протекающего по нему магнитного потока.

Плохо сжатый магнитопровод будет гудеть, издавать повышенные шумы, передавать дополнительные усилия на обмотку. Допускать этого нельзя. Сердечник должен быть собран очень плотно.

Электрические замеры: важный этап проверки работоспособности собранной конструкции по науке

Перемотка трансформатора должна обязательно закончиться оценкой его электрических характеристик. Необходимо проверить:

  1. сопротивление изоляции;
  2. параметры холостого хода:
  3. работу под нагрузкой.

Сопротивление изоляции

Величину оценивают мегаомметром с напряжением 500-1000 вольт между:

  • обмотками;
  • обмотками и магнитопроводом;
  • винтами крепления и сердечником.

Замер сопротивления мультиметром в режиме омметра может выявить только явно выраженные дефекты. Определить скрытые неисправности им не получится.

Оценка холостого хода

При включении питания на первичную обмотку с разомкнутыми выходными цепями проверяют коэффициент трансформации замером напряжения на силовой цепи и ток холостого хода в первичной обмотке.

Если выходное напряжение окажется ниже расчетного, то потребуется домотать витки во вторичную обмотку. Их количество поможет определить вычисленный коэффициент трансформации.

Его величина 100-150 миллиампер при пропорционально приложенной мощности для каждых 100 ватт считается допустимой. Если же ток будет больше, то изделие не должно длительно работать. Ему надо делать перерывы и контролировать нагрев.

Проверка под нагрузкой снятием вольтамперной характеристики

Потребуется собрать такую простенькую схему.

На ее основе:

  • к выходным цепям подключается рабочая нагрузка;
  • на вход от источника переменного напряжения, например, лабораторного автотрансформатора подается регулируемое питание, контролируемое вольтметром. Ток в цепи оценивают амперметром;
  • напряжение поэтапно поднимают от нуля до какой-то конкретной величины, не забывая размагничивать сердечник;
  • на контрольных точках оценивают ток и напряжение в обмотке;
  • по полученным данным строят вольтамперную характеристику и определяют точку перегиба ВАХ.

Такая проверка под нагрузкой позволит сделать окончательный вывод о качестве собранного трансформатора и дать заключение на его дальнейшую эксплуатацию.

Ее удобно выполнять на специализированном оборудовании, например, Ретом-11М.

Электрические проверки перемотанного трансформатора под нагрузкой должны выполняться до его включения в постоянную работу. Они позволят исключить все допущенные ошибки и выявить дефекты сборки.

Если у вас еще остались вопросы, как перемотать трансформатор своими руками, то рекомендую посмотреть видеоролик владельца Сделал Сам.

КАК РАСЧИТАТЬ И ИЗГОТОВИТЬ ТРАНСФОРМАТОР ТОКА

Виктор Хрипченко пос. Октябрьский Белгородской обл.

Занимаясь расчетами мощного источника питания, я столкнулся с проблемой — мне понадобился трансформатор тока, который бы точно измерял ток. Литературы по этой теме не много. А в Интернете только просьбы — где найти такой расчет. Прочитал статью ; зная, что ошибки могут присутствовать, я детально разобрался с данной темой. Ошибки, конечно, присутствовали: нет согласующего резистора Rc (см. рис. 2) для согласования на выходе вторичной обмотки трансформатора (он и не был рассчитан) по току. Вторичная цепь трансформатора тока рассчитана как обычно у трансформатора напряжения (задался нужным напряжением на вторичной обмотке и произвел расчет).

Немного теории

Итак, прежде всего немного теории . Трансформатор тока работает как источник тока с заданным первичным током, представляющим ток защищаемого участка цепи. Величина этого тока практически не зависит от нагрузки вторичной цепи трансформатора тока, поскольку его сопротивление с нагрузкой, приведенное к числу витков первичной обмотки, ничтожно мало по сравнению с сопротивлениями элементов электрической схемы. Это обстоятельство делает работу трансформатора тока отличной от работы силовых трансформаторов и трансформаторов напряжения.

На рис. 1 показана маркировка концов первичной и вторичной обмоток трансформатора тока, навитых на маг-нитопровод в одном и том же направлении (I1 — ток первичной обмотки, I2 -ток вторичной обмотки). Ток вторичной обмотки I2 пренебрегая малым током намагничивания, всегда направлен так, чтобы размагничивать магнитопровод.

Стрелками показано направление токов. Поэтому если принять верхний конец первичной обмотки за начало то началом вторичной обмотки н также является ее верхний конец. Принятому правилу маркировки соответствует такое же направление токов, учитывая знак. И самое главное правило: условие равенства магнитных потоков.

Алгебраическая сумма произведений I1 x W1 — I2 x W2 = 0 (пренебрегая малым током намагничивания), где W1 — количество витков первичной обмотки трансформатора тока, W2 — количество витков вторичной обмотки трансформатора тока.

Пример. Пусть вы, задавшись током первичной обмотки в 16 А, произвели расчет и в первичной обмотке 5 витков — рассчитано. Вы задаетесь током вторичной обмотки, например, 0,1 А и согласно вышеупомянутой формулы I1 x W1 = I2 x W2 рассчитаем количество витков вторичной обмотки трансформатора.

W2 = I1 x W1 / I2

Далее произведя вычисления L2 -индуктивности вторичной обмотки, ее сопротивление XL1, мы вычислим U2 и потом Rc. Но это чуть позже. То есть вы видите, что задавшись током во вторичной обмотке трансформатора I2, вы только тогда вычисляете количество витков. Ток вторичной обмотки трансформатора тока I2 можно задать любой — отсюда будет вычисляться Rc. И еще -I2 должен быть больше тех нагрузок, которые вы будете подключать

Трансформатор тока должен работать только на согласованную по току нагрузку (речь идет о Rc).

Если пользователю требуется трансформатор тока для применения в схемах защиты, то такими тонкостями как направление намоток, точность резистивной нагрузки Rc можно пренебречь, но это уже будет не трансформатор тока, а датчик тока с большой погрешностью. И эту погрешность можно будет устранить, только создав нагрузку на устройстве (я и имею в виду источник питания, где пользователь собирается ставить защиту, применяя трансформатор тока), и схемой защиты установить порог ее срабатывания по току. Если пользователю требуется схема измерения тока, то как раз эти тонкости должны быть обязательно соблюдены.

На рис. 2 (точки — начало намоток) показан резистор Rc, который является неотьемлимой частью трансформатора тока для согласования токов первичной и вторичной обмотки. То есть Rc задает ток во вторичной обмотке. В качестве Rc не обязательно применять резистор, можно поставить амперметр, реле, но при этом должно соблюдаться обязательное условие — внутреннее сопротивление нагрузки должно быть равным рассчитанному Rc.

Если нагрузка не согласованная по току — это будет генератор повышенного напряжения. Поясняю, почему так. Как уже было ранее сказано, ток вторичной обмотки трансформатора направлен в противоположную сторону от направления тока первичной обмотки. И вторичная обмотка трансформатора работает как размагничивающая. Если нагрузка во вторичной обмотке трансформатора не согласованная по току или будет отсутствовать, первичная обмотка будет работать как намагничивающая. Индукция резко возрастает, вызывая сильный нагрев магнито-провода за счет повышенных потерь в стали. Индуктируемая в обмотке ЭДС будет определяться скоростью изменениями потока во времени, имеющей наибольшее значение при прохождении трапецеидального (за счет насыщения магнитопровода) потока через нулевые значения. Индуктивность обмоток резко уменьшается, что вызывает еще больший нагрев трансформатора и в конечном итоге — выход его из строя.

Типы магнитных сердечников приведены на рис. 3 .

Витой или ленточный магнитопровод — одно и то же понятие, также как и выражение кольцевой или тороидальный магнитопровод: в литературе встречаются и то, и другое.

Это может быть ферритовый сердечник или Ш-образное трансформаторное железо, или ленточные сердечники. Ферритовые сердечники обычно применяется при повышенных частотах — 400 Гц и выше из-за того, что они работают в слабых и средних магнитных полях (Вт = 0,3 Тл максимум). И так как у ферритов, как правило, высокое значение магнитной проницаемости µ и узкая петля гистерезиса, то они быстро заходят в область насыщения. Выходное напряжение, при f = 50 Гц, на вторичной обмотке составляет единицы вольт либо меньше. На ферритовых сердечниках наносится, как правило, маркировка об их магнитных свойствах (пример М2000 означает магнитную проницаемость сердечника µ, равную 2000 единиц).

На ленточных магнитопроводах или из Ш-образных пластин такой маркировки нет, и поэтому приходится определять их магнитные свойства экспериментально, и они работают в средних и сильных магнитных полях (в зависимости от применяемой марки электротехнической стали — 1,5.. .2 Тл и более) и применяются на частотах 50 Гц.. .400 Гц. Кольцевые или тороидальные витые (ленточные) магнитопроводы работают и на частоте 5 кГц (а из пермаллоя даже до 25 кГц). При расчете S — площади сечения ленточного тороидального магнитопровода, рекомендуется результат умножить на коэффициент к = 0,7…0,75 для большей точности. Это объясняется конструктивной особенностью ленточных магнитопроводов.

Что такое ленточный разрезной магнитопровод (рис. 3)? Стальную лента, толщиной 0,08 мм или толще, наматывают на оправку, а затем отжигают на воздухе при температуре 400.. .500 °С для улучшения их магнитных свойств. Потом эти формы разрезаются, шлифуются края, и собирается магнитопровод. Кольцевые (неразрезные) витые магнитопроводы из тонких ленточных материалов (пермаллоев толщиной 0,01.. .0,05 мм) во время навивки покрывают электроизолирующим материалом, а затем отжигают в вакууме при 1000.. .1100 °С.

Для определения магнитных свойств таких магнитопроводов надо намотать 20…30 витков провода (чем больше витков, тем точнее будет значение магнитной проницаемости сердечника) на сердечник магнитопровода и измерить L-индуктивность этой обмотки (мкГн). Вычислить S — площадь сечения сердечника трансформатора (мм2), lm-среднюю длину магнитной силовой линии (мм). И по формуле рассчитать jll — магнитную проницаемость сердечника :

(1) µ = (800 x L x lm) / (N2 x S) — для ленточного и Ш-образного сердечника.

(2) µ = 2500*L(D + d) / W2 x C(D — d) — для кольцевого (тороидильного) сердечника.

При расчете трансформатора на более высокие токи применяется провод большого диаметра в первичной обмотке, и здесь вам понадобится витой стержневой магнитопровод (П-образный), витой кольцевой сердечник или ферритовый тороид.

Если кто держал в руках трансформатор тока промышленного изготовления на большие токи, то видел, что первичной обмотки, навитой на магнитопровод, нет, а имеется широкая алюминиевая шина, проходящая сквозь магнитопровод.

Я напомнил об этом затем, что расчет трансформатора тока можно производить, либо задавшись Вт — магнитной индукцией в сердечнике, при этом первичная обмотка будет состоять из нескольких витков и придется мучиться, наматывая эти витки на сердечник трансформатора. Либо надо рассчитать магнитную индукцию Вт поля, создаваемую проводником с током, в сердечнике.

А теперь приступим к расчету трансформатора тока, применяя законы .

Вы задаетесь током первичной обмотки трансформатора тока, то есть тем током, который вы будете контролировать в цепи.

Пусть будет I1 = 20 А, частота, на которой будет работать трансформатор тока, f = 50 Гц.

Возьмем ленточный кольцевой сердечник OJ125/40-10 или (40x25x10 мм), схематично представленный на рис. 4.

Размеры: D = 40 мм, d = 25 мм, С = 10 мм.

Далее идет два расчета с подробными пояснениями как именно расчитывается трансформатор тока, но слишком большое количество формул затрудняет выложить расчеты на странице сайта. По этой причине полная версия статьи о том как расчитать трансформатор тока была конвертирована в PDF и ее можно скачать воспользовавшись .

Адрес администрации сайта: admin@soundbarrel.ru

Как сделать трансформатор своими руками — пошаговая инструкция, схема, чертежи, список материалов + фото готового самодельного трансформатора

Чтобы преобразовать напряжение в какую-либо сторону, используют трансформаторы, понижающие либо повышающие ток. Они являют собой электрический прибор с повышенным КПД, их применяют во множестве производственных и бытовых областях.

Возможно изготовить данный прибор самостоятельно, пользуясь схемой устройства трансформатора.

Сборка устройства, повышающего напряжение, требует точного выполнения всего технологического процесса и соблюдения рекомендаций специалистов.

Краткое содержимое статьи:

  • Что нужно знать
  • Каркас
  • Обмотки
  • Материалы и инструменты
  • Заключение
  • Фото советы как сделать трансформатор своими руками

Что нужно знать

Когда есть потребность в этом аппарате, нужно определиться с его предназначением и свойствами:

  • Повышение или понижение напряжения.
  • Какое напряжение имеется на входе и какое необходимо на выходе устройства.
  • Какой частотой обладает сеть переменного тока.
  • Какая мощность желательна от самодельного аппарата.

После того, как определились какое конкретно необходимо устройство, можно приобретать нужные материалы и сопутствующие предметы. А именно:

  • лакоткань (изоляционную ленту на тканевой основе);
  • сердечник (можно использовать от неисправного телевизора, только подходящей мощности),
  • необходимое количество, изолированных эмалью, провода.

Перед произведением обмотки желательно изготовить несложный станок для этих целей. Для этого нужно:

  • Доска размерами: шириной 10 см, длиной 40 см;
  • Просверлить два бруса 50 х 50 мм на одинаковой высоте отверстия диаметром восемь миллиметров.
  • Прикрутить их к доске саморезами на расстоянии в 300 мм.
  • В отверстия брусков вставить прут, на котором заранее надета катушка предстоящего трансформатора.
  • На одном конце штыря нарезать резьбу длиной 30 мм.
  • На него гайками закрепить рукоятку, вращая которую на прут с катушкой будет наматываться провод.

Вышеприведенные размеры не стабильны, они зависят от параметров сердечника.

Нужно отметить, что не любую катушку можно намотать с помощью этого приспособления. Если сердечник изготовлен из ферросплавов либо обладает круглой формой, то приходится мотать вручную.

Предварительно рассчитать количество витков можно взяв за основу желаемую мощность прибора, либо ознакомившись с инструкцией как сделать трансформатор.

Там же можно найти необходимые диаметры и сечения проводов для обмоток, а также все вычислительные формулы.

После всех расчетов, можно приступить к намотке.

Каркас

Сделать каркас трансформатора своими руками не сложно. Подходящий материал для этого — картон. Полость внутри каркаса должна быть немного больше по размеру, чем тело сердечника, а боковины без труда входить в проём трансформатора. Используя круглый сердечник, наматываются две катушки, при использовании пластин в форме буквы «Е» — одну.

Применяя круглый сердечник от лабораторного автотрансформатора его нужно вначале обмотать изоляционной лентой и уже потом наматывать провод, по всему кругу распределяя витки необходимого количества.

Закончив намотку первичного слоя провода, ее надо заизолировать четырьмя слоями тканевой изоляцией, поверх начать накручивать витки вторичной обмотки. Затем такой же лентой полностью обматывают провод, оставив лишь окончания обмоток.

Используя обычные магнитопровода, каркас изготавливается следующим образом:

  • выкраивается гильза с отгибами на торцах;
  • вырезаются боковины из картона;
  • по разметке сворачивают основу катушки в маленькую коробку;
  • затем она заклеивается;
  • снабжают гильзу боковинами;
  • зафиксировав отворотами, приклеивают.

Обмотки

На брусок из дерева, размерами как у стержня, одевают катушку. Но прежде нужно просверлить в нем отверстие для намоточного прутка.

Данный элемент вставляют в обмоточное приспособления и производят намотку:

  • сначала на катушку нужно намотать лакоткань в два слоя;
  • один из концов провода зафиксировать на боковине и произвести медленное вращение рукоятки станка;
  • наматывание витков нужно производить вплотную, делая между слоями прослойки из тканевой изоляции;
  • после этих действий, провод обкусывают и получившийся второй конец фиксируют на боковине вблизи с первым;
  • оба конца оснащают изоляционными трубками;
  • наружную часть обмотки изолируют;
  • таким же образом делается вторичная обмотка.

Так производится намотка трансформатора своими руками.

Если все выполнено правильно, то трансформатор будет работать без перебоев.

При желании наглядно посмотреть трансформаторы, собранные своими руками можно найти фото в различных источниках.

Материалы и инструменты

  • провода необходимого сечения;
  • металлический сердечник;
  • изоляционная лента на тканевой основе;
  • картонный материал;
  • бруски и доски из дерева;
  • прут из стали;
  • клеевой состав;
  • ножницы;
  • пила;
  • вольтметр.

Заключение

Самостоятельно изготовить трансформатор повышающий напряжение не трудно, главное следовать правильной технологии обмотки и сборки. Не забывать про изоляцию. И такое устройство проработает долгое время.

Фото советы как сделать трансформатор своими руками

РадиоКот >Конкурсы >null >

Теги статьи: Добавить тег

Изготавливаем качественный трансформатор

Evgenij
Опубликовано 25.08.2014
Создано при помощи КотоРед.

Дорогой Кот! Хочу поздравить тебя с твоим 9 Днем рождения.

Желаю всего-всего самого хорошего, а также много настоящего Вискаса и колбаски высшего сорта.

Несмотря на огромное количество разработок в области радиоэлектроники, остаются темы, которые всегда останутся актуальными для радиолюбителей. Одна из них – питание для своих конструкций. В данной статье пойдет речь об изготовлении качественного трансформатора в домашних условиях из подручных материалов.

В 21 веке происходит интенсивное развитие техники. Разрабатываются новые радиоэлементы, конструируются приборы различного назначения, бытовая и измерительная техника. ЭВМ совершают гигантский рывок в производительности. Но как известно энергия, которой все они питаются, поступает в наши дома в виде высокого переменного напряжения сети 230 В , которое в исходном виде непригодно для питания большинства радиоэлектронной аппаратуры. Чтобы бытовую сеть можно было использовать требуется преобразовать данное напряжение, в большинстве случаев, в более низкое. Делать это можно различными способами, но классический способ, который уже известен почти 140 лет, это использование трансформаторов.

Изобретение трансформатора – событие революционного характера. Но ему содействовали ряд других открытий. Поскольку трансформатор работает на основе взаимопревращения электрического тока в магнитное поле и наоборот, то все открытия, произошедшие в этой области, можно характеризовать как шаги к изобретению трансформатора.

Первым свидетельством возникновения магнитного поля (МП) при протекании электрического тока был опыт датского профессора Ганса Христиана Эрстеда. В 1820 году он демонстрировал студентам тепловое действие тока. Однако случайно недалеко стояла магнитная стрелка. При замыкании цепи стрелка становилась перпендикулярно проводнику, по которому течет ток. При изменении направления тока, стрелка разворачивалась на 1800.

Рисунок 1. Опыт Эрстеда, а — разомкнутая цепь, б — замкнутая цепь .

Следует отметить, что в то время единственными источниками тока являлись различные химические источники тока (в быту «батарейки»). Поэтому задача получения электричества стояла весьма актуально. Опыт Эрстеда показал, что вокруг проводника возникает МП. Но логично предположить, что возможен и обратный процесс. Именно ему посвятил большую часть жизни английский ученый Майкл Фарадей.

Фарадей искал способ превратить энергию МП в электрический ток. Он помещал постоянный магнит в соленойд (катушку). При этом ток не регистрировался. В 1831 году было обнаружено, что если перемещать постоянный магнит по соленойду (катушке), то возникает ток. Фарадей ввел понятие магнитный поток и пришел к заключению, что именно изменение магнитного потока приводит к возникновению тока в катушке.

Рисунок 2. Опыт Фарадея по взамопревращению МП в электрический ток .

Следует отметить, что Фарадей использовал не только постоянные магниты в качестве источника МП, но и катушки с протекающим током. Т.е. Фарадей сделал прообраз трансформатора, однако он не был предназначен для преобразования напряжения.

Первый прообраз трансформатора был изготовлен Генрихом Даниэлем Румкорфом в 1851 году. Это были 2 обмотки – низковольтная и высоковольтная, намотанные на железном стержне. Принцип действия прост: с помощью размыкателя включается и выключается ток через первичную обмотку. За счет изменения магнитного потока происходит наведение ЭДС в высоковольтной обмотке.

Рисунок 3. Катушка Румкорфа .

Официальной датой рождения трансформатора является 30 ноября 1876 года. Именно в этот день был получен первый патент на изобретение трансформатора Павлом Николаевичем Яблочковым. Через 10 лет появились первые промышленные образцы в Англии, и, в связи с мировой электрификацией, трансформаторы подвергались модернизации и начали массово производиться.

Сегодня трансформаторы применяются почти во всей РЭА со стационарным питанием. Существует много классификаций, но главный критерий, в нашем случае, – это классификация по частоте работы. Дело в том, что, как было уже сказано выше, трансформатор может работать только при изменении магнитного потока. Это достигается использованием переменного тока. Однако скорость изменения направления тока может быть весьма различной. Следует выделить 2 основных типа трансформаторов:

1)Низкочастотные (частота работы обычно 50, 60 и 400 Гц)

2)Высокочастотные (частота работы обычно от 10000 до 100000 Гц)

Их отличие в материале используемого сердечника. В высокочастотных используется различные виды ферритов или пермаллой, в низкочастотых – железо или трансформаторная сталь.

В современном мире идет тендеция на замену низкочастотных трансформаторов на высокочастотные. Однако все же доля первых остается достаточно велика. Основные преимущества НЧ трансформаторов – надежность и простота изготовления. В них не используются радиодетали, не нужно изготавливать печатную плату и настраивать. Тут, если хорошо изолировать обмотки, то все заработает сразу, а надежность позволить работать изделию сутками. Данная статья будет ориентирована на изготовление НЧ трансформатора питания и целью ее будет показать, что в домашних условия можно изготовить маломощный трансформатор заводского качества и даже лучше.

Вся история началась с того, что, будучи админом локальной компьютерной сети и постоянно сражаясь с зависаниями коммутаторов, я обнаружил, что их внешние блоки питания иногда достаточно сильно нагреваются. Один раз даже попался блок со «сгоревшей первичной обмоткой транса». В кавычках потому, что оказалось, что виноват термопредохранитель, установленный по первичной обмотке трансформатора.

Рисунок 4. Разобранный отремонтированный блок питания.

Вместо него была установлена перемычка. После этого он пролежал у меня без дела года полтора. Вспомнив про этот блок и прочитав достаточно много информации, я пришел к выводу, что причина повышенного нагрева и выхода транса из строя стало заниженное число витков в первичной обмотке. Собственно, с тех пор стало любопытно, насколько сильно будет нагреваться трансформатор, и каков будет его КПД, если его изготовить самостоятельно, с использованием рекомендуемых параметров.

Для того, чтобы не перегружать статью расчетами и формулами, мною был создан файл, в котором имеется методичка, взятая с . Сделано это для того, чтобы в случае недоступности сайта методичка всегда была под рукой. Кроме того, в файле приведены расчеты моего будущего трансформатора.

Поскольку трансформатор изготавливался на имеющемся сердечнике, то следует измерять его габаритные параметры и определить максимальную мощность, которую можно с него снять. Для этого следует извлечь трансформатор из блока, измерять толщину пакета и выбить одну пластину. Следует отметить, что трансформаторная сталь чувствительна к ударам, поэтому не рекомендуется использовать для выбивания металлические предметы типа отвертки. Я для этих целей использовал вырезанный по размерам кусочек стеклотекстолита.

Рисунок 5. Общий вид трансформатора (А) и его разборка (Б).

После того, как пластина извлечена, приступают к измерению остальных параметров.

Таблица 1. Габаритные параметры сердечника.

Параметр

Значение

Чертеж

Ширина керна(a)

1,3 см

Ширина окна(b)

0,8 см

Толщина пакета(c)

2,8 см

Высота окна(h)

2,1 см

Когда параметры известны, можно определить произведение сечений центрального керна и окна сердечника:

Теперь смотрим пример расчета нового трансформатора в файле. Сначала следует определить, подойдет ли данный сердечник по габаритам. Для этого вычисляем габаритную мощность, которую хотим получить в пунктах 1-3, в пункте 4 находим требуемую габаритную мощность сердечника, используя в качестве неизвестных рекомендуемые величины из таблицы 2. Чуть выше примера приведена сама формула с пояснением всех величин. Теперь, если габаритная мощность нашего сердечника больше необходимой, то он подойдет.

Затем выполняем расчет числа витков, диаметры проводов и коэффициента заполнения окна. Если он меньше 0,3, то все обмотки должны поместиться. Если расчетного диаметра провода нет в наличии, то можно взять более толстый или взять более тонкий, но несколько штук. Полученные расчетные данные:

Таблица 2. Намоточные данные

Параметр

Значение

Входное напряжение

230 Вольт

Выходное напряжение

5,7 Вольт

Выходной ток

1 Ампер

Число витков первичной обмотки

2732 витка

Число витков вторичной обмотки

75 витков

Диаметр первичной обмотки по меди

0,12 мм

Диаметр вторичной обмотки по меди

0,56 мм

Теперь приступим к собственно изготовлению трансформатора. Прежде всего, следует изготовить каркас. В качестве материалов используют разные материалы, но лучше всего использовать стеклотекстолит. В этом случае получается сборный каркас, который, если рассчитан и изготовлен точно, не нужно клеить. Для расчета параметров каркаса воспользуемся программой Power Trans. Программа позволяет рассчитать трансформатор и также каркас для заданного сердечника. Расчетом витков самой программы лучше не пользоваться, т.к. она дает завышенное число витков. Не забываем также, что размеры сердечника в миллиметрах, а обозначения не совпадают.

Рисунок 6. Скриншот программы PowerTrans.

Нажимаем на «Каркас катушки» и получаем разметку каркаса.

Рисунок 7. Разметка катушки.

Тут следует сделать следующие замечания:

1)При печати формат 1 к 1 не получиться, т.е. разметку на материале продеться делать вручную.

2)Особое внимание к деталям замка, в частности, на третью часть каркаса нижнего ряда. Там есть горизонтальные выступы по центру и сверху, которые программа выдала одинаковые. Это ошибка! Верхние выступы должны быть на 1 — 2 мм больше по краям, иначе каркас придется клеить, что я и делал… Тоже самое и для первой части нижнего ряда.

3)Перед тем как детали изготавливать, полезно их начертить на бумаге и сделать бумажный макет каркаса.

Убедившись в правильности разметки, ее переносят на стеклотекстолит и вырезают. Поскольку у меня нет инструментов наподобие бормашины, то я поступал следующим образом. Я брал кусок размеченного текстолита и просто процарапывал много раз канцелярским ножом с двух сторон, а потом обламывал по линии царапины. Затем полученные куски дорабатываются. В случае щечек в центре по периметру прямоугольника высверливаются много отверстий мелким сверлом, и центр выкусывается кусачиками. При этом следует ставить сверло таким образом, чтобы на линии разметки был его край, а не центр, в противном случае размеры будут уже другими. Оставшиеся неровности стачиваются напильником. Детали керна изготавливаются путем стачивания прямоугольных заготовок до совпадения с чертежом.

После изготовления всех деталей они собираются в каркас.

Рисунок 8. Схема сборки деталей в каркас .

Если при изготовлении деталей забыли оставить выступы замка более длинными, то ничего страшного. В этом случае можно каркас собрать, оцентрировать, выровнять и склеить, например, суперклеем. Тут следует проклеивать каркас с внешней стороны, иначе избыток клея будет выступать снизу и мешать намотке.

Отдельно следует сказать о выводах для обмоток. Для этого на концах щечек следует сделать отверстия и приклеить туда кусочки проволоки, например, клеем ЭДП (изначально я хотел просто запрессовать проволоку в отверстия, но идея оказалась не очень хорошей – при испытаниях трансформатора вывод вырвался, едва не порвав обмотку у основания). В этом случае выводы держаться очень прочно. Под выводами следует проложить полоску бумажного скотча для изоляции. Помимо этого нужно сделать ряд отверстий для вывода обмоток наружу таким образом, как приведено на рисунке 8. После сборки каркаса, нужно проверить, подходит ли он. Для этого берут вибитую пластинку и вставляют в каркас. Если пластинка свободно по нему перемещается, то все нормально, однако больших щелей быть недолжно.

Следующей операцией является заготовка изолирующих прокладок. Они необходимы для изоляции слоев друг от друга, а также для изоляции обмоток друг от друга. Дело в том, что эмальпровод, имеет относительно невысокое напряжение пробоя, поэтому из-за отсутствия изоляции трансформатор может прийти в негодность.

В качестве материала можно использовать лакоткань, различную бумагу, фторопласт, майлар. В нашем случае будем использовать бумагу, как отличный изоляционный и доступный материал. Но видов бумаги тоже много, остановим выбор на бумаге для выпечки.

Рисунок 9. Бумага для выпечки.

Ее достоинства – дешевизна и малая толщина. Продается она в виде рулонов. Для изготовления изолирующих прокладок следует нарезать бумагу полосками, ширина их определяется шириной каркаса + небольшой запас по краям. Он необходим для того, чтобы крайние витки не проваливались в предыдущие слои. В моем случае ширина каркаса составила 18 мм, а полоски я нарезал шириной 19 мм, т.е. по 0,5 мм запаса с каждой стороны. Для отрезки я пользовался линейкой и канцелярским ножом. В этом случае они получаются ровными. Следует отметить, что недопустимо размечать полоски карандашом, так как графит, содержащийся в нем, проводит ток. Длина полосок не имеет значение, главное, чтобы ее хватало на один виток при изоляции. При этом следует не забывать, что с ростом толщины намотки длина изолирующих прокладок увеличивается, то есть изначально ее нужно брать с большим запасом.

Рисунок 10. Изготовление полосок из бумаги.

После того, как каркас готов, подогнан и проверен, заготовлена бумага можно приступать к намотке. Мотать можно можно вручную и на станке. В данном случае мотать вручную 2732 витка тонкой проволокой неудобно, поэтому был собран несложный станок со счетчиком витков.

Конструктивно станок состоит из трех стоек и основания, шагового двигателя, блока питания и управления для шагового двигателя, магнитного датчика и счетчика витков, ось для крепления каркаса и зажимов.

Рисунок 11. Станок для намотки катушек. Вид сверху.

Для изготовления основания, сначала вырезаются 4 доски и скручиваются саморезами. Затем высверливаются отверстия для двигателя и оси.

Рисунок 12. Детали каркаса станка.

В качестве магнитного датчика используется геркон в паре с постоянным магнитом, который приклеен к деревянному кругу и насажен на ось двигателя. Сам геркон запаян на печатной плате, которая с помощью алюминиевого уголка крепится к одной из стоек.

Рисунок 13. Конструкция магнитного датчика.

В качестве счетчика используется дешевый калькулятор, его вскрывают и припаивают к кнопке «=» контакты геркона. Также в этом станке калькулятор вместо батареек питается через делитель напряжения от блока питания.

Рисунок 14. Счетчик витков.

Блок питания и управления шаговым двигателем выполнен по следующей схеме .

Рисунок 15. Схема принципиальная электрическая блока питания и драйвера для шагового двигателя.

Конструктивно он помещен в деревянную коробочку. Наружу выведены тумблеры реверса, регулятора скорости и тумблера отключения шагового двигателя.

Рисунок 16. Плата драйвера и готовый блок в сборе.

Ось представляет собой обычную железную шпильку диаметром 5 мм. Для сочленения ее с осью двигателя используется кусок резинового шланга, который плотно держит ось двигателя и ось с резьбой.

Зажимы представляют собой квадраты из фанеры, размеры которых подобраны таким образом, чтобы каркас был центрирован на оси. Зажимаются квадраты гайками.

Рисунок 17. Зажимы для каркаса.

Следует отметить, что в данном эксперименте шаговый двигатель был отключен, так как намотка получалось некачественной. Каркас приводился в движение с помощью рук.

Теперь можно приступить к намотке. Для этого каркас зажимают на оси и центрируют. Напротив него ставят катушку с проводом на какой-либо оси. В моем случае – это лабораторный штатив, поставленный горизонтально. Затем кладется первый слой бумаги, причем желательно более толстой. Делается это для того, чтобы сгладить неровности каркаса и не допустить переламывания эмали провода под прямым углом. После того как она уложена, эмальпровод выводиться через отверстие, на него одевается трубочка, например, оболочка МГТФ, по длине от вывода до нижнего края щечки. С другой стороны щечки провод заклеивается полоской бумажного скотча, чтобы не произошло межвиткового замыкания.

Рисунок 18. Начало намотки.

Затем начинают вращать каркас, следя, чтобы намотка проходила виток к витку. В данном случае бумажная изоляция клалась через 2 слоя. Это оптимальный вариант, так как при при большем числе слоем было очень сложно наматывать виток к витку. При 2-х слоях намотка проходила достаточно легко. Мотаем 2732 витка виток к витку (24 слоя), не допуская провалов намотки на предыдущие слои…

Рисунок 19. Процесс намотки

Через 17 часов первичная обмотка готова, выводим к выводу, одеваем трубочку, припаиваем и прозваниваем ее мультиметром. Если нет обрыва и есть некоторое сопротивление, то продолжаем. Теперь кладем 2-3 слоя бумаги для межслойной изоляции и наматываем вторичнyю обмотку. На вторичке можно межслойную изоляции не класть, так как получается всего 2,5 слоя и провод достаточно толстый.

Рисунок 20. Намотка вторичной обмотки.

Намотав 75 витков, паяем к выводам, проверяем тестером, докладываем пустоту бумагой до выравнивания с проводом и кладем 2-3 слоя бумаги для изоляции провода от сердечника, причем конец полоски желательно оставить со стороны сердечника. Так конец будет закрыт. Получиться красиво и не оторвется. Все, теперь катушка готова.

Рисунок 21. Готовая катушка.

Следует сделать некоторые замечания при намотке:

1)Если провод оборвался, не страшно. В этом случае его зачищают с обоих концов, скручивают и спаивают. Спайку заворачивают в бумагу и продолжают намотку. В случае толстого провода не скручивают, а просто спаивают.

2)Пропитка. В моем случае я пропитывал каждый слой при намотке, а также изоляцию. Это делается для того, чтобы увеличить электрическую прочность обмотки, а также для фиксации витков, поскольку при протекании тока витки могут вибрировать, что приводит к истиранию эмали и понижению срока службы трансформатора. В целом, если вести намотку виток к витку как я, то это делать вовсе необязательно, поскольку намотка получается плотной и витки не вибрируют. В случае намотке внавал, а она занимает много места и понижает качество намотки за счет перегибов эмальпровода, то пропитка обязательна. В мощных трансформаторах данная процедура обязательна, поскольку силы, действующие при протекании ток по обмотке достаточно велики.

Следует отметить также недостаток, связанный с увеличением паразитных емкостей, связанный с большим значением диэлектрической постоянной у лака по сравнению с воздухом. Поэтому в случае трансформаторов, чувствительных к данным емкостям, пропитка нежелательна (звуковые и им подобные).

Также нужно обратить внимание на то, что пропитка после намотки не имеет смысла – лак внутрь обмоток не попадет. При пропитке лаком после изготовления катушки следует подождать, пока лак высохнет или заполимеризуется. Теперь несколько слов относительно самого лака. Лучше всего использовать электроизоляционный лак, например, МЛ-92. Нитролак, суперклей и им подобные лучше не использовать, поскольку они могу испортить целостность изоляции. Эпоксидный клеи тоже лучше не применять, поскольку при нагреве медь и эпоксидка расширяются по-разному. Следствием может стать нарушение изоляции. В моем случае я нашел специальный пропиточный акриловый лак. Он продается в радиомагазинах в небольших пластиковых бутылочках.

Рисунок 22. Пропитка обмоток.

Итак, ура! Самое трудное сделано! На столе мы имеем готовую катушку довольно красиво выглядящую и очень крепкую. Теперь следует до конца разобрать сердечник трансформатора – донора, поскольку была вибита лишь одна пластина. Для разборки аккуратно проходимся вдоль пластин канцелярским ножом и аккуратно вынимаем по одной пластине. Уходит на разбор обычно минут 30. Сердечник в таком же порядке складываем на столе, чтобы при сборке нового трансформатора собрать его также. Цель этого – собрать сердечник наиболее плотно.

Рисунок 23. Разборка трансформатора.

После разборки собираем новый трансформатор в той же последовательности. Последние пластинки входят очень туго, поэтому следует аккуратно постукивать маленьким молотком, желательно деревянным, чтобы не нарушить структуру трансформаторной стали.

Рисунок 24. Сборка сердечника.

И вот, после недели стараний получаем крепкое, тяжелое и красивое изделие, которое не боится ничего и, при отсутствии явных ошибок, способное проработать весьма длительный срок.

Рисунок 25. Внешний вид готового трансформатора.

Далее его следует испытать. Для этого трансформатор включают в сеть через последовательно включенную лампочку накаливания от холодильника. При этом она должна вспыхнуть и погаснуть. Если замкнуть вторичную обмотку, то лампочка загорится почти полным накалом. Если так и есть, то исключаем лампочку и выжидаем примерно 30 минут. При этом температура изделия должна быть комнатной или немного выше. Далее следуют испытания под номинальной нагрузкой в течение нескольких часов. Если трансформатор нагревается до 50-60 0С, то можно считать его полностью рабочим и использовать по назначению. Вероятность, что он подведет, будет весьма низка.

Рисунок 26. Испытание трансформатора.

В завершение статьи мной были сняты данные донорного и изготовленного с учетом рекомендуемых параметров трансформаторов, чтобы можно было сравнить, какой из них лучше. Полное сравнение не получится, поскольку товарищи из Китая смогли уместить мощность в донорном трансформаторе в 1,5 раза большую, чем в изготовленном. Но, тем не менее, для общего развития это будет полезно.

Рисунок 27. Испытания трансформаторов.

Данные получены после 1,5 часов работы в номинальных режимах и сведены в таблицу.

Таблица 2. Параметры трансформаторов.

Параметр

Донорный трансформатор

Изготовленный трансформатор

Номинальное входное напряжение, В

Номинальное выходное напряжение, В

7,5

5,7

Номинальный выходной ток, А

Входное напряжение при испытании, В

Ток холостого хода, А

0,0200

0,0115

Выходное напряжение без нагрузки, В

9,24

6,33

Выходной ток при испытании, А

1,028

1,009

Выходное напряжение под нагрузкой, В

7,77

5,13

Ток, потребляемый от сети при нагрузке, А

0,0503

0,0337

Температура при работе под нагрузкой, 0С

Диаметр первичной обмотки с изоляцией, мм

0,1

0,15

Диаметр вторичной обмотки с изоляцией, мм

0,6

0,6

Сопротивление первичной обмотки, Ом

343,7(220С)

382,8(220С)

Сопротивление вторичной обмотки, Ом

0,6(220С)

0,8(220С)

КПД, %

Из таблицы можно сделать следующие выводы:

1)КПД изготовленного трансформатора немного меньше заводского. Довольно неприятная новость, но это легко объяснить. Дело в том, что мощность потерь в трансформаторе растет нелинейно при увеличении его габаритной мощности. В мощных трансформаторах ей можно пренебречь, поэтому их КПД > 90%. В случае маломощных получается, что потери соизмеримы с мощностью самого трансформатора, поэтому КПД их ниже, причем, чем меньше мощность, тем ниже КПД. В нашем случае донорный трансформатор был в 1,5 раза более мощный в том же сердечнике. Это означает, что его КПД должен быть изначально выше. Тот факт, что они примерно равны, говорит о том, что изготовленный трансформатор действительно качественный. Тут следует также отметить, что данный КПД носит ориентировочный характер, поскольку коэффициент мощности (cos φ) трансформатора не равен 1.

2)Сопротивление обмоток. Интересно, что применяя более толстый провод в случае изготовленного трансформатора, сопротивление обмоток оказались больше, чем в донорном. С первого взгляда так и должно быть, поскольку донорный трансформатор был мощнее, у него индукция больше и витков должно быть меньше. Но ведь сечение проводов первичной обмотки отличается примерно в 2 раза. Это означает, что в заводском изделии число витков обмотки занижено, даже, несмотря на более высокую мощность.

3)Температура при работе. Тут тоже все просто. Донорный транс в том же сердечнике при почти одинаковом КПД потребляет и рассеивает в виде тепла больше энергии.

4)Проседание напряжения при нагрузке. Тут уже интереснее, поскольку расчетное значение было 5,7 В. В заводском трансформаторе индукция была больше, то есть число магнитных линий, пронизывающих витки больше, следовательно, просадка должна быть меньше. В процентном отношении к напряжению без нагрузки просадка в изготовленном была выше на несколько процентов по отношению к заводскому.

Теперь подведем итоги эксперимента. Во-первых, было показано, что трансформаторы сегодня используются во всей РЭА, а по качеству они весьма сильно отличаются. Во-вторых, был теоретически рассчитан трансформатор на основе сердечника от китайского блока питания, а затем изготовлен. Были рассмотрены способы изготовления каркасов и приспособлений для намотки, а также сделаны некоторые замечания по поводу изготовления. И, в-третьх, исходный и изготовленный трансформаторы были испытаны под номинальной нагрузкой, зафиксированы результаты измерений, а после сделаны важные выводы.

Надеюсь, моя статья поможет радиолюбителям в разработке и изготовлении трансформаторов.

Спасибо за внимание!

Использованные источники:

1)ГОСТ 29322-92. Стандартные напряжения. Межгосударственный стандарт. М., 1993 – 7 с.

Файлы:
Рисунок платы драйвера шагового двигателя
Методика расчета трансформатора

Все вопросы в Форум.

Как вам эта статья?

Заработало ли это устройство у вас?

84 10 3
3 0 0

Очень часто при создании электронных самоделок приходится наматывать и перематывать различные трансформаторы и катушки. Хорошим помощником в этом не простом и кропотливом деле, может стать простой в изготовлении и надежный самодельный намоточный станок для импульсных трансформаторов от компьютерных блоков питания и обычных трансформаторов с «Ш» образным магнитопроводом.

Конструкция намоточного станка очень простая в изготовлении, под силу даже начинающему токарю. Станок состоит из вала закрепленного на опоре вращения. С правой стороны имеется ручка для вращения вала. На валу с лева направо одето зажимное устройство, левый и правый конуса для надежного крепления трансформаторов.

На этой картинке изображен чертеж для изготовления намоточного станка своими руками. Станок рассчитан для намотки импульсных трансформаторов от компьютерных блоков питания и «Ш» образных трансформаторов. Если вы собираетесь мотать, что то очень мелкое или слишком крупное тогда вам надо масштабировать чертеж под ваши нужды. Ну, а если вас устраивает размер станка, смело берите чертеж и отправляйтесь к знакомому токарю. -Хороший токарь сделает намоточный станок за три часа… -Пускай делает. Да, и не забудьте прихватить с собой токарной валюты. Всякий труд должен оплачиваться.

Чертеж намоточного станка для намотки импульсных трансформаторов

Станок оснащен электронным счетчиком оборотов. Который я приобрел в очень известном китайском интернет магазине всего за 7.5$. Пожалуй это не дорого… За эти деньги счетчик комплектуется герконовым датчиком, крепежной пластиной для герконового датчика и маленьким неодимовым магнитом! На передней панели счетчика находится две овальные кнопки. Левая кнопка «Pause» включает прибор и сохраняет показания счетчика, кнопка «Reset» обнуляет показания прибора. Прибор питается всего от одной 1.5В АА пальчиковой батарейки, расположенной на задней панели счетчика оборотов под пластиковой крышкой. Также имеются разъемы для подключения герконового датчика и дополнительной кнопки «Reset». Обзор счетчика оборотов читайте в этой статье.

Герконовый датчик я прикрутил к алюминиевой стойке с помощью крепежной пластины. Неодимовый магнит закрепил на ручке. Для правильной работы прибора необходимо установить зазор между герконовым датчиком и неодимовым магнитом не более пяти миллиметров. Каждое прохождение неодимового магнита над герконовым датчиком счетчик оборотов считает за один виток.

Как же пользоваться станком для намотки трансформаторов?

И так, знакомый токарь изготовил все детали станка за три часа. Вы своими руками собрали намоточный станок и тщательно смазали все вращающиеся детали, установили счетчик витков. Теперь можно приступать к намотке трансформаторов. Откручиваем винтик М5 на зажимном устройстве, снимаем его и левый зажимной конус. Одеваем каркас трансформатора на вал и одеваем левый конус с зажимным устройством. Плоской отверткой фиксируем винт М5 на зажимном устройстве, далее поджимаем каркас двумя гайками. В этом деле главное не перетянуть, иначе расколите каркас. Включаем счетчик витков и если необходимо сбрасываем показания прибора в ноль.

Зачищаем ножом конец провода от лака и прикручиваем к клейме каркаса от трансформатора. Левой рукой направляем провод, а правой вращаем ручку. После нескольких минут тренировок провод будет ложиться ровными слоями. Каждый слой провода во избежание пробоя изолируем несколькими слоями обыкновенного скотча. Не забывайте наблюдать за показаниями счетчика.

Друзья, желаю вам удачи и хорошего настроения! До встречи в новых статьях!

Импульсный трансформатор – трансформатор, предназначенный для преобразования тока и напряжения импульсных сигналов с минимальным искажением исходной формы импульса на выходе. Рассмотрим особенности конструктивного устройства этой техники, область применения, выпускаемые разновидности и другие характеристики, связанные с данным оборудованием.

Конструкция и принцип работы

Импульсный трансформатор, по аналогии с другими идентичными устройствами, состоит из следующих элементов:

  • первичной и вторичной обмоток;
  • сердечника.

При подаче на входную катушку однополярных импульсов “е(t)” временной интервал между которыми довольно короткий, он вызывает возрастание индуктивности во время интервала tи, после чего наблюдается ее спад в интервале (Т-tи). Благодаря разнице в количестве витков на катушках входа и выхода и импульсному характеру подачи тока, получается добиться высокого коэффициента трансформации с сокращением габаритных размеров устройства.

Одновременно решаются задачи измерения уровня и полярности токового импульса или характеристик по напряжению, согласования значения сопротивления аппарата, создающего сигналы, с потребляющим оборудованием, создание схем обратной связи и пр.,

Подключение импульсного трансформатора

Область применения

По большей части указанные трансформаторы применяются в импульсных устройствах:

  • газовых лазерах;
  • триодных генераторах;
  • дифференцирующих модулях;
  • магнетотронах и др.

Виды трансформаторов

Эти приборы используются в современном радиоэлектронном оборудовании, для источников питания импульсного типа, телевизорах, компьютерах и другой технике.

Ещё одна область использования устройств – в качестве защитных элементов при коротком замыкании в условиях холостого хода, чрезмерной нагрузке или избыточном нагреве.

Разновидности

В зависимости от конструктивных особенностей различают следующие разновидности импульсных трансформаторов:

  • стержневые;
  • броневые;
  • тороидальные, с намоткой провода на изолированный сердечник, не предполагающие применения катушек;
  • бронестержневые.

Виды магнитопроводов

Поперечное сечение сердечника в большинстве устройств выполняется в форме круга или прямоугольника, по аналогии с силовыми аппаратами.

Основные характеристики устройств нанесены на корпус, поэтому из условного обозначения можно почерпнуть информацию об главных параметрах оборудования.

Стоимость трансформатора

Цена на единицу продукции может колебаться от 50 до 700 рублей и выше, в зависимости от характеристик устройства. При покупке учитывается производитель изделия и размер приобретаемой партии. Наиболее дешево обойдётся продукция китайского производства, массово представленная на рынке.

Импульсные трансформаторы – устройства, без которых невозможно представить современную бытовую технику и промышленное производство. Эти аппараты обладают рядом преимуществ, по сравнению с аналогичным оборудованием, но в некоторых случаях сопутствующие недостатки не позволяют их использовать.

Преимущества и недостатки

Использование импульсных трансформаторов объясняется следующими преимуществами:

  • высокими показателями выходной мощности;
  • небольшой массой и габаритными размерами;
  • высокой эффективностью, благодаря снижению энергетических потерь;
  • меньшей ценой при сопоставимых характеристиках;
  • высокой надёжностью по причине наличия схем защиты.

Разобранный импульсный трансформатор

Малая масса достигается посредством возрастания частоты импульса. Это приводит к уменьшению объёма конденсаторов и простоте схемы выпрямления.

Возрастание коэффициента полезного действия обеспечивается, благодаря сокращению энергетических потерь.

Уменьшение габаритов связано со снижением количества использованных материалов. Это основная причина удешевления данной продукции. Ещё одно достоинство малых размеров – возможность применения устройства в малогабаритных электротехнических изделиях.

Недостатки связаны со сложностью в ремонте по причине отсутствия в схеме гальванической развязки наличии помех высокой частоты, в связи с особенностями конструкции и принципа действия устройства.

Чтобы предупредить влияние высокочастотных помех, нередко приходится прибегать к использованию специальных защитных средств, если применяется оборудование, для которого такие факторы нежелательны. В некоторых случаях, в связи с помехами, применение импульсных трансформаторов оказывается невозможным.

Порядок проверки исправности

Для проверки исправности импульсного трансформатора используется аналоговый или цифровой мультиметр. Цифровое устройство обладает преимуществами, благодаря удобству применения. Его не нужно дополнительно подстраивать, достаточно убедиться в наличии питания и целостности проводов подключения.

Аналоговый мультиметр настраивается следующим образом:

  • выбирается режим эксплуатации переключением в область минимальной величины сопротивления при измерении;
  • провода вставляются в контакты прибора и соприкасаются друг с другом;
  • специальной подстройкой стрелка выставляется на ноль;

Если совместить стрелку с нулём не получается, это говорит о проблемах с элементами питания, нуждающимися в замене.

Если трансформатор является составной частью некоторого аппарата, желательно отделить этот элемент от остальной конструкции, чтобы исключить воздействие сопутствующих помех при диагностике.

Проверка с помощью осцилографа:

Неисправность прибора может объясняться следующими проблемами:

  • повреждённым сердечником;
  • подгоревшими соединениями;
  • нарушением изоляции проводов, вызывающим короткое замыкание обмотки;
  • разрывом провода.

Кроме инструментальных измерений, необходимо обращать внимание на внешний вид аппарата. О неисправности может свидетельствовать подгоревшая обмотка, следы гари и соответствующий запах.

Процедура намотки

Если провод входной или выходной катушки не пригоден для дальнейшей эксплуатации, трансформатор можно перемотать. Для этого подбирается провод с двойной или тройной изоляцией, который необходимо намотать на сердечник.

Операция выполняется в следующем порядке:

  • наматывается провод первичной катушки, после предварительного припаивания входного контакта. Витки наматываются равномерно и плотно;
  • выходной конец провода припаивается в положенном месте;
  • наносится изоляция в несколько слоёв;
  • наматывается вторичная обмотка, с припаиванием входного и выходного концов.

Чтобы устройство работало нормально, провод наматывается равномерно, исключив узлы и перекручивания. Количество витков устанавливают, исходя из проведённого расчёта по характеристикам устройства.

admin

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Наверх